首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Rho family of small GTPases plays a central role in intracellular signal transduction, particularly in reorganization of the actin cytoskeleton. Rho activity induces cell contractility, whereas Rac promotes cellular protrusion, which counteracts Rho signaling. In this regard, the reciprocal balance between these GTPases determines cell morphology and migratory behavior. Here we demonstrate that Tiam1/Rac1 signaling is able to antagonize Rho activity directly at the GTPase level in COS-7 cells. p190-RhoGAP plays a central regulatory role in this signaling pathway. Interfering with its activation by Src-kinase-dependent tyrosine phosphorylation or its recruitment to the membrane through interaction with the SH2 domains of p120-RasGAP blocks the Tiam1-mediated rapid downregulation of Rho. This process is mediated by Rac1, but not by Rac2 or Rac3 isoforms. Our data provide evidence for a biochemical pathway of the reciprocal regulation of two related small GTPases, which are key elements in cell migration.  相似文献   

2.
3.
The organization of the actin cytoskeleton can be regulated by soluble factors that trigger signal transduction events involving the Rho family of GTPases. Since adhesive interactions are also capable of organizing the actin-based cytoskeleton, we examined the role of Cdc42-, Rac-, and Rho-dependent signaling pathways in regulating the cytoskeleton during integrin-mediated adhesion and cell spreading using dominant-inhibitory mutants of these GTPases. When Rat1 cells initially adhere to the extracellular matrix protein fibronectin, punctate focal complexes form at the cell periphery. Concomitant with focal complex formation, we observed some phosphorylation of the focal adhesion kinase (FAK) and Src, which occurred independently of Rho family GTPases. However, subsequent phosphorylation of FAK and paxillin occurs in a Rho-dependent manner. Moreover, we found Rho dependence of the assembly of large focal adhesions from which actin stress fibers radiate. Initial adhesion to fibronectin also stimulates membrane ruffling; we show that this ruffling is independent of Rho but is dependent on both Cdc42 and Rac. Furthermore, we observed that Cdc42 controls the integrin-dependent activation of extracellular signal–regulated kinase 2 and of Akt, a kinase whose activity has been demonstrated to be dependent on phosphatidylinositol (PI) 3-kinase. Since Rac-dependent membrane ruffling can be stimulated by PI 3-kinase, it appears that Cdc42, PI 3-kinase, and Rac lie on a distinct pathway that regulates adhesion-induced membrane ruffling. In contrast to the differential regulation of integrin-mediated signaling by Cdc42, Rac, and Rho, we observed that all three GTPases regulate cell spreading, an event that may indirectly control cellular architecture. Therefore, several separable signaling pathways regulated by different members of the Rho family of GTPases converge to control adhesion-dependent changes in the organization of the cytoskeleton, changes that regulate cell morphology and behavior.  相似文献   

4.
Interaction of mesangial cells with extracellular matrix proteins can provide a means to modify cellular anchorage and traction through an interaction of integrins with activation of the actin cytoskeleton. We investigated intracellular signalling of matrix components fibronectin and laminin in mesangial cells in monolayer and 3-dimensional configurations to show a fibronectin-dependent activation of phosphatidylinositol-4-phosphate 5-kinase (up to threefold), which is augmented by a laminin-dependent increase in phospholipase D activity. Functional responsiveness to fibronectin and laminin addition was seen in the contraction of free-floating 3-dimensional mesangial cell-embedded collagen gels, a well-defined system reflecting coupling of extracellular matrix-cell events to activation of the actin cytoskeleton. Activation of phosphatidylinositol-4-phosphate 5-kinase and contraction of mesangial cell-embedded collagen gels in response to fibronectin and laminin were inhibited by pretreatment of mesangial cells with lovastatin and restored by isoprenoid augmentation with geranylgeraniol, supporting a role for the ras-related protein Rho in this process.  相似文献   

5.
 Adherent cells sense their mechanical environment, which, in turn, regulates their functions. During the past decade, a growing body of evidence has indicated that a deformable, solid-state intracellular structure known as the cytoskeleton (CSK) plays a major role in transmitting and distributing mechanical stresses within the cell as well as in their conversion into a chemical response. Therefore in order to understand mechanical regulation and control of cellular functions, one needs to understand mechanisms that determine how the CSK changes its shape and mechanics in response to stress. In this survey, we examined commonly used structurally based models of the CSK. In particular, we focused on two classes of these models: open-cell foam networks and stress-supported structures. We identified the underlying mechanisms that determine deformability of those models and compare model predictions with data previously obtained from mechanical tests on cultured living adherent cells at steady state. We concluded that stress-supported structures appear more suitable for describing cell deformability because this class of structures can explain the central role that the cytoskeletal contractile prestress plays in cellular mechanics. Received: 2 January 2002 / Accepted: 27 February 2002  相似文献   

6.
Vasopressin regulates water reabsorption in renal collecting duct principal cells by a cAMP-dependent translocation of the water channel aquaporin-2 (AQP2) from intracellular vesicles into the cell membrane. In the present work primary cultured inner medullary collecting duct cells were used to study the role of the proteins of the Rho family in the translocation of AQP2. Clostridium difficile toxin B, which inhibits all members of the Rho family, Clostridium limosum C3 toxin, which inactivates only Rho, and the Rho kinase inhibitor, Y-27632, induced both depolymerization of actin stress fibers and AQP2 translocation in the absence of vasopressin. The data suggest an inhibitory role of Rho in this process, whereby constitutive membrane localization is prevented in resting cells. Expression of constitutively active RhoA induced formation of actin stress fibers and abolished AQP2 translocation in response to elevation of intracellular cAMP, confirming the inhibitory role of Rho. Cytochalasin D induced both depolymerization of the F-actin cytoskeleton and AQP2 translocation, indicating that depolymerization of F-actin is sufficient to induce AQP2 translocation. Thus Rho is likely to control the intracellular localization of AQP2 via regulation of the F-actin cytoskeleton.  相似文献   

7.
Using biochemical assays to determine the activation state of Rho-like GTPases, we show that the guanine nucleotide exchange factor Tiam1 functions as a specific activator of Rac but not Cdc42 or Rho in NIH3T3 fibroblasts. Activation of Rac by Tiam1 induces an epithelial-like morphology with functional cadherin-based adhesions and inhibits migration of fibroblasts. This epithelial phenotype is characterized by Rac-mediated effects on Rho activity. Transient PDGF-induced as well as sustained Rac activation by Tiam1 or V12Rac downregulate Rho activity. We found that Cdc42 also downregulates Rho activity. Neither V14Rho or N19Rho affects Rac activity, suggesting unidirectional signaling from Rac towards Rho. Downregulation of Rho activity occurs independently of Rac- induced cytoskeletal changes and cell spreading. Moreover, Rac effector mutants that are defective in mediating cytoskeleton changes or Jun kinase activation both downregulate Rho activity, suggesting that neither of these Rac signaling pathways are involved in the regulation of Rho. Restoration of Rho activity in Tiam1-expressing cells by expression of V14Rho results in reversion of the epithelioid phenotype towards a migratory, fibroblastoid morphology. We conclude that Rac signaling is able to antagonize Rho activity directly at the GTPase level, and that the reciprocal balance between Rac and Rho activity determines cellular morphology and migratory behavior in NIH3T3 fibroblasts.  相似文献   

8.
Members of the Rho subfamily of small GTPases have been implicated in the regulation of endocytosis of ligand/receptor complexes localised to clathrin-coated pits. In this paper, we investigated the role of Rho A in the post-receptor regulation of cellular uptake and metabolism of native low density lipoprotein (LDL) by primary human skin fibroblasts. Incubations of cells with the selective Rho GTPase inhibitor C3-transferase (C3T) upregulated the binding, lysosomal degradation and cell accumulation of labelled LDL. The rate of internalisation of surface-bound LDL was also higher in C3T-treated cells. Single cell injections with C3T and dominant active V14Rho confirmed the negative regulation of LDL uptake by Rho. While cells injected with C3T internalised more 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (diI)-labelled LDL, diI-LDL internalisation was dramatically suppressed in cells injected with the constitutively active V14Rho. The negative regulation of LDL uptake by Rho appeared to be independent of changes in the actin cytoskeleton. An increasing number of naturally occurring toxins and serum factors have been shown to influence Rho GTPase signalling cascades. The herein described post-translational regulation of LDL internalisation may modulate cell events occurring subsequent to cellular lipoprotein uptake.  相似文献   

9.
To investigate the effects of Trypanosoma cruzi on the mechanical properties of infected host cells, cytoskeletal stiffness and remodeling dynamics were measured in parasite-infected fibroblasts. We find that cell stiffness decreases in a time-dependent fashion in T. cruzi-infected human foreskin fibroblasts without a significant change in the dynamics of cytoskeletal remodeling. In contrast, cells exposed to T. cruzi secreted/released components become significantly stiffer within 2 h of exposure and exhibit increased remodeling dynamics. These findings represent the first direct mechanical data to suggest a physical picture in which an intact, stiff, and rapidly remodeling cytoskeleton facilitates early stages of T. cruzi invasion and parasite retention, followed by subsequent softening and disassembly of the cytoskeleton to accommodate intracellular replication of parasites. We further suggest that these changes occur through protein kinase A and inhibition of the Rho/Rho kinase signaling pathway. In the context of tissue infection, changes in host cell mechanics could adversely affect the function of the infected organs, and may play an important role on the pathophysiology of Chagas' disease.  相似文献   

10.
Cadherins are cell–cell adhesion receptors whose adhesive function requires their association with the actin cytoskeleton via proteins called catenins. The small guanosine triphosphatases (GTPases), Rho and Rac, are intracellular proteins that regulate the formation of distinct actin structures in different cell types. In keratinocytes and in other epithelial cells, Rho and Rac activities are required for E-cadherin function. Here we show that the regulation of cadherin adhesiveness by the small GTPases is influenced by the maturation status of the junction and the cellular context. E-cadherin localization was disrupted in mature keratinocyte junctions after inhibition of Rho and Rac. However, an incubation of 2 h was required after GTPase inhibition, when compared with newly established E-cadherin contacts (30 min). Regarding other cadherin receptors, P-cadherin was effectively removed from mature keratinocytes junctions by blocking Rho or Rac. In contrast, VE-cadherin localization at endothelial junctions was independent of Rho/Rac activity. We demontrate that the insensitivity of VE-cadherin to inhibition of Rho and Rac was not due to the maturation status of endothelial junction, but rather the cellular background: when transfected into CHO cells, the localization of VE-cadherin was perturbed by inhibition of Rho proteins. Our results suggest that the same stimuli may have different activity in regulating the paracellular activity in endothelial and epithelial cells. In addition, we uncovered possible roles for the small GTPases during the establishment of E-cadherin–dependent contacts. In keratinocytes, Rac activation by itself cannot promote accumulation of actin at the cell periphery in the absence of cadherin-dependent contacts. Moreover, neither Rho nor Rac activation was sufficient to redistribute cadherin molecules to cell borders, indicating that redistribution results mostly from the homophilic binding of the receptors. Our results point out the complexity of the regulation of cadherin-mediated adhesion by the small GTPases, Rho and Rac.  相似文献   

11.
The cytoskeleton is the physical and biochemical interface for a large variety of cellular processes. Its complex regulation machinery is involved upstream and downstream in various signaling pathways. The cytoskeleton determines the mechanical properties of a cell. Thus, cell elasticity could serve as a parameter reflecting the behavior of the system rather than reflecting the specific properties of isolated components. In this study, we used atomic force microscopy to perform real-time monitoring of cell elasticity unveiling cytoskeletal dynamics of living bronchial epithelial cells. In resting cells, we found a periodic activity of the cytoskeleton. Amplitude and frequency of this spontaneous oscillation were strongly affected by intracellular calcium. Experiments reveal that basal cell elasticity and superimposed elasticity oscillations are caused by the collective action of myosin motor proteins. We characterized the cell as a mechanically multilayered structure, and followed cytoskeletal dynamics in the different layers with high time resolution. In conclusion, the collective activities of the myosin motor proteins define overall mechanical cell dynamics, reflecting specific changes of the chemical and mechanical environment.  相似文献   

12.
The actin cytoskeleton is recognized as an important component of both adhesion- and growth factor-dependent signaling, but its role in oncogene-dependent signaling has received much less attention. In this study, we investigated the role played by the acto-myosin cytoskeleton and its main regulators, i.e., myosin light chain kinase and Rho kinase, in oncogenic Ki-Ras-induced signaling. We found that activation of the ERK cascade by Ras is dependent on acto-myosin contractility, under the regulation of myosin light chain kinase but not Rho kinase. Inhibition of myosin II or myosin light chain kinase caused a complete loss of ERK phosphorylation in a time- and dose-dependent manner, but proved dispensable for activation of the PI3K pathway. We also provide evidence that the target of myosin light chain kinase lays at the level of Raf activation. Since myosin light chain kinase is a target of ERK, these results suggest a previously uncharacterized signaling pathway involving Ras-mediated alterations of the actin cytoskeleton, which might play a critical role in ERK activation by the Ras oncogene and contribute to aberrant signaling and enhanced cell motility. In addition, restoration of stress fibers following ectopic expression of tropomyosin 2 resulted in reduced levels of ERK phosphorylation. Finally, these studies suggest that myosin light chain kinase but not Rho kinase plays an essential role in the generation of ERK signaling in transformed cells and indicate distinct cellular roles for Rho-kinase and myosin light chain kinase-dependent functions involving the regulation of acto-myosin contractility.  相似文献   

13.
The cellular cytoskeleton is crucial for many cellular functions such as cell motility and wound healing, as well as other processes that require shape change or force generation. Actin is one cytoskeleton component that regulates cell mechanics. Important properties driving this regulation include the amount of actin, its level of cross-linking, and its coordination with the activity of specific molecular motors like myosin. While studies investigating the contribution of myosin activity to cell mechanics have been performed on cells attached to a substrate, we investigated mechanical properties of cells in suspension. To do this, we used multiple probes for cell mechanics including a microfluidic optical stretcher, a microfluidic microcirculation mimetic, and real-time deformability cytometry. We found that nonadherent blood cells, cells arrested in mitosis, and naturally adherent cells brought into suspension, stiffen and become more solidlike upon myosin inhibition across multiple timescales (milliseconds to minutes). Our results hold across several pharmacological and genetic perturbations targeting myosin. Our findings suggest that myosin II activity contributes to increased whole-cell compliance and fluidity. This finding is contrary to what has been reported for cells attached to a substrate, which stiffen via active myosin driven prestress. Our results establish the importance of myosin II as an active component in modulating suspended cell mechanics, with a functional role distinctly different from that for substrate-adhered cells.  相似文献   

14.
Invited review: engineering approaches to cytoskeletal mechanics.   总被引:4,自引:0,他引:4  
An outstanding problem in cell biology is how cells sense mechanical forces and how those forces affect cellular functions. Various biophysical and biochemical mechanisms have been invoked to answer this question. A growing body of evidence indicates that the deformable cytoskeleton (CSK), an intracellular network of interconnected filamentous biopolymers, provides a physical basis for transducing mechanical signals into biochemical signals. Therefore, to understand how mechanical forces regulate cellular functions, it is important to know how cells respond to changes in the CSK force balance and to identify the underlying mechanisms that control transmission of mechanical forces throughout the CSK and bring it to equilibrium. Recent developments of new experimental techniques for measuring cell mechanical properties and novel theoretical models of cellular mechanics make it now possible to identify and quantitate the contributions of various CSK structures to the overall balance of mechanical forces in the cell. This review focuses on engineering approaches that have been used in the past two decades in studies of the mechanics of the CSK.  相似文献   

15.
Dynamic regulation of the filamentous actin (F-actin) cytoskeleton is critical to numerous physical cellular processes, including cell adhesion, migration and division. Each of these processes require precise regulation of cell shape and mechanical force generation which, to a large degree, is regulated by the dynamic mechanical behaviors of a diverse assortment of F-actin networks and bundles. In this review, we review the current understanding of the mechanics of F-actin networks and identify areas of further research needed to establish physical models. We first review our understanding of the mechanical behaviors of F-actin networks reconstituted in vitro, with a focus on the nonlinear mechanical response and behavior of “active” F-actin networks. We then explore the types of mechanical response measured of cytoskeletal F-actin networks and bundles formed in living cells and identify how these measurements correspond to those performed on reconstituted F-actin networks formed in vitro. Together, these approaches identify the challenges and opportunities in the study of living cytoskeletal matter.  相似文献   

16.
Natural killer (NK) cells are innate immune lymphocytes that recognize and kill cancer and infected cells, which makes them unique ‘off-the-shelf’ candidates for a new generation of immunotherapies. Biomechanical forces in homeostasis and pathophysiology accrue additional immune regulation for NK immune responses. Indeed, cellular and tissue biomechanics impact NK receptor clustering, cytoskeleton remodeling, NK transmigration through endothelial cells, nuclear mechanics, and even NK-dendritic cell interaction, offering a plethora of unexplored yet important dynamic regulation for NK immunotherapy. Such events are made more complex by the heterogeneity of human NK cells. A significant question remains on whether and how biochemical and biomechanical cues collaborate for NK cell mechanotransduction, a process whereby mechanical force is sensed, transduced, and translated to downstream mechanical and biochemical signalling. Herein, we review recent advances in understanding how NK cells perceive and mechanotransduce biophysical cues. We focus on how the cellular cytoskeleton crosstalk regulates NK cell function while bearing in mind the heterogeneity of NK cells, the direct and indirect mechanical cues for NK anti-tumor activity, and finally, engineering advances that are of translational relevance to NK cell biology at the systems level.  相似文献   

17.
Integrins are ubiquitous trans-membrane adhesion molecules that mediate the interaction of cells with the extracellular matrix (ECM). Integrins link cells to the ECM by interacting with the cell cytoskeleton. In cases such as leukocyte binding, integrins mediate cell-cell interactions and cell-ECM interactions. Recent research indicates that integrins also function as signal transduction receptors, triggering a number of intracellular signaling pathways that regulate cell behavior and development. A number of integrins are known to stimulate changes in intracellular calcium levels, resulting in integrin activation. Although changes in intracellular calcium regulate a vast number of cellular functions, this review will discuss the stimulation of calcium signaling by integrins and the role of intracellular calcium in the regulation of integrin-mediated adhesion.  相似文献   

18.
The immunological synapse generation and function is the result of a T‐cell polarization process that depends on the orchestrated action of the actin and microtubule cytoskeleton and of intracellular vesicle traffic. However, how these events are coordinated is ill defined. Since Rab and Rho families of GTPases control intracellular vesicle traffic and cytoskeleton reorganization, respectively, we investigated their possible interplay. We show here that a significant fraction of Rac1 is associated with Rab11‐positive recycling endosomes. Moreover, the Rab11 effector FIP3 controls Rac1 intracellular localization and Rac1 targeting to the immunological synapse. FIP3 regulates, in a Rac1‐dependent manner, key morphological events, like T‐cell spreading and synapse symmetry. Finally, Rab11‐/FIP3‐mediated regulation is necessary for T‐cell activation leading to cytokine production. Therefore, Rac1 endosomal traffic is key to regulate T‐cell activation.  相似文献   

19.
Intracellular mechanics of migrating fibroblasts   总被引:5,自引:0,他引:5       下载免费PDF全文
Cell migration is a highly coordinated process that occurs through the translation of biochemical signals into specific biomechanical events. The biochemical and structural properties of the proteins involved in cell motility, as well as their subcellular localization, have been studied extensively. However, how these proteins work in concert to generate the mechanical properties required to produce global motility is not well understood. Using intracellular microrheology and a fibroblast scratch-wound assay, we show that cytoskeleton reorganization produced by motility results in mechanical stiffening of both the leading lamella and the perinuclear region of motile cells. This effect is significantly more pronounced in the leading edge, suggesting that the mechanical properties of migrating fibroblasts are spatially coordinated. Disruption of the microtubule network by nocodazole treatment results in the arrest of cell migration and a loss of subcellular mechanical polarization; however, the overall mechanical properties of the cell remain mostly unchanged. Furthermore, we find that activation of Rac and Cdc42 in quiescent fibroblasts elicits mechanical behavior similar to that of migrating cells. We conclude that a polarized mechanics of the cytoskeleton is essential for directed cell migration and is coordinated through microtubules.  相似文献   

20.
Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility   总被引:18,自引:0,他引:18  
Higher vertebrates have 3 Rho GTPases, RhoA, RhoB, and RhoC, which share 85% amino acid sequence identity. Here, we compare and contrast the roles of RhoA, B, and C in the regulation of the cytoskeleton and cell motility. Despite their similarity, some regulators and effectors show preferential interaction with RhoA, B, or C, and the three proteins show differences in function in cells. RhoA plays a key role in the regulation of actomyosin contractility. RhoB, which is localized primarily on endosomes, has been shown to regulate cytokine trafficking and cell survival, while RhoC may be more important in cell locomotion. In cancer cells, the expression and activity of RhoA, B, and C is altered in different ways. Together, this evidence suggests that although the 3 isoforms of Rho are structurally highly homologous, they have different cellular functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号