首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Centriole duplication is a tightly regulated process that must occur only once per cell cycle; otherwise, supernumerary centrioles can induce aneuploidy and tumorigenesis. Plk4 (Polo-like kinase 4) activity initiates centriole duplication and is regulated by ubiquitin-mediated proteolysis. Throughout interphase, Plk4 autophosphorylation triggers its degradation, thus preventing centriole amplification. However, Plk4 activity is required during mitosis for proper centriole duplication, but the mechanism stabilizing mitotic Plk4 is unknown. In this paper, we show that PP2A (Protein Phosphatase 2A(Twins)) counteracts Plk4 autophosphorylation, thus stabilizing Plk4 and promoting centriole duplication. Like Plk4, the protein level of PP2A's regulatory subunit, Twins (Tws), peaks during mitosis and is required for centriole duplication. However, untimely Tws expression stabilizes Plk4 inappropriately, inducing centriole amplification. Paradoxically, expression of tumor-promoting simian virus 40 small tumor antigen (ST), a reported PP2A inhibitor, promotes centrosome amplification by an unknown mechanism. We demonstrate that ST actually mimics Tws function in stabilizing Plk4 and inducing centriole amplification.  相似文献   

2.
Gene duplication has certainly played a major role in structuring vertebrate genomes but the extent and nature of the duplication events involved remains controversial. A recent study identified two major episodes of gene duplication: one episode of putative genome duplication ca. 500 Myr ago and a more recent gene-family expansion attributed to segmental or tandem duplications. We confirm this pattern using methods not reliant on molecular clocks for individual gene families. However, analysis of a simple model of the birth-death process suggests that the apparent recent episode of duplication is an artefact of the birth-death process. We show that a constant-rate birth-death model is appropriate for gene duplication data, allowing us to estimate the rate of gene duplication and loss in the vertebrate genome over the last 200 Myr (0.00115 and 0.00740 Myr(-1) lineage(-1), respectively). Finally, we show that increasing rates of gene loss reduce the impact of a genome-wide duplication event on the distribution of gene duplications through time.  相似文献   

3.
Gene amplification in the lac region of E. coli   总被引:20,自引:0,他引:20  
T D Tlsty  A M Albertini  J H Miller 《Cell》1984,37(1):217-224
We have characterized strains of E. coli in which the lac region, together with varying amounts of surrounding DNA, is amplified 40 to 200 fold. The amplification events involve regions of 7 to 37 kb and result in a tandem array of repeated units. Restriction digest patterns of DNA from over 100 independent strains reveal that the amplified units are different in each case. Mechanisms of gene duplication and amplification, and the relationship of gene amplification in bacteria to that in eucaryotic cells, are considered.  相似文献   

4.
Gene duplication plays important roles in organismal evolution, because duplicate genes provide raw materials for the evolution of mechanisms controlling physiological and/or morphological novelties. Gene duplication can occur via several mechanisms, including segmental duplication, tandem duplication and retroposition. Although segmental and tandem duplications have been found to be important for the expansion of a number of multigene families, the contribution of retroposition is not clear. Here we show that plant SKP1 genes have evolved by multiple duplication events from a single ancestral copy in the most recent common ancestor (MRCA) of eudicots and monocots, resulting in 19 ASK (Arabidopsis SKP1-like) and 28 OSK (Oryza SKP1-like) genes. The estimated birth rates are more than ten times the average rate of gene duplication, and are even higher than that of other rapidly duplicating plant genes, such as type I MADS box genes, R genes, and genes encoding receptor-like kinases. Further analyses suggest that a relatively large proportion of the duplication events may be explained by tandem duplication, but few, if any, are likely to be due to segmental duplication. In addition, by mapping the gain/loss of a specific intron on gene phylogenies, and by searching for the features that characterize retrogenes/retrosequences, we show that retroposition is an important mechanism for expansion of the plant SKP1 gene family. Specifically, we propose that two and three ancient retroposition events occurred in lineages leading to Arabidopsis and rice, respectively, followed by repeated tandem duplications and chromosome rearrangements. Our study represents a thorough investigation showing that retroposition can play an important role in the evolution of a plant gene family whose members do not encode mobile elements.  相似文献   

5.
Chromosomal destabilization during gene amplification.   总被引:12,自引:6,他引:6       下载免费PDF全文
Acentric extrachromosomal elements, such as submicroscopic autonomously replicating circular molecules (episomes) and double minute chromosomes, are common early, and in some cases initial, intermediates of gene amplification in many drug-resistant and tumor cell lines. In order to gain a more complete understanding of the amplification process, we investigated the molecular mechanisms by which such extrachromosomal elements are generated and we traced the fate of these amplification intermediates over time. The model system consists of a Chinese hamster cell line (L46) created by gene transfer in which the initial amplification product was shown previously to be an unstable extrachromosomal element containing an inverted duplication spanning more than 160 kilobases (J. C. Ruiz and G. M. Wahl, Mol. Cell. Biol. 8:4302-4313, 1988). In this study, we show that these molecules were formed by a process involving chromosomal deletion. Fluorescence in situ hybridization was performed at multiple time points on cells with amplified sequences. These studies reveal that the extrachromosomal molecules rapidly integrate into chromosomes, often near or at telomeres, and once integrated, the amplified sequences are themselves unstable. These data provide a molecular and cytogenetic chronology for gene amplification in this model system; an early event involves deletion to generate extrachromosomal elements, and subsequent integration of these elements precipitates a cascade of chromosome instability.  相似文献   

6.
We describe here the first successful construction of a targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae. The targeted tandem chromosomal duplication was achieved by using strains that had a 5′-deleted pyrG upstream of the region targeted for tandem chromosomal duplication and a 3′-deleted pyrG downstream of the target region. Consequently, strains bearing a 210-kb targeted tandem chromosomal duplication near the centromeric region of chromosome 8 and strains bearing a targeted tandem chromosomal duplication of a 700-kb region of chromosome 2 were successfully constructed. The strains bearing the tandem chromosomal duplication were efficiently obtained from the regenerated protoplast of the parental strains. However, the generation of the chromosomal duplication did not depend on the introduction of double-stranded breaks (DSBs) by I-SceI. The chromosomal duplications of these strains were stably maintained after five generations of culture under nonselective conditions. The strains bearing the tandem chromosomal duplication in the 700-kb region of chromosome 2 showed highly increased protease activity in solid-state culture, indicating that the duplication of large chromosomal segments could be a useful new breeding technology and gene analysis method.  相似文献   

7.
The evolutionary past of intragenic repeats in protein-coding exons of c-, N-, L-, and s-myc-protooncogene subfamilies was elucidated. Apparently these genes evolved by succession of distinct unit events rather than by a steady flow of random point mutations. An evolutionary event probably involved a duplication of the whole gene, which was followed by amplification of progressively shorter oligonucleotide themes and motifs. The repeats were either joined in tandem or one of the copies was transposed and integrated elsewhere within the same exon. In some instances multiple fragments of an amplified theme were integrated at several sites. Direct repeats were found to prevail over inverted ones. By reconstructing the fate of repeats in the course of evolution of vertebrates, the origins of some functional domains could be traced to the initial amplification event. For example, an N-myc-specific domain was created by tandem duplication of a single-copy theme of L-myc exon; at the time of divergence of the c-myc and N-myc, the tandem duplex underwent a new round of duplication followed by transposition of the new copy, thus accounting for the formation of a new domain specific for c-myc. The model proposed here may be regarded as a molecular-level equivalent of the theory of punctuated equilibria. This is the author's last paper; it was submitted shortly before his death. The proofs were corrected by Michal Dvorak Correspondence to: M. Dvorak  相似文献   

8.
Defects in the regulation of centrosome duplication lead to tumorigenesis through abnormal cell division and resulting chromosome missegregation. Therefore, maintenance of accurate centrosome number is critical for cell fate. The deubiquitinating enzyme USP1 plays important roles in DNA repair and cell differentiation. Importantly, increased levels of USP1 are detected in certain types of human cancer, but little is known about the significance of USP1 overexpression in cancer development. Here we show that Usp1 plays a novel role in regulating centrosome duplication. The ectopic expression of wild-type Usp1, but not C90S Usp1 (catalytically inactive mutant form), induced centrosome amplification. Conversely, ablation of Usp1 in mouse embryonic fibroblasts (MEFs) showed a significant delay in centrosome duplication. Moreover, Usp1-induced centrosome amplification caused abnormal mitotic spindles, chromosome missegregation and aneuploidy. Interestingly, loss of inhibitor of DNA binding protein 1 (ID1) suppressed Usp1-induced centrosome amplification. Taken together, our results strongly suggest that Usp1 is involved in the regulation of centrosome duplication, at least in part via ID1, and Usp1 may exert its oncogenic activity, partially through inducing centrosome abnormality.  相似文献   

9.

Background  

Ortholog assignment is a critical and fundamental problem in comparative genomics, since orthologs are considered to be functional counterparts in different species and can be used to infer molecular functions of one species from those of other species. MSOAR is a recently developed high-throughput system for assigning one-to-one orthologs between closely related species on a genome scale. It attempts to reconstruct the evolutionary history of input genomes in terms of genome rearrangement and gene duplication events. It assumes that a gene duplication event inserts a duplicated gene into the genome of interest at a random location (i.e., the random duplication model). However, in practice, biologists believe that genes are often duplicated by tandem duplications, where a duplicated gene is located next to the original copy (i.e., the tandem duplication model).  相似文献   

10.
Unequal crossing-over is involved in genetic duplication and deletion in such diverse genetic systems as Drosophila, bacteria, and animal viruses. It is proposed to be involved in the form of unequal sister chromatid exchange in gene amplification in cultured animal cells and during carcinogenesis. Studies of the process of unequal crossing-over have been hampered by the lack of genetic systems allowing specific selection for cells that have undergone such unequal crossing-over. We report here on the construction of plasmids designed to provide specific selection of unequal crossing-over. One such plasmid was studied in Escherichia coli. We show that kanamycin resistance is generated, as predicted, by the expected unequal crossover event.  相似文献   

11.
Duplication of genomic regions is an important biological process associated with the appearance of gene families, the origin of alternative splicing, and the etiopathogenesis of genetic diseases. Different mechanisms for the genesis of duplications have been suggested, based mainly on structural analyses. However, experimental confirmation of those mechanisms is scarce, mostly because of a lack of information about the circumstances that triggered the rearrangements. Here, I characterize a duplication of about 300 kbp (kilobase pairs) that occurred in the course of a gene targeting experiment. Considering the structure of the locus and the triggering event, I suggest a likely mechanism for the genesis of this duplication which involves anomalous processing of contiguous Okazaki fragments during lagging strand replication. Most importantly, I provide experimental evidence to substantiate that the proposed mechanism can indeed lead to duplication of genomic segments. The model presented represents a novel mechanistic pathway that can explain a variety of rearrangements, including genomic tandem duplications and deletions.[Reviewing Editor: Dr. Jonathon A. Eisen]  相似文献   

12.
We developed a recurrence relation that counts the number of tandem duplication trees (either rooted or unrooted) that are consistent with a set of n tandemly repeated sequences generated under the standard unequal recombination (or crossover) model of tandem duplications. The number of rooted duplication trees is exactly twice the number of unrooted trees, which means that on average only two positions for a root on a duplication tree are possible. Using the recurrence, we tabulated these numbers for small values of n. We also developed an asymptotic formula that for large n provides estimates for these numbers. These numbers give a priori probabilities for phylogenies of the repeated sequences to be duplication trees. This work extends earlier studies where exhaustive counts of the numbers for small n were obtained. One application showed the significance of finding that most maximum-parsimony trees constructed from repeat sequences from human immunoglobins and T-cell receptors were tandem duplication trees. Those findings provided strong support to the proposed mechanisms of tandem gene duplication. The recurrence relation also suggests efficient algorithms to recognize duplication trees and to generate random duplication trees for simulation. We present a linear-time recognition algorithm.  相似文献   

13.
Tandem direct duplications are a common feature of the genomes of eukaryotes ranging from yeast to human, where they comprise a significant fraction of copy number variations. The prevailing model for the formation of tandem direct duplications is non-allelic homologous recombination (NAHR). Here we report the isolation of a series of duplications and reciprocal deletions isolated de novo from a maize allele containing two Class II Ac/Ds transposons. The duplication/deletion structures suggest that they were generated by alternative transposition reactions involving the termini of two nearby transposable elements. The deletion/duplication breakpoint junctions contain 8 bp target site duplications characteristic of Ac/Ds transposition events, confirming their formation directly by an alternative transposition mechanism. Tandem direct duplications and reciprocal deletions were generated at a relatively high frequency (∼0.5 to 1%) in the materials examined here in which transposons are positioned nearby each other in appropriate orientation; frequencies would likely be much lower in other genotypes. To test whether this mechanism may have contributed to maize genome evolution, we analyzed sequences flanking Ac/Ds and other hAT family transposons and identified three small tandem direct duplications with the structural features predicted by the alternative transposition mechanism. Together these results show that some class II transposons are capable of directly inducing tandem sequence duplications, and that this activity has contributed to the evolution of the maize genome.  相似文献   

14.
Plants have substantially higher gene duplication rates compared with most other eukaryotes. These plant gene duplicates are mostly derived from whole genome and/or tandem duplications. Earlier studies have shown that a large number of duplicate genes are retained over a long evolutionary time, and there is a clear functional bias in retention. However, the influence of duplication mechanism, particularly tandem duplication, on duplicate retention has not been thoroughly investigated. We have defined orthologous groups (OGs) between Arabidopsis (Arabidopsis thaliana) and three other land plants to examine the functional bias of retained duplicate genes during vascular plant evolution. Based on analysis of Gene Ontology categories, it is clear that genes in OGs that expanded via tandem duplication tend to be involved in responses to environmental stimuli, while those that expanded via nontandem mechanisms tend to have intracellular regulatory roles. Using Arabidopsis stress expression data, we further demonstrated that tandem duplicates in expanded OGs are significantly enriched in genes that are up-regulated by biotic stress conditions. In addition, tandem duplication of genes in an OG tends to be highly asymmetric. That is, expansion of OGs with tandem genes in one organismal lineage tends to be coupled with losses in the other. This is consistent with the notion that these tandem genes have experienced lineage-specific selection. In contrast, OGs with genes duplicated via nontandem mechanisms tend to experience convergent expansion, in which similar numbers of genes are gained in parallel. Our study demonstrates that the expansion of gene families and the retention of duplicates in plants exhibit substantial functional biases that are strongly influenced by the mechanism of duplication. In particular, genes involved in stress responses have an elevated probability of retention in a single-lineage fashion following tandem duplication, suggesting that these tandem duplicates are likely important for adaptive evolution to rapidly changing environments.  相似文献   

15.
We have studied the meiotic recombination behavior of strains carrying two types of duplications of an 18.6-kilobase HIS4 Bam HI fragment. The first type is a direct duplication of the HIS4 Bam HI fragment in which the repeated sequences are separated by Escherichia coli plasmid sequences. The second type, a tandem duplication, has no sequences intervening between the repeated yeast DNA. The HIS4 genes in each region were marked genetically so that recombination events between the duplicated segments could be identified. Meiotic progeny of the strains carrying the duplication were analyzed genetically and biochemically to determine the types of recombination events that had occurred. Analysis of the direct vs. tandem duplication suggests that the E. coli plasmid sequences are recombinogenic in yeast when homozygous. In both types of duplications recombination between the duplicated HIS4 regions occurs at high frequency and involves predominantly interchromosomal reciprocal exchanges (equal and unequal crossovers). The striking observation is that intrachromosomal reciprocal recombination is very rare in comparison with interchromosomal reciprocal recombination. However, intrachromosomal gene conversion occurs at about the same frequency as interchromosomal gene conversion. Reciprocal recombination events between regions on the same chromatid are the most infrequent exchanges. These data suggest that intrachromosomal reciprocal exchanges are suppressed.  相似文献   

16.
17.
The cholera toxin operon (ctxAB) is located on a 7-kilobase pair variable genetic element which undergoes genetic duplication and amplification events in Vibrio cholerae. Amplification of the ctx genetic element was investigated by substituting the resident ctx loci of two V. cholerae strains with a DNA fragment encoding resistance to kanamycin. Although these strains were not normally resistant to greater than 150 micrograms of kanamycin per ml, spontaneous derivatives could be obtained that grew well on 3 mg of kanamycin per ml. Southern blot analysis of these highly resistant isolates demonstrated that the ctx element was amplified approximately 20-fold. This amplification process was completely inhibited in the absence of a functional recA gene. The V. cholerae RecA protein, therefore, is essential for cholera toxin gene amplification. Spontaneous deletions of the ctx structural genes were observed in both recA+ and recA- V. cholerae strains, although such deletions occurred at a 21-fold-lower frequency in the latter case. Structural analysis of these ctx amplification and deletion events supports a model for their formation that involves unequal crossing over between repetitive sequences located upstream and downstream of the ctx operon.  相似文献   

18.
The subtelomeric regions of organisms ranging from protists to fungi undergo a much higher rate of rearrangement than is observed in the rest of the genome. While characterizing these ~40-kb regions of the human fungal pathogen Cryptococcus neoformans, we have identified a recent gene amplification event near the right telomere of chromosome 3 that involves a gene encoding an arsenite efflux transporter (ARR3). The 3,177-bp amplicon exists in a tandem array of 2-15 copies and is present exclusively in strains with the C. neoformans var. grubii subclade VNI A5 MLST profile. Strains bearing the amplification display dramatically enhanced resistance to arsenite that correlates with the copy number of the repeat; the origin of increased resistance was verified as transport-related by functional complementation of an arsenite transporter mutant of Saccharomyces cerevisiae. Subsequent experimental evolution in the presence of increasing concentrations of arsenite yielded highly resistant strains with the ARR3 amplicon further amplified to over 50 copies, accounting for up to ~1% of the whole genome and making the copy number of this repeat as high as that seen for the ribosomal DNA. The example described here therefore represents a rare evolutionary intermediate-an array that is currently in a state of dynamic flux, in dramatic contrast to relatively common, static relics of past tandem duplications that are unable to further amplify due to nucleotide divergence. Beyond identifying and engineering fungal isolates that are highly resistant to arsenite and describing the first reported instance of microevolution via massive gene amplification in C. neoformans, these results suggest that adaptation through gene amplification may be an important mechanism that C. neoformans employs in response to environmental stresses, perhaps including those encountered during infection. More importantly, the ARR3 array will serve as an ideal model for further molecular genetic analyses of how tandem gene duplications arise and expand.  相似文献   

19.
20.
Most reported examples of change in vertebrate mitochondrial (mt) gene order could be explained by a tandem duplication followed by random loss of redundant genes (tandem duplication-random loss [TDRL] model). Under this model of evolution, independent loss of genes arising from a single duplication in an ancestral species are predicted, and remnant pseudogenes expected, intermediate states that may remain in rearranged genomes. However, evidence for this is rare and largely scattered across vertebrate lineages. Here, we report new derived mt gene orders in the vertebrate "WANCY" region of four closely related caecilian amphibians. The novel arrangements found in this genomic region (one of them is convergent with the derived arrangement of marsupials), presence of pseudogenes, and positions of intergenic spacers fully satisfy predictions from the TDRL model. Our results, together with comparative data for the available vertebrate complete mt genomes, provide further evidence that the WANCY genomic region is a hotspot for gene order rearrangements and support the view that TDRL is the dominant mechanism of gene order rearrangement in vertebrate mt genomes. Convergent gene rearrangements are not unlikely in hotspots of gene order rearrangement by TDRL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号