首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regurgitation of metacyclic stages from the sand fly cardia is thought to be the prevailing mechanism of Leishmania transmission. This regurgitation may result through damage of the stomodeal valve and its mechanical block by the parasites. We found this phenomenon in three sand fly-Leishmania models and also in avian trypanosomes transmitted by Culex mosquitoes. Phlebotomus duboscqi, Phlebotomus papatasi, Lutzomyia longipalpis, and Culex pipiens were membrane-fed on blood containing Leishmania major, Leishmania chagasi (syn. infantum) and an unidentified avian Trypanosoma from Trypanosoma corvi clade, respectively. Females with the late-stage infections were processed for the optical and transmission electron microscopy. Localization of the parasites and changes to the stomodeal valve were in some aspects similar in all vector-parasite pairs studied: (i) a large plug of flagellates was observed in cardia region, (ii) parasites were attached to the chitin lining of the stomodeal valve by the formation of zonal hemidesmosome-like plaques. Leishmania promastigotes were found both attached to the valve as well as unattached in the lumen of midgut. The stomodeal valve of infected sand flies was opened, its chitin lining was destroyed and the unique filamentous structures on the apical end of cylindrical cells were degraded. In the Culex-Trypanosoma model, the whole population of epimastigotes was found in close contact with the chitin lining, and degenerative changes of the valve were less pronounced. We suggest that the phenomenon involving a blocked valve facilitating the regurgitation of parasites into the vertebrate host may occur generally in heteroxenous trypanosomatids transmitted by the bite of nematoceran Diptera.  相似文献   

2.
All natural Leishmania infections start in the skin; however, little is known of the contribution made by the sand fly vector to the earliest events in mammalian infection, especially in inflamed skin that can rapidly kill invading parasites. During transmission sand flies regurgitate a proteophosphoglycan gel synthesized by the parasites inside the fly midgut, termed promastigote secretory gel (PSG). Regurgitated PSG can exacerbate cutaneous leishmaniasis. Here, we show that the amount of Leishmania mexicana PSG regurgitated by Lutzomyia longipalpis sand flies is proportional to the size of its original midgut infection and the number of parasites transmitted. Furthermore, PSG could exacerbate cutaneous L. mexicana infection for a wide range of doses (10–10,000 parasites) and enhance infection by as early as 48 hours in inflamed dermal air pouches. This early exacerbation was attributed to two fundamental properties of PSG: Firstly, PSG powerfully recruited macrophages to the dermal site of infection within 24 hours. Secondly, PSG enhanced alternative activation and arginase activity of host macrophages, thereby increasing L-arginine catabolism and the synthesis of polyamines essential for intracellular parasite growth. The increase in arginase activity promoted the intracellular growth of L. mexicana within classically activated macrophages, and inhibition of macrophage arginase completely ablated the early exacerbatory properties of PSG in vitro and in vivo. Thus, PSG is an essential component of the infectious sand fly bite for the early establishment of Leishmania in skin, which should be considered when designing and screening therapies against leishmaniasis.  相似文献   

3.
To identify parameters of Leishmania infection within a population of infected sand flies that reliably predict subsequent transmission to the mammalian host, we sampled groups of infected flies and compared infection intensity and degree of metacyclogenesis with the frequency of transmission. The percentage of parasites within the midgut that were metacyclic promastigotes had the highest correlation with the frequency of transmission. Meta-analysis of multiple transmission experiments allowed us to establish a percent-metacyclic "cutoff" value that predicted transmission competence. Sand fly infections initiated with variable doses of parasites resulted in correspondingly altered percentages of metacyclic promastigotes, resulting in altered transmission frequency and disease severity. Lastly, alteration of sand fly oviposition status and environmental conditions at the time of transmission also influenced transmission frequency. These observations have implications for transmission of Leishmania by the sand fly vector in both the laboratory and in nature, including how the number of organisms acquired by the sand fly from an infection reservoir may influence the clinical outcome of infection following transmission by bite.  相似文献   

4.
Under laboratory conditions, hosts exposed twice to sand fly saliva are protected against severe leishmaniasis. However, people in endemic areas are exposed to the vector over a long term and may experience sand fly-free periods. Therefore, we exposed mice long- or short-term to Phlebotomus duboscqi bites, followed by Leishmania major infection either immediately or after a sand fly-free period. We showed that protection against leishmaniasis is limited to short-term exposure to sand flies immediately before infection. Our results may explain the persistence of leishmaniasis in endemic areas and should be taken into account when designing anti-Leishmania vaccines based on sand fly saliva.  相似文献   

5.
During metacyclogenesis of Leishmania in its sand fly vector, the parasite differentiates from a noninfective, procyclic form to an infective, metacyclic form, a process characterised by morphological changes of the parasite and also biochemical transformations in its major surface lipophosphoglycan (LPG). This lipid-anchored polysaccharide is polymorphic among species with variations in sugars that branch off the conserved Gal(beta1,4)Man(alpha1)-PO4 backbone of repeat units and the oligosaccharide cap. Lipophosphoglycan has been implicated as an adhesion molecule that mediates the interaction with the midgut epithelium of the sand fly in the subgenus Leishmania. This paper describes the LPG structure for the first time in a species from the subgenus Viannia, Leishmania (Viannia) braziliensis. The LPG from the procyclic form of L. braziliensis was found to lack side chain sugar substitutions. In contrast to other species from the subgenus Leishmania, metacyclic forms of L. braziliensis makes less LPG and add 1-2 (beta1-3) glucose residues that branch off the disaccharide-phosphate repeat units of LPG. Thus, this represents a novel mechanism in the regulation of LPG structure during metacyclogenesis.  相似文献   

6.
In nature the prevalence of Leishmania infection in whole sand fly populations can be very low (<0.1%), even in areas of endemicity and high transmission. It has long since been assumed that the protozoan parasite Leishmania can manipulate the feeding behavior of its sand fly vector, thus enhancing transmission efficiency, but neither the way in which it does so nor the mechanisms behind such manipulation have been described. A key feature of parasite development in the sand fly gut is the secretion of a gel-like plug composed of filamentous proteophosphoglycan. Using both experimental and natural parasite-sand fly combinations we show that secretion of this gel is accompanied by differentiation of mammal-infective transmission stages. Further, Leishmania infection specifically causes an increase in vector biting persistence on mice (re-feeding after interruption) and also promotes feeding on multiple hosts. Both of these aspects of vector behavior were found to be finely tuned to the differentiation of parasite transmission stages in the sand fly gut. By experimentally accelerating the development rate of the parasites, we showed that Leishmania can optimize its transmission by inducing increased biting persistence only when infective stages are present. This crucial adaptive manipulation resulted in enhanced infection of experimental hosts. Thus, we demonstrate that behavioral manipulation of the infected vector provides a selective advantage to the parasite by significantly increasing transmission.  相似文献   

7.
This is the first report of cutaneous leishmaniasis in kangaroos where infection was acquired within Australia. The diagnosis is based on the clinical criteria used for humans, the lesion histopathology, the detection and isolation of parasites from the lesions, and the analysis of the small subunit ribosomal RNA genes using the polymerase chain reaction. Despite a clear indication that the parasites belong to the genus Leishmania, no assignation to a known Leishmania species could be made using these or other less conserved genetic loci such as the non-transcribed spacer of the mini-exon repeat. As is the case in humans, some but not all animals harbouring lesions had antibodies to the isolated parasites or to several other Leishmania species. The isolated parasites displayed two well characterised Leishmania glycoconjugates, the lipophosphoglycan and proteophosphoglycan. They were infectious for mouse macrophages in vitro and established long-term infection at 33 degrees C but not at 37 degrees C. Our findings raise the possibility of transmission to humans, which may be unrecognised and suggest the possibility that imported species of Leishmania could become endemic in Australia.  相似文献   

8.
The life cycle of Leishmania alternates between two main morphological forms: intracellular amastigotes in the mammalian host and motile promastigotes in the sand fly vector. Several different forms of promastigote have been described in sandfly infections, the best known of these being metacyclic promastigotes, the mammal-infective stages. Here we provide evidence that for Leishmania (Leishmania) mexicana and Leishmania (Leishmania) infantum (syn. chagasi) there are two separate, consecutive growth cycles during development in Lutzomyia longipalpis sand flies involving four distinct life cycle stages. The first growth cycle is initiated by procyclic promastigotes, which divide in the bloodmeal in the abdominal midgut and subsequently give rise to non-dividing nectomonad promastigotes. Nectomonad forms are responsible for anterior migration of the infection and in turn transform into leptomonad promastigotes that initiate a second growth cycle in the anterior midgut. Subsequently, leptomonad promastigotes differentiate into non-dividing metacyclic promastigotes in preparation for transmission to a mammalian host. Differences in timing, prevalence and persistence of the four promastigote stages were observed between L. mexicana and L. infantum in vivo, which were reproduced in cultures initiated with lesion amastigotes, indicating that development is to some extent governed by a programmed series of events. A new scheme for the life cycle in the subgenus Leishmania (Leishmania) is proposed that incorporates these findings.  相似文献   

9.
Taxic responses may play a role in development of Leishmania in their phlebotomine sand fly vectors. They are possibly responsible for movement of the parasites towards the anterior regions of the gut, from where they would be transmitted to the vertebrate host. A methodology capable to distinguish chemotaxic from osmotaxic responses was described and used to characterise taxic responses in Leishmania promastigotes. These were able to respond to chemotaxic as well as to osmotaxic stimuli. Like bacteria, promastigotes were capable to undergo "adaptation," a phenomenon by which they stop responding to a continuos stimulus. A model capable to explain how a relatively small number of different receptors works to perceive gradients in chemotaxic responses was proposed. According to this model, these receptors possess low specificity and a wide range of affinities varying from high to low. A low specificity makes the same receptor able to bind to a large number of different but structurally related molecules and; a wide range of affinities (considering a population of receptors), implies that the number of receptors "occupied" by attractant molecules along a gradient would go growing step by step.  相似文献   

10.
Leishmania are dimorphic protozoan parasites that live as flagellated forms in the gut of their sandfly vector and as aflagellated forms in their mammalian hosts. Although both parasite forms can infect macrophages and dendritic cells, they elicit distinct responses from mammalian cells. Amastigotes are the parasites forms that persist in the infected host; they infect cells recruited to lesions and disseminate the infection to secondary sites. In this review I discuss studies that have investigated the mechanisms that Leishmania amastigotes employ to harness the host cell's response to infection. It should be acknowledged that our understanding of the mechanisms deployed by Leishmania amastigotes to modulate the host cell's response to infection is still rudimentary. Nonetheless, the results show that amastigote interactions with mammalian cells promote the production of anti-inflammatory cytokines such as IL-10 and TGF-beta while suppressing the production of IL-12, superoxide and nitric oxide. An underlying issue that is considered is how these parasites that reside in sequestered vacuolar compartments target host cell processes in the cytosol or the nucleus; does this occur through the release of parasite molecules from parasitophorous vacuoles or by engaging and sustaining signalling pathways throughout the course of infection?  相似文献   

11.
The first autochthonous Leishmania infection in Australia was reported by Rose et al. (2004) and the parasite was characterised as a unique species. The host was the red kangaroo (Macropus rufus) but the transmitting vector was unknown. To incriminate the biological vector, insect trapping by a variety of methods was undertaken at two field sites of known Leishmania transmission. Collected sand flies were identified to species level and were screened for Leishmania DNA using a semi-quantitative real-time PCR. Collections revealed four species of sand fly, with a predominance of the reptile biter Sergentomyia queenslandi (Hill). However, no Leishmania-positive flies were detected. Therefore, alternative vectors were investigated for infection, giving startling results. Screening revealed that an undescribed species of day-feeding midge, subgenus Forcipomyia (Lasiohelea) Kieffer, had a prevalence of up to 15% for Leishmania DNA, with high parasitemia in some individuals. Manual gut dissections confirmed the presence of promastigotes and in some midges material similar to promastigote secretory gel, including parasites with metacyclic-like morphology. Parasites were cultured from infected midges and sequence analysis of the Leishmania RNA polymerase subunit II gene confirmed infections were identical to the original isolated Leishmania sp. Phylogenetic analysis revealed the closest known species to be Leishmania enriettii, with this and the Australian species confirmed as members of Leishmania sensu stricto. Collectively the results strongly suggest that the day-feeding midge (F. (Lasiohelea) sp. 1) is a potential biological vector of Leishmania in northern Australia, which is to our knowledge the first evidence of a vector other than a phlebotomine sand fly anywhere in the world. These findings have considerable implications in the understanding of the Leishmania life cycle worldwide.  相似文献   

12.
Female sand flies can acquire protozoan parasites in the genus Leishmania when feeding on an infected vertebrate host. The parasites complete a complex growth cycle in the sand fly gut until they are transmitted by bite to another host. Recently, a myoinhibitory peptide was isolated from Leishmania major promastigotes. This peptide caused significant gut distension and reversible, dose-dependent inhibition of spontaneous hindgut contractions in the enzootic sand fly vector, Phlebotomus papatasi. The current study further characterizes myoinhibitory activity in L. major and other kinetoplastid parasites, using the P. papatasi hindgut and other insect organ preparations. Myoinhibitory activity was greatest in cultured promastigotes and in culture medium in late log-phase and early stationary-phase, coinciding with development of infective Leishmania morphotypes in the sand fly midgut. L. major promastigote lysates inhibited spontaneous contractions of visceral muscle preparations from hemimetabolous (Blattaria and Hemiptera) and holometabolous (Diptera) insects. Inhibition of visceral muscle contractions in three insect orders indicates a conserved mode of action. Myoinhibitory activity was detected also in Leishmania braziliensis braziliensis, a Sudanese strain of Leishmania donovani, and the kinetoplastid parasite Leptomonas seymouri. Protozoan-induced myoinhibition mimics the effect of insect myotropins. Inhibiting host gut contractions protects Leishmania parasites from being excreted after blood meal and peritrophic matrix digestion, allowing development and transmission of infective forms.  相似文献   

13.
14.
Leishmaniases are serious parasitic diseases the etiological organisms of which are transmitted by insect vectors, phlebotominae sand flies. Two sand fly species, Phlebotomus papatasi and P. sergenti, display remarkable specificity for Leishmania parasites they transmit in nature, but many others are broadly permissive to the development of different Leishmania species. Previous studies have suggested that in 'specific' vectors the successful parasite development is mediated by parasite surface glycoconjugates and sand fly lectins, however we show here that interactions involving 'permissive' sand flies utilize another molecules. We did find that the abundant surface glycoconjugate lipophosphoglycan, essential for attachment of Leishmania major in the specific vector P. papatasi, was not required for parasite adherence or survival in the permissive vectors P. arabicus and Lutzomyia longipalpis. Attachment in several permissive sand fly species instead correlated with the presence of midgut glycoproteins bearing terminal N-acetyl-galactosamine and with the occurrence of a lectin-like activity on Leishmania surface. This new binding modality has important implications for parasite transmission and evolution. It may contribute to the successful spreading of Leishmania due to their adaptation into new vectors, namely transmission of L. infantum by Lutzomyia longipalpis; this event led to the establishment of L. infantum/chagasi in Latin America.  相似文献   

15.
Phlebotomine sand flies are vectors of Leishmania that are acquired by the female sand fly during blood feeding on an infected mammal. Leishmania parasites develop exclusively in the gut lumen during their residence in the insect before transmission to a suitable host during the next blood feed. Female phlebotomine sand flies are blood feeding insects but their life style of visiting plants as well as animals, and the propensity for larvae to feed on detritus including animal faeces means that the insect host and parasite are exposed to a range of microorganisms. Thus, the sand fly microbiota may interact with the developing Leishmania population in the gut. The aim of the study was to investigate and identify the bacterial diversity associated with wild adult female Lutzomyia sand flies from different geographical locations in the New World. The bacterial phylotypes recovered from 16S rRNA gene clone libraries obtained from wild caught adult female Lutzomyia sand flies were estimated from direct band sequencing after denaturing gradient gel electrophoresis of bacterial 16 rRNA gene fragments. These results confirm that the Lutzomyia sand flies contain a limited array of bacterial phylotypes across several divisions. Several potential plant-related bacterial sequences were detected including Erwinia sp. and putative Ralstonia sp. from two sand fly species sampled from 3 geographically separated regions in Brazil. Identification of putative human pathogens also demonstrated the potential for sand flies to act as vectors of bacterial pathogens of medical importance in addition to their role in Leishmania transmission.  相似文献   

16.
Transmission of cutaneous leishmaniasis (CL) caused by Leishmania infantum was studied in South Anatolia, Turkey. Small, non-ulcerating lesions prevailed and patients were negative in rK39 tests for antibody detection for human visceral leishmaniasis (VL). The most abundant sand fly species, Phlebotomus tobbi, was found positive for Leishmania promastigotes with a prevalence of 1.4% (13 out of 898 dissected females). The isolated strains were identical with those obtained from patients with CL and were typed as L. infantum. Phylogenetic analysis revealed similarity to MON-188 and a clear difference from the MON-1 clade. Blood-meal identification showed that P. tobbi feeds preferentially on cattle and humans. This finding, the high number of CL patients and relative scarcity of dogs in the focus, suggests that the transmission cycle could be anthroponotic.  相似文献   

17.
Leishmania sand fly interaction: progress and challenges   总被引:1,自引:0,他引:1  
Complex interactions occurs between Leishmania parasites and their sand fly vectors. Promastigotes of Leishmania live exclusively within the gut, possess flagella and are motile, and kinesins, kinases and G proteins have been described that play a role in regulating flagellar assembly. Movement within the gut is not random: promastigotes can detect gradients of solutes via chemotaxis and osmotaxis. Further they use their flagella to attach to the fly midgut using surface glyconconjugates, a key step in establishment of the infection. Differentiation of mammal-infective stages is characterised by significant biochemical and cellular remodelling. Further, the parasites can manipulate the behaviour of the vector to maximise their transmission, and flies may even deliver altruistic apoptotic forms to aid transmission of infective stages.  相似文献   

18.
Leishmania donovani is an obligate intracellular parasite that infects macrophages of the vertebrate host resulting in visceral leishmaniasis in humans, a major public health problem worldwide. The molecular mechanisms involved in internalization of Leishmania are still poorly characterized. We report here that cholesterol sequestration by the sterol-binding antifungal polyene antibiotic nystatin markedly inhibits binding and entry of non-opsonized L. donovani promastigotes into macrophages. Interestingly, these effects are not observed when serum-opsonized L. donovani are used for infectivity studies thus pointing the essential role of cholesterol in mediating entry of the parasite via the non-opsonic pathway. Based on our earlier results where leishmanial infectivity was shown to be sensitive to physical depletion of cholesterol from macrophages, these results indicate that the mere sequestration of cholesterol in the host plasma membrane is sufficient to inhibit the binding and entry of non-opsonized L. donovani. These results represent the first report on the effect of a cholesterol-sequestering agent on the entry of Leishmania parasites to host macrophages. More importantly, these findings offer the possibility of reevaluating the mechanism behind the effectiveness of current therapeutic strategies to treat leishmaniasis.  相似文献   

19.
In this study we characterised metacyclogenesis in axenic culture of Leishmania (Viannia) braziliensis, the causative agent of mucocutaneous leishmaniasis in the New World. Metacyclogenesis of other species of Leishmania has been shown by morphological changes as well as molecular modifications in the lipophosphoglycan, the major cell surface glycoconjugate of the promastigotes. In order to obtain metacyclic forms of L. braziliensis we tested a panel of different lectins. Our results showed that Bauhinia purpurea lectin facilitated the purification of metacyclic promastigotes from stationary-phase culture by negative selection. The B. purpurea non-agglutinated promastigotes had a slender short cell body and long flagella, typical of metacyclic morphology. The ultrastructural analysis showed that B. purpurea non-agglutinated promastigotes have a dense and thicker glycocalyx. They are resistant to complement lysis, and highly infective for macrophage in vitro and hamsters in vivo. Contrary to procyclic promastigotes, B. purpurea non-agglutinated forms were poorly recognised by sand fly gut epithelial cells. These results suggest that the B. purpurea non-agglutinated promastigotes are the metacyclic forms of L. braziliensis.  相似文献   

20.
Development of Leishmania infantum/Leishmania major hybrids was studied in two sand fly species. In Phlebotomus papatasi, which supported development of L. major but not L. infantum, the hybrids produced heavy late-stage infections with high numbers of metacyclic promastigotes. In the permissive vector Lutzomyia longipalpis, all Leishmania strains included in this study developed well. Hybrids were found to express L. major lipophosphoglycan, apparently enabling them to survive in P. papatasi midgut. The genetic exchange of the hybrids thus appeared to have enhanced their transmission potential and fitness. A potentially serious consequence is the future spread of the hybrids using this peridomestic and antropophilic vector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号