首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 As global climate changes, sea level rise and increased frequency of hurricanes will expose coastal forests to increased flooding and salinity. Quercus species are frequently dominant in these forest, yet little is known about their salinity tolerance, especially in combination with flooding. In this study, 1-year-old seedlings of Quercus lyrata Walt. (overcup oak), Q. michauxii Nutt. (swamp chestnut oak), Q. nigra L. (water oak), and Q. nuttallii Palmer (Nuttall oak) were chronically (simulating sea level rise) and acutely (simulating hurricane storm surge) exposed to increased flooding and salinity, individually and in combination. The four species demonstrated two response patterns of photosynthesis (A), conductance, and leaf water potential, apparently related to their relative flood tolerance. In Q. lyrata, Q. nuttallii, and Q. nigra (moderately flood-tolerant), A was not immediately reduced after the initiation of the freshwater flooding, but was reduced as the duration of flooding increased. In the second pattern, demonstrated by the weakly flood-tolerant Q. michauxii, A was immediately reduced by freshwater flooding with an increasing impact over time. Watering with 2 parts per thousand (ppt) saline water did not consistently reduce A, but flooding with 2 ppt reduced A of all species, similar to the response with freshwater flooding. Photosynthesis of all species was reduced by 6 ppt watering or flooding, with the latter treatment killing all species within 8 weeks. When acutely exposed to 30 ppt salinity, A was quickly and severely reduced regardless of whether the seedlings were watered or flooded. Acutely flooded seedlings exposed to high salinity died within 2 weeks, but seedlings watered with 30 ppt saline water recovered and A was not reduced the following spring. As saline flooding of coastal areas increases due to sea level rise, photosynthesis of these species will be differentially affected based primarily on their flood tolerance. This suggests that increased flooding associated with sea level rise will impact these tree species to a greater extent than small increases in soil salinity. High salinity accompanying storm surges will be very harmful to all of these species. Received: 20 October 1997 / Accepted: 2 December 1998  相似文献   

2.
The influence of flooding and salinity on photosynthesis and water relations was examined for four common coastal tree species [green ash (Fraxinus pennsylvanica Marshall), water tupelo (Nyssa aquatica L.). Chinese tallow (Sapium sebiferum (L.) Roxb.), and baldcypress (Taxodium distichum (L.) Richard)]. Both chronic (as might be associated with sea level rise) and acute (similar to hurricane storm surges) exposures to these stresses were examined. Chronic freshwater flooding of green ash, water tupelo, and Chinese tallow seedlings reduced photosynthesis (A) relative to that of watered seedlings, while baldcypress was unaffected. Chinese tallow A declined with increasing length of flooding. A salinity increase of the floodwater to 2 ppt decreased A of baldcypress and water tupelo, but not A of green ash and Chinese tallow, which was already severely reduced by freshwater flooding. All seedlings of the four species died within 2 to 6 weeks when flooded with 10 ppt saltwater. Photosynthesis of all four species did not differ between 0 and 2 ppt watering. Watering with 10 ppt salinity initially reduced A of all four species, but the seedlings recovered over time. Photosynthesis was severely decreased for all species when flooded with 21 ppt salinity for 48 hours. Reduced A continued following the treatment. Photosynthesis of only green ash and water tupelo was reduced by watering with 21 ppt salinity for 48 hours. Flooding of low-lying areas with increased salinity would lead to shifts in species composition of coastal forests due to these differential tolerances.  相似文献   

3.
A greenhouse experiment was conducted to examine the effects of salinity and flooding level on interstitial solute speciation and solute uptake byPanicum hemitomum grown on intact marsh substrates. The experimental set-up consisted of a factorial arrangement of treatments (5 salinity levels×3 flooding levels) with 4 replications.Salinity treatments with the addition of salt (Instant Oceanr) successfully increased interstitial pore water conductivities and resulted in significantly different treatment means. Redox potentials and proton activities were significantly higher in the drained treatment, with only minor differences between the two flooded treatments. There was not a significant pH effect due to salinity, although a significant interaction between salinity and flooding level was observed. Analysis of variance suggested that electro-chemical and interstitial solute behaviour could significantly be described by salinity and flooding treatments.GEOCHEM calculations were performed in order to relate leaf concentrations to ion activities in interstitial soil solutions. Leaf contents of Mg, Ca, K, Mn, and Cu were significantly correlated with the activities of corresponding ions in the interstitial pore water. However, most of the variabilitiy in leaf metal content could be accounted for by treatment effects. Regression analysis showed that the ion activities explained less than 25% of the variability in leaf metal content.  相似文献   

4.
Questions: 1. Do pine seedlings in estuarine environments display discrete or continuous ranges of physiological tolerance to flooding and salinity? 2. What is the tolerance of Pinus taeda and P. serotina to low salinity and varying hydrologic conditions? 3. Are the assumptions for ecological equilibrium met for modeling plant community migration in response to sea‐level rise? Location: Albemarle Peninsula, North Carolina, USA. Methods: In situ observations were made to quantify natural pine regeneration and grass cover along a salinity stress gradient (from marsh, dying or dead forest, to healthy forest). A full‐factorial greenhouse experiment was set up to investigate mortality and carbon allocation of Pinus taeda and P. serotina to low‐salinity conditions and two hydrology treatments over 6 months. Treatments consisted of freshwater and two salinity levels (4 ppt and 8 ppt) under either permanently flooded or periodically flushed hydrologic conditions. Results: Natural pine regeneration was common (5–12 seedlings per m2) in moderate to well‐drained soils where salinity concentrations were below ca. 3.5 ppt. Pine regeneration was generally absent in flooded soils, and cumulative mortality was 100% for 4 and 8 ppt salinity levels under flooded conditions in the greenhouse study. Under weekly flushing conditions, mortality was not significantly different between 0 and 4 ppt, confirming field observations. Biomass accumulation was higher for P. taeda, but for both pine species, the root to shoot ratio was suppressed under the 8 ppt drained treatment, reflecting increased below‐ground stress. Conclusions: While Pinus taeda and P. serotina are commonly found in estuarine ecosystems, these species display a range of physiological tolerance to low‐salinity conditions. Our results suggest that the rate of forest migration may lag relative to gradual sea‐level rise and concomitant alterations in hydrology and salinity. Current bioclimate or landscape simulation models assume discrete thresholds in the range of plant tolerance to stress, especially in coastal environments, and consequently, they may overestimate the rate, extent, and timing of plant community response to sea‐level rise.  相似文献   

5.
Ye  Y.  Tam  Nora F. Y. 《Hydrobiologia》2002,479(1-3):75-81
Growth and physiological responses of two mangrove species (Kandelia candel and Bruguiera gymnorrhiza) to livestock wastewater under two salinity conditions (seawater with salinity of 30þ and freshwater) were examined in greenhouse pot-cultivation systems for 144 days. Wastewater treatment significantly enhanced growth of Kandelia candel and Bruguiera gymnorrhiza in terms of stem height, stem basal diameter, leaf production, maximum unit leaf area and relative growth rate. Wastewater discharges and salinity levels did not significantly change biomass partitioning of Kandelia candel, however, more biomass of Bruguiera gymnorrhiza was allocated to leaf due to wastewater discharges. In Bruguiera gymnorrhiza, contents of chlorophyll a and chlorophyll b increased with wastewater discharges but such increase was not observed in Kandelia candel. On the other hand, livestock wastewater increased leaf electric conductance in Kandelia candel but not in Bruguiera gymnorrhiza. The peroxidase activity in stem and root of Kandelia candel under both salinity conditions increased due to wastewater discharges, while the activity in root of the treated Bruguiera gymnorrhiza seedlings decreased under freshwater condition but increased at seawater salinity. The superoxide dismutase activity in treated Bruguiera gymnorrhiza decreased but did not show any significant change in Kandelia candel receiving livestock wastewater.  相似文献   

6.
The effects of waterlogging and salinity (25 or 325 mol m 3 NaCl) stressors on the anatomy and metabolism of the marsh grasses 5. alterniflora Loisel. and S. patens Aiton (Muhl.) were investigated in a V factorial greenhouse experiment over 30 d. Waterlogging and salinity in combination resulted in anatomical and metabolic responses in both species. Waterlogging reduced soil redox potential and decreased root-specific gravity significantly in both species. The inadequacy of aerenchyma development under hypoxia to support aerobic root respiration in S. patens was indicated by significant increases in root alcohol dehydrogenase (ADH) activity of 1,752% and 420%, respectively, in the low and high salinity treatments. ADH activity was not increased significantly by flooding of S. alterniflora. Proline concentrations in roots and leaves were low at low salinities and increased significantly at high salinities in both species, but only under drained conditions. Decrease in leaf elongation by high salinity occurred in drained, but not flooded treatments in both species. Under flooded conditions, leaf elongation was significantly greater in S. alterniflora than S. patens. Greatest leaf elongation occurred in flooded low salinity S. alterniflora plants that had the least proline. Although both species are adapted to waterlogging and salinity, S. alterniflora appears to be more tolerant of reducing soil conditions and less responsive to higher salinity than S. patens.  相似文献   

7.
L. Perry  K. Williams 《Oecologia》1996,105(4):428-434
Sabal palmetto (Walt.) Lodd. ex Schultes (cabbage palm) dominates the coastal limit of many forests in North Florida and Georgia, United States. Changes in saltwater flooding due to sea level rise have been credicted with pushing the coastal limit of cabbage palms inland, eliminating regeneration before causing death of mature trees. Localized freshwater discharge along the coast causes different forest stands to experience tidal flooding with waters that differ in salinity. To elucidate the effect of such variation on regeneration failure under tidal flooding, we examined relative effects of flooding and salinity on the performance of cabbage palm seedlings. We examined the relationship between seedling establishment and degree of tidal inundation in the field, compared the ability of seedlings to withstand tidal flooding at two coastal sites that differed in tidal water salinity, and investigated the physiological responses of cabbage palm seedlings to salinity and flooding in a factorial greenhouse experiment. Seedling survival was inversely correlated with depth and frequency of tidal flooding. Survival of seedlings at a coastal site flooded by waters low in salinity [c. 3 parts per thousand (ppt)] was greater than that at a site flooded by waters higher in salinity (up to 23 ppt). Greenhouse experiments revealed that leaves of seedlings in pots flushed twice daily with salt solutions of 0 ppt and 8 ppt exhibited little difference in midmorning net CO2 assimilation rates; those flushed with solutions of 15 ppt and 22 ppt, in contrast, had such low rates that they could not be detected. Net CO2 assimilation rates also declined with increasing salinity for seedlings in pots that were continuously inundated. Continuous root zone inundation appeared to ameliorate effects of salinity on photosynthesis, presumably due to increased salt concentrations and possibly water deficits in periodically flushed pots. Such problems associated with periodic flushing by salt water may play a role in the mortality of cabbage palm seedlings in the field. The salinity range in which plant performance plummeted in the greenhouse was consistent with the salinity difference found between our two coastal study sites, suggesting that variation in tidal water salinity along the coast plays an important role in the ability of cabbage palm seedlings to withstand tidal flooding.  相似文献   

8.
Ecophysiological responses of Litopenaeus vannamei were evaluated as functions of environmental salinity and animal size. Growth rate, routine metabolic rate, limiting oxygen concentration, and marginal metabolic scope were determined for L. vannamei acclimated to, and tested at, salinities of 2, 10, and 28 ppt, all at 28 °C. Routine metabolic rate (RMR), estimated as oxygen-consumption rate per unit body weight for fasted, routinely-active shrimp, was independent of salinity but decreased with increasing shrimp weight. Limiting oxygen concentration for routine metabolism (LOCr) decreased with increased shrimp weight for the 10 and 28 ppt treatments, but not for the 2 ppt treatment. Marginal metabolic scope (MMS = RMR/LOCr) also decreased with increasing shrimp weight and was independent of salinity. Growth rate was significantly less at 2 ppt than at either 10 or 28 ppt, which gave similar growth rates.  相似文献   

9.
A mesocosm study was conducted to determine the effects of variable salinity and light on Vallisneria americana Michx. (wild celery) and associated algal community components in the lower St. Johns River, Florida. Fifteen centimeter diameter intact plant plugs were collected from the LSJR in March 2001 and transported to mesocosm facilities in Lafayette, Louisiana. A factorial experimental design was used consisting of three salinity levels (1, 8, and 18 ppt), three light levels (0, 50, and 90% shading), and three replicate mesocosms of each for a total of 27 mesocosms. The experiment consisted of a 4-week acclimation period followed by a 5-month treatment period. V. americana responded negatively to increased salinity. Although V. americana survived 8 ppt salinity, growth was limited. At 18 ppt, almost all V. americana aboveground biomass had perished within 10 weeks, but when salinity was lowered back to 1 ppt, approximately 20% of the aboveground biomass recovered within the following 10 weeks. At midtreatment harvest, light did not affect V. americana biomass directly (P = 0.8240), but by final harvest (20 weeks) light affected belowground biomass (P < 0.0014). Both salinity and light affected algal growth. Macroalgae dominated 1 ppt salinity treatments in ambient light, but phytoplankton dominated 8 and 18 ppt salinity treatments in ambient light. Algal communities were greatly inhibited by 90% shading. While salinity directly impacted V. americana growth and survival, light effects were less direct and involved algal community associations.  相似文献   

10.
The Broadwater of the Myall Lakes system is highly susceptible to cyanobacterial bloom formation after heavy rain events. During prolonged low flow periods, saline intrusion from the lower Myall River increases salinity levels and effectively controls some bloom forming algal taxa. To assess the effect of low-to-moderate increases in salinity (up to 4 ppt) on phytoplankton chlorophyll a, cell abundance, diversity and assemblage structure, salinity enhancement experiments were conducted on Broadwater samples collected in June 2005 (salinity 1.5 ppt), October 2005 (4 ppt) and January 2006 (12 ppt). Natural phytoplankton assemblages were incubated in the laboratory for 10 days, under different treatments of salinity (no addition, +2 ppt, + 4 ppt) and nutrient conditions (no addition, excess N+P). The greatest impact of salinity enhancement in N+P enriched samples was observed in June (1.5–5.5 ppt); chlorophyll a was significantly reduced in samples with the highest salinity treatment, and the taxon most negatively affected by an elevation in salinity to 5.5 ppt was Anabaena circinalis. Taxonomic richness and diversity (Shannon–Wiener index) were unexpectedly significantly higher at 5.5 ppt than at 1.5 ppt. This result, in part, explains the observed significant differences in phytoplankton assemblage structure over this salinity range. In October, the main effect of elevating salinity levels from 4 ppt to 8 ppt was a reduction in the abundance of chlorophytes, particularly Scenedesmus. Phytoplankton samples that were collected when the lake salinity level was 12 ppt were little affected by salinity increases of 2 ppt and 4 ppt, most likely because field samples were already relatively high in salt content. We suggest that further investigations focus on phytoplankton responses to salinity under a range of nutrient regimes that are common to coastal lakes.  相似文献   

11.
Changes in the physiological and biochemical characteristics of the leaves of Kandelia candel (L.) Druce seedlings in response to short-term (7 days) and long-term (60 days) treatments with two NaCl concentrations (250 and 500 mM) were studied. The growth rates were measured in terms of plant height, leaf area, and dry weight and were greater in the culture treated with 250 mM NaCl. Photosynthetic pigments also showed a preference for salinity growth conditions. The content of soluble sugars increased under any salinity during continuous treatments, whereas the proline level increased by the end of long-term culture. Further, during the treatment with 500 mM NaCl, the contents of hydrogen peroxide increased dramatically, whereas the levels of MDA, a measure of lipid peroxidation, decreased. The intactness of membrane integrity under this salinity condition may be explained by the activities of superoxide dismutase (SOD) and peroxidase (POD) which increased during the long-term experiment. It is concluded that the ability of K. candel to tolerate salt may occur mainly by inducing biosynthesis of soluble sugars and proline and increasing the activities of SOD and POD. The results imply that K. candel can survive well at 250 mM NaCl conditions and become acclimated to seawater salinity (∼500 mM) for 60 days of exposure. Published in Russian in Fiziologiya Rastenii, 2009, vol. 56, No. 3, pp. 403–409. This text was submitted by the authors in English.  相似文献   

12.
A two-chamber-system was used to study whole-plant gas exchange responses of Spartina alterniflora to long-term and transient salinity treatments over the range of 5 to 40 ppt NaCl. Lower photosynthetic rates, leaf water vapor conductances, belowground respiration rates, and higher aboveground respiration rates in plants adapted to 40 ppt NaCl were observed. Area-specific leaf weight increased with salinity, although the salt content of leaf tissues did not. A reduced rate of gross photosynthesis and higher aboveground respiration rate in 40-ppt NaCl plants significantly lowered the net whole-plant CO2 gain below that of 5-ppt NaCl plants, while the net CO2 gain of 25-ppt NaCl plants was intermediate. Within 6 hr of increasing the salinity of 5- and 25-ppt NaCl plants by 20 and 15 ppt NaCl, S. alterniflora responded by reducing leaf water vapor conductance, which in turn reduced the photosynthetic rate. This response was reversed by returning the plants to their original salinity, which indicates that S. alterniflora adjusts water loss and gas exchange in response to transient salinity stress by regulating stomatal aperture. On the other hand, decreasing salinity of the growth media of plants cultured at 25 and 40 ppt NaCl had little or no effect on gas exchange characteristics. This suggests that S. alterniflora adapts to constant salinity through fixed, salinity-dependent structural modifications, such as stomatal density.  相似文献   

13.
The survival, growth, and biomass of baldcypress (Taxodium distichum (L.) Rich.), water tupelo (Nyssa aquatica L.), Chinese tallow (Sapium sebiferum (L.) Roxb.), and green ash (Fraxinus pennsylvanica Marsh.) seedlings were examined in an experiment varying water levels (watered, flooded) and salinity levels (0, 2, and 10 ppt, plus a simulated storm surge with 32 ppt saltwater). All seedlings, except for those flooded with 10 ppt saltwater, survived to the end of the experiment. In 10 ppt saltwater, flooded baldcypress, water tupelo, and green ash survived two weeks whereas Chinese tallow survived for 6 weeks. However, a second set of slightly older baldcypress, water tupelo, and Chinese tallow seedlings survived eight weeks of flooding with 10 ppt saltwater. When carried through the winter to the beginning of the second growing season, flooded baldcypress and Chinese tallow seedlings from the 0 and 2 ppt treatments leafed out, but only Chinese tallow recovered from the saltwater surge treatment. The diameter and growth (height) of each species was not affected when watered with 2 ppt saltwater, except for the effects of the height growth of baldcypress. Growth was reduced for all species when watered with 10 ppt saltwater. The diameter growth of green ash was reduced by freshwater flooding. The diameter growth of baldcypress and water tupelo was greater when flooded with fresh water. Flooding with 2 ppt saltwater caused a significant reduction in diameter growth in water tupelo, green ash, and Chinese tallow, but not in baldcypress. Root and stem biomass values were not significantly different for any species between the 0 and 2 ppt salinity watering treatments. However, seedlings watered with 10 ppt saltwater had significantly lower root and stem biomass values, except for baldcypress roots and green ash stems. Baldcypress was least affected by flooding with 0 and 2 ppt saltwater, although there were slight reductions in root biomass with increasing salinity. Because of the susceptibility of the seedlings of these four species to increases in flooding and salinity, their regeneration may be limited in the future, thereby causing shifts in species composition.  相似文献   

14.
Coastal wetlands are a significant carbon (C) sink since they store carbon in anoxic soils. This ecosystem service is impacted by hydrologic alteration and management of these coastal habitats. Efforts to restore tidal flow to former salt marshes have increased in recent decades and are generally associated with alteration of water inundation levels and salinity. This study examined the effect of water level and salinity changes on soil organic matter decomposition during a 60‐day incubation period. Intact soil cores from impounded fresh water marsh and salt marsh were incubated after addition of either sea water or fresh water under flooded and drained water levels. Elevating fresh water marsh salinity to 6 to 9 ppt enhanced CO2 emission by 50%?80% and most typically decreased CH4 emissions, whereas, decreasing the salinity from 26 ppt to 19 ppt in salt marsh soils had no effect on CO2 or CH4 fluxes. The effect from altering water levels was more pronounced with drained soil cores emitting ~10‐fold more CO2 than the flooded treatment in both marsh sediments. Draining soil cores also increased dissolved organic carbon (DOC) concentrations. Stable carbon isotope analysis of CO2 generated during the incubations of fresh water marsh cores in drained soils demonstrates that relict peat OC that accumulated when the marsh was saline was preferentially oxidized when sea water was introduced. This study suggests that restoration of tidal flow that raises the water level from drained conditions would decrease aerobic decomposition and enhance C sequestration. It is also possible that the restoration would increase soil C decomposition of deeper deposits by anaerobic oxidation, however this impact would be minimal compared to lower emissions expected due to the return of flooding conditions.  相似文献   

15.
Abstract Mass mortalities of fauna are known to occur in estuarine environments during flood events. Specific factors associated with these mortalities have rarely been examined. Therefore, the effect of exposing, to lowered salinities, an infaunal bivalve that is susceptible to mass mortalities during winter flooding in a southern Australian estuary was tested in the present study. In a laboratory experiment, low salinities (≤6 parts per thousand [ppt]), which mimicked those expected during flood events in the Hopkins River estuary, were shown to affect Soletellina alba, both lethally and sublethally. All bivalves died at 1 ppt, while those at 6 ppt took longer to burrow and exhibited a poorer condition than those at 14 and 27 ppt. The limited salinity tolerance of S. alba suggests that lowered salinities are a likely cause of mass mortality for this species during winter flooding.  相似文献   

16.
Hydrologic regime is an important control of primary production in wetland ecosystems. I investigated the coupling of flooding, soil salinity and plant production in northern prairie marshes that experience shallow spring flooding. Field experiments compared whitetop (Scolochloa festucacea) marsh that was: (1) nonflooded, (2) flooded during spring with 25 cm water and (3) nonflooded but irrigated with 1 cm water · day–1. Pot culture experiments examined whitetop growth response to salinity treatments. The electrical conductivity of soil interstitial water (ECe) at 15 cm depth was 4 to 8 dS· m–1 lower in flooded marsh compared with nonflooded marsh during 2 years. Whitetop aboveground biomass in flooded marsh (937 g · m–2, year 1; 969 g · m–2, year 2) exceeded that of nonflooded marsh (117 g · m–2 year 1; 475 g · m–2, year 2). Irrigated plots had lower ECe and higher aboveground biomass than nonflooded marsh. In pot culture, ECe of 4.3 dS · m–1 (3 g · L–1 NaCl) reduced total whitetop biomass by 29 to 44% and ECe of 21.6 dS · m–1 (15 g · L–1 NaCl) reduced biomass by more than 75%. Large reductions of ECe and increases of whitetop growth with irrigation indicated that plants responded to changes in soil salinity and not other potential environmental changes caused by inundation. The results suggest that spring flooding controls whitetop production by decreasing soil salinity during spring and by buffering surface soils against large increases of soil salinity after mid-summer water level declines. This mechanism can explain higher marsh plant production under more reducing flooded soil conditions and may be an important link between intermittent flooding and primary production in other wetland ecosystems.  相似文献   

17.
This study investigates the physiological responses in the hermatypic coral Galaxea fascicularis exposed to salinity stress (from 37 ppt to 15 ppt) for 12 h, combined effects of reduced salinity (from 37 ppt to 20 ppt) and two temperatures (26 °C and 32 °C) for 12 h and combined effects of reduced salinity (from 37 ppt to 25 ppt) and two temperatures (26 °C and 29.5 °C) for 10 d. The results demonstrate that the coral is tolerant to 12 h exposure to extremely low salinity (15 ppt). The study also shows that combined effects of temperature and low salinity aggravate the damage on the photosynthesis of the symbiotic dinoflagellates in 12 h exposure to 20 ppt sea water. This study suggests that high temperature (29.5 °C) aggravates the damage of trivially low salinity (30 ppt) on the holobiont (the coral and its symbiotic dinoflagellates) in 10 d exposure. However, high temperature (29.5 °C) may have an antagonistic effect between temperature and low salinity (25 ppt) on metabolism of the holobiont. Based on the above results, we suggest that (1) the true mechanism of corals exposed to combined effects of low salinity and high temperature is complicated. This calls for more studies on different corals. Future studies should aim at investigating long-term low-level stress in order to simulate in situ conditions more accurately; (2) when corals exposed to extremely severe combined stressors for short-term or trivially severe stressors for relative long-term, the combined effects of two stressors (such as low salinity and high temperature) may be negative, otherwise, the effects may be additive.  相似文献   

18.
Hybridization is a relevant evolutionary mechanism linked to the invasiveness of plant species, but little is known about its effect on enzymatic activities in response to stress. We analyzed the effects of salinity on key mechanistic traits of phosphoenolpyruvate carboxylase (PEPC) enzyme for two hybrid taxa derived from native Spartina maritima (Curtis) Fernald and invasive Spartina densiflora Brongn. in comparison with their parental species. Parental species showed contrasted strategies at the PEPC level to cope with salinity. Spartina maritima showed its physiological optimum at 10 to 40 ppt salinity, with high PEPC activity (per unit leaf soluble protein), in contrast to the lower salinity optimum of 0.5 and 10 ppt for S. densiflora, where highest levels of PEPC apparent specific activity coincided with high light-induced activation of PEPC. Both hybrids showed constant PEPC apparent specific activity from fresh water to hypersalinity and exhibited higher net photosynthesis rates in fresh water than their parents. Spartina maritima × densiflora presented three transgressive PEPC-related traits, being the only taxon able to increase its PEPC activation in darkness at high salinity. Spartina densiflora × maritima showed most PEPC-related traits intermediate between its parents. Inheritance types operating differently in reciprocal hybrids determine key functional traits conditioning their ecological performance.  相似文献   

19.
A study quantifying the physiological threshhold at which Spartina alterniflora plants are able to tolerate the interactive effects of salinity and soil drying was conducted in a climate controlled greenhouse. The experiment consisted of two levels of salinity (3-5 ppt, L and 35-38 ppt, H) as well as four dynamic water levels: flooding (water level maintained 3-5 cm above the soil surface at high tide and 10 cm below the soil surface at low tide for entire study duration, F), 8-day drought (water level maintained at least 20 cm below the soil surface at high tide for 8 days then flooded, 8 days), 16-day drought (water level maintained at least 20 cm below the soil surface at high tide for 16 days then flooded, 16 days), and 24-day drought (water level maintained at least 20 cm below the soil surface at high tide for 24 days then flooded, 24 days). Plant gas exchange and growth responses were measured along with soil conditions of redox potential and water potential. Significant decreases were seen in plant gas exchange and growth in response to increases in salinity and soil drying. Survival was 100% for all flooded treatments while increased salinity combined with soil drying decreased survival to 86% in both low salt/24-day drought plants (LD24) and high salt/16-day drought plants (HD16). The lowest survival rate was seen in the high salt/24-day drought treatment (HD24) at 29%. Therefore, it appears that the critical time for recovery from the combined effects of increased salinity and soil drying may greatly diminish after two weeks from the onset of stress conditions. Consequently, if salinity continues to increase along the MRDP, marshes dominated by S. alterniflora may be more susceptible to short-term drought and likewise large-scale marsh browning.  相似文献   

20.
A microcosm experiment was conducted to assess the effects of salinity on coastal lagoon plankton assemblages. Five salinity levels were replicated four-fold in 3801 fiberglass tanks. Salinity levels used were 0, 8.5, 17, 34 and 51 ppt, or 0, 25, 50, 100 and 150 percent seawater. These were achieved by mixing concentrated lagoon water and tapwater in different proportions. Tanks were inoculated with plankton collected from San Dieguito Lagoon (Del Mar, San Diego County, California) and other fresh and saline waterbodies in the area. Selected physical-chemical variables, phytoplankton, zooplankton, and other invertebrate populations were monitored on five sampling dates over a 114 day period (13 August–5 December 1986).Total phytoplankton abundance increased with salinity, for salinities >17 ppt. Most taxa showed marked effects of salinity, though the pattern of the effects often varied greatly from date to date. Chlorophytes tended to be most abundant at 51 ppt. Pyrrhophytes were most abundant at 0 or 51 ppt, and least abundant at 8.5 or 17 ppt. Cryptophytes increased with increasing salinity. Euglenophytes exhibited no salinity effect on any date. Bacillariophytes were most abundant at 8.5–34 ppt and least abundant at 51 ppt, with individual taxa showing maxima at 0–17 ppt (Navicula, Synedra), 8.5–34 ppt (Surirella, Amphora), and 34 ppt (Cylindrotheca).Total zooplankton abundance decreased with salinity, for salinities > 17 ppt. The dominant taxa were protozoans, rotifers, cladocerans, and copepods, and all but the first group showed strong salinity effects. Protozoan abundance was unaffected by salinity. Rotifers were most abundant at 0 ppt (Keratella, Filinia) or 8.5 ppt (Brachionus). With few exceptions, cladocerans (Alona, Ceriodaphnia, Scapholeberis) were found only at 0 ppt. Abundance of calanoid copepods decreased with increasing salinity, with individual taxa showing maxima at 0 ppt (Diaptomus), 8.5–17 ppt (Pseudodiaptomus, Eurytemora), and 34 ppt (Acartia). Cyclopoid copepods were most abundant at 17 ppt, with individual taxa showing maxima at 0 ppt (Eucyclops), 8.5 ppt (Halicyclops), and 17 ppt (Oithona). Harpacticoid copepods (Cletocamptus, Tachidius) were most abundant at 17–34 ppt. Ostracods and mosquito (Culex) larvae were most abundant at 8.5 ppt and absent at 34 and 51 ppt. Polychaetes generally were most abundant at 17–34 ppt, and water boatmen (Trichocorixa) at 8.5–34 ppt. Various physical and chemical variables also showed significant variations with salinity. Tending to increase with salinity were temperature, ammonia and orthophosphate concentrations. Decreasing with salinity were pH, dissolved oxygen and silica concentrations. The causes and interrelationships of these salinity effects are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号