首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When Saccharomyces cerevisiae a cells bind alpha-factor pheromone, the ligand is internalized and its binding sites are lost from the cell surface in a time-, energy-, and temperature-dependent manner. This report presents direct evidence for alpha-factor-induced internalization of cell surface receptors. First, membrane fractionation on Renografin density gradients indicated that the alpha-factor receptors were predominantly found in the plasma membrane peak before alpha-factor treatment and then appeared in membranes of lesser buoyant density after alpha-factor exposure. Second, receptors were susceptible to cleavage by extracellular proteases before alpha-factor treatment and then became resistant to proteolysis after exposure to pheromone, consistent with the transit of receptors from the cell surface to an internal compartment. The median transit time in both assays was approximately 8 min. The ultimate target of the internalized receptors was identified as the vacuole, since the membranes containing internalized receptors cofractionated with vacuolar membranes, since the turnover of receptors was stimulated by alpha-factor exposure, and since receptor degradation was blocked in a pep4 mutant that is deficient for vacuolar proteases. The carboxy-terminal domain of the receptor that is required for ligand internalization was also found to be essential for endocytosis of the receptor. A receptor mutant, ste2-L236H, which is defective for pheromone response but capable of ligand internalization, was found to be proficient for receptor endocytosis. Hence, separate structural features of the receptor appear to specify its signal transduction and internalization activities.  相似文献   

2.
We are investigating the transport and turnover of the multispanning membrane protein Ste6. The Ste6 protein is a member of the ABC-transporter family and is required for the secretion of the yeast mating pheromone a-factor. In contrast to the prevailing view that Ste6 is a plasma membrane protein, we found that Ste6 is mainly associated with internal membranes and not with the cell surface. Fractionation and immunofluorescence data are compatible with a Golgi localization of Ste6. Despite its mostly intracellular localization, the Ste6 protein is in contact with the cell surface, as demonstrated by the finding that Ste6 accumulates in the plasma membrane in endocytosis mutants. The Ste6 protein which accumulates in the plasma membrane in endocytosis mutants is ubiquitinated. Ste6 is thus the second protein in yeast besides MAT alpha 2 for which ubiquitination has been demonstrated. Ste6 is a very unstable protein (half-life 13 min) which is stabilized approximately 3-fold in a ubc4 ubc5 mutant, implicating the ubiquitin system in the degradation of Ste6. The strongest stabilizing effect on Ste6 is, however, observed in the vacuolar pep4 mutant (half-life > 2 h), suggesting that most of Ste6 is degraded in the vacuole. Secretory functions are required for efficient degradation of Ste6, indicating that Ste6 enters the secretory pathway and is transported to the vacuole by vesicular carriers.  相似文献   

3.
E Kübler  H Riezman 《The EMBO journal》1993,12(7):2855-2862
In Saccharomyces cerevisiae, alpha-factor is internalized by receptor-mediated endocytosis and transported via vesicular intermediates to the vacuole where the pheromone is degraded. Using beta-tubulin and actin mutant strains, we showed that actin plays a direct role in receptor-mediated internalization of alpha-factor, but is not necessary for transport from the endocytic intermediates to the vacuole. beta-tubulin mutant strains showed no defect in these processes. In addition, cells lacking the actin-binding protein, Sac6p, which is the yeast fimbrin homologue, are defective for internalization of alpha-factor suggesting that actin filament bundling might be required for this step. The actin dependence of endocytosis shows some interesting similarities to endocytosis from the apical membrane in polarized mammalian cells.  相似文献   

4.
The maltose transporter in Saccharomyces cerevisiae is degraded in the vacuole after internalization by endocytosis upon nitrogen starvation in the presence of a fermentable substrate. This degradation, known as catabolite inactivation, is inhibited by the presence of moderate concentrations (2 to 6%, vol/vol) of ethanol. We have investigated the mechanism of this inactivation and have found that it is due to the inhibition of the internalization of the transporter by endocytosis. The results also indicate that this inhibition is due to alterations produced by ethanol in the organization of the plasma membrane which also affects to endocytosis of other plasma membrane proteins. Apparently, endocytosis is particularly sensitive to these alterations compared with other processes occurring at the plasma membrane.  相似文献   

5.
We have characterized a class of mutations in PMA1, (encoding plasma membrane ATPase) that is ideal for the analysis of membrane targeting in Saccharomyces cerevisiae. This class of pma1 mutants undergoes growth arrest at the restrictive temperature because newly synthesized ATPase fails to be targeted to the cell surface. Instead, mutant ATPase is delivered to the vacuole, where it is degraded. Delivery to the vacuole occurs without previous arrival at the plasma membrane because degradation of mutant ATPase is not prevented when internalization from the cell surface is blocked. Disruption of PEP4, encoding vacuolar proteinase A, blocks ATPase degradation, but fails to restore growth because the ATPase is still improperly targeted. One of these pma1 mutants was used to select multicopy suppressors that would permit growth at the nonpermissive temperature. A novel gene, AST1, identified by this selection, suppresses several pma1 alleles defective for targeting. The basis for suppression is that multicopy AST1 causes rerouting of mutant ATPase from the vacuole to the cell surface. pma1 mutants deleted for AST1 have a synthetic growth defect at the permissive temperature, providing genetic evidence for interaction between AST1 and PMA1. Ast1 is a cytoplasmic protein that associates with membranes, and is localized to multiple compartments, including the plasma membrane. The identification of AST1 homologues suggests that Ast1 belongs to a novel family of proteins that participates in membrane traffic.  相似文献   

6.
The ether-phospholipid edelfosine, a prototype antitumor lipid (ATL), kills yeast cells and selectively kills several cancer cell types. To gain insight into its mechanism of action, we performed chemogenomic screens in the Saccharomyces cerevisiae gene-deletion strain collection, identifying edelfosine-resistant mutants. LEM3, AGP2, and DOC1 genes were required for drug uptake. Edelfosine displaced the essential proton pump Pma1p from rafts, inducing its internalization into the vacuole. Additional ATLs, including miltefosine and perifosine, also displaced Pma1p from rafts to the vacuole, suggesting that this process is a major hallmark of ATL cytotoxicity in yeast. Radioactive and synthetic fluorescent edelfosine analogues accumulated in yeast plasma membrane rafts and subsequently the endoplasmic reticulum. Although both edelfosine and Pma1p were initially located at membrane rafts, internalization of the drug toward endoplasmic reticulum and Pma1p to the vacuole followed different routes. Drug internalization was not dependent on endocytosis and was not critical for yeast cytotoxicity. However, mutants affecting endocytosis, vesicle sorting, or trafficking to the vacuole, including the retromer and ESCRT complexes, prevented Pma1p internalization and were edelfosine-resistant. Our data suggest that edelfosine-induced cytotoxicity involves raft reorganization and retromer- and ESCRT-mediated vesicular transport and degradation of essential raft proteins leading to cell death. Cytotoxicity of ATLs is mainly dependent on the changes they induce in plasma membrane raft-located proteins that lead to their internalization and subsequent degradation. Edelfosine toxicity can be circumvented by inactivating genes that then result in the recycling of internalized cell-surface proteins back to the plasma membrane.  相似文献   

7.
Multidrug resistance (MDR) to different cytotoxic compounds in the yeast Saccharomyces cerevisiae can arise from overexpression of the Pdr5 (Sts1, Ydr1, or Lem1) ATP-binding cassette (ABC) multidrug transporter. We have raised polyclonal antibodies recognizing the yeast Pdr5 ABC transporter to study its biogenesis and to analyze the molecular mechanisms underlying MDR development. Subcellular fractionation and indirect immunofluorescence experiments showed that Pdr5 is localized in the plasma membrane. In addition, pulse-chase radiolabeling of cells and immunoprecipitation indicated that Pdr5 is a short-lived membrane protein with a half-life of about 60 to 90 min. A dramatic metabolic stabilization of Pdr5 was observed in delta pep4 mutant cells defective in vacuolar proteinases, and indirect immunofluorescence showed that Pdr5 accumulates in vacuoles of stationary-phase delta pep4 mutant cells, demonstrating that Pdr5 turnover requires vacuolar proteolysis. However, Pdr5 turnover does not require a functional proteasome, since the half-life of Pdr5 was unaffected in either pre1-1 or pre1-1 pre2-1 mutants defective in the multicatalytic cytoplasmic proteasome that is essential for cytoplasmic protein degradation. Immunofluorescence analysis revealed that vacuolar delivery of Pdr5 is blocked in conditional end4 endocytosis mutants at the restrictive temperature, showing that endocytosis delivers Pdr5 from the plasma membrane to the vacuole.  相似文献   

8.
Internalization of activated signaling receptors by endocytosis is one way cells downregulate extracellular signals. Like many signaling receptors, the yeast alpha-factor pheromone receptor is downregulated by hyperphosphorylation, ubiquitination, and subsequent internalization and degradation in the lysosome-like vacuole. In a screen to detect proteins involved in ubiquitin-dependent receptor internalization, we identified the sphingoid base-regulated serine-threonine kinase Ypk1. Ypk1 is a homologue of the mammalian serum- and glucocorticoid-induced kinase, SGK, which can substitute for Ypk1 function in yeast. The kinase activity of Ypk1 is required for receptor endocytosis because mutations in two residues important for its catalytic activity cause a severe defect in alpha-factor internalization. Ypk1 is required for both receptor-mediated and fluid-phase endocytosis, and is not necessary for receptor phosphorylation or ubiquitination. Ypk1 itself is phosphorylated by Pkh kinases, homologues of mammalian PDK1. The threonine in Ypk1 that is phosphorylated by Pkh1 is required for efficient endocytosis, and pkh mutant cells are defective in alpha-factor internalization and fluid-phase endocytosis. These observations demonstrate that Ypk1 acts downstream of the Pkh kinases to control endocytosis by phosphorylating components of the endocytic machinery.  相似文献   

9.
The yeast a-factor receptor (encoded by STE3) is subject to two modes of endocytosis, a ligand-dependent endocytosis as well as a constitutive, ligand-independent mode. Both modes are associated with receptor ubiquitination (Roth, A.F., and N.G. Davis. 1996. J. Cell Biol. 134:661–674) and both depend on sequence elements within the receptor''s regulatory, cytoplasmically disposed, COOH-terminal domain (CTD). Here, we concentrate on the Ste3p sequences required for constitutive endocytosis. Constitutive endocytosis is rapid. Receptor is synthesized, delivered to the cell surface, endocytosed, and then delivered to the vacuole where it is degraded, all with a t 1/2 of 15 min. Deletion analysis has defined a 36-residue-long sequence mapping near the COOH-terminal end of the Ste3p CTD that is the minimal sequence required for this rapid turnover. Deletions intruding into this interval block or severely slow the rate of endocytic turnover. Moreover, the same 36-residue sequence directs receptor ubiquitination. Mutants deleted for this sequence show undetectable levels of ubiquitination, and mutants having intermediate endocytosis defects show a correlated reduced level of ubiquitination. Not only necessary for ubiquitination and endocytosis, this sequence also is sufficient. When transplanted to a stable cell surface protein, the plasma membrane ATPase Pma1p, the 36-residue STE3 signal directs both ubiquitination of the PMA1-STE3 fusion protein as well as its endocytosis and consequent vacuolar degradation. Alanine scanning mutagenesis across the 36-residue-long interval highlights its overall complexity—no singular sequence motif or signal is found, instead required sequence elements distribute throughout the entire interval. The high proportion of acidic and hydroxylated amino acid residues in this interval suggests a similarity to PEST sequences—a broad class of sequences which have been shown to direct the ubiquitination and subsequent proteosomal degradation of short-lived nuclear and cytoplasmic proteins. A likely possibility, therefore, is that this sequence, responsible for both endocytosis and ubiquitination, may be first and foremost a ubiquitination signal. Finally, we present evidence suggesting that the true signal in the wild-type receptor extends beyond the 36-residue-long sequence defined as a minimal signal to include contiguous PEST-like sequences which extend another 21 residues to the COOH terminus of Ste3p. Together with sequences identified in two other yeast plasma membrane proteins, the STE3 sequence defines a new class of ubiquitination/endocytosis signal.  相似文献   

10.
We have examined the internalization and degradation of a fluorescent analog of phosphatidylcholine after its insertion into the plasma membrane of cultured Chinese hamster fibroblasts. 1-acyl-2-(N-4- nitrobenzo-2-oxa-1,3-diazole)-aminocaproyl phosphatidylcholine (C6-NBD- PC) was incorporated into the cell surface by liposome-cell lipid transfer at 2 degrees C. The fluorescent lipid remained localized at the plasma membrane as long as the cells were kept at 2 degrees C; however, when the cells were warmed to 37 degrees C, internalization of some of the fluorescent lipid occurred. Most of the internalized C6-NBD- PC accumulated in the Golgi apparatus although a small amount was found randomly distributed throughout the cytoplasm in punctate fluorescent structures. Internalization of the fluorescent lipid at 37 degrees C was blocked by the presence of inhibitors of endocytosis. Incubation of cells containing C6-NBD-PC at 37 degrees C resulted in a rapid degradation of the fluorescent lipid. This degradation occurred predominantly at the plasma membrane. The degradation of C6-NBD-PC resulted in the release of NBD-fatty acid into the medium. We have compared the internalization of the fluorescent lipid with that of a fluorescent protein bound to the cell surface. Both fluorescent lipid and protein remained at the plasma membrane at 2 degrees C and neither were internalized at 37 degrees C in the presence of inhibitors of endocytosis. However, when incubated at 37 degrees C under conditions that permit endocytosis, the two fluorescent species appeared at different intracellular sites. Our data suggest that there is no transmembrane movement of C6-NBD-PC and that the fluorescent probe reflects the internalization of the outer leaflet of the plasma membrane lipid bilayer. The results are consistent with the Golgi apparatus as being the primary delivery site of phospholipid by bulk membrane movement from the plasma membrane.  相似文献   

11.
The targeting signals of two yeast integral membrane dipeptidyl aminopeptidases (DPAPs), DPAP B and DPAP A, which reside in the vacuole and the Golgi apparatus, respectively, were analyzed. No single domain of DPAP B is required for delivery to the vacuolar membrane, because removal or replacement of either the cytoplasmic, transmembrane, or lumenal domain did not affect the protein's transport to the vacuole. DPAP A was localized by indirect immunofluorescence to non-vacuolar, punctate structures characteristic of the yeast Golgi apparatus. The 118-amino acid cytoplasmic domain of DPAP A is sufficient for retention of the protein in these structures, since replacement of the cytoplasmic domain of DPAP B with that of DPAP A resulted in an immunolocalization pattern indistinguishable from that of wild type DPAP A. Overproduction of DPAP A resulted in its mislocalization to the vacuole, because cells expressing high levels of DPAP A exhibited vacuolar as well as Golgi staining. Deletion of 22 residues of the DPAP A cytoplasmic domain resulted in mislocalization of the mutant protein to the vacuole. Thus, the cytoplasmic domain of DPAP A is both necessary and sufficient for Golgi retention, and removal of the retention signal, or saturation of the retention apparatus by overproducing DPAP A, resulted in transport to the vacuole. Like wild type DPAP B, the delivery of mutant membrane proteins to the vacuole was unaffected in the secretory vesicle-blocked sec1 mutant; thus, transport to the vacuole was not via the plasma membrane followed by endocytosis. These data are consistent with a model in which membrane proteins are delivered to the vacuole along a default pathway.  相似文献   

12.
The cell surface protein repertoire needs to be regulated in response to changes in the extracellular environment. In this study, we investigate protein turnover of the Saccharomyces cerevisiae plasma membrane copper transporter Ctr1p, in response to a change in extra-cellular copper levels. As Ctr1p mediates high affinity uptake of copper into the cell, modulation of its expression is expected to be involved in copper homeostasis. We demonstrate that Ctr1p is a stable protein when cells are grown in low concentrations of copper, but that exposure of cells to high concentrations of copper (10 microM) triggers degradation of cell surface Ctr1p. This degradation appears to be specific for Ctr1p and does not occur with another yeast plasma membrane protein tested. Internalization of some Ctr1p can be seen when cells are exposed to copper. However, yeast mutant strains defective in endocytosis (end3, end4 and chc1-ts) and vacuolar degradation (pep4) exhibit copper-dependent Ctr1p degradation, indicating that internalization and delivery to the vacuole is not the principal mechanism responsible for degradation. In addition, a variant Ctr1p with a deletion in the cytosolic tail is not internalized upon exposure of cells to copper, but is nevertheless degraded. These observations indicate that proteolysis at the plasma membrane most likely explains copper-dependent turnover of Ctr1p and point to the existence of a novel pathway in yeast for plasma membrane protein turnover.  相似文献   

13.
The Vps1 protein of Saccharomyces cerevisiae is an 80-kD GTPase associated with the Golgi apparatus. Vps1p appears to play a direct role in the retention of late Golgi membrane proteins, which are mislocalized to the vacuolar membrane in its absence. The pathway by which late Golgi and vacuolar membrane proteins reach the vacuole in vps1 delta mutants was investigated by analyzing transport of these proteins in vps1 delta cells that also contained temperature sensitive mutations in either the SEC4 or END4 genes, which are required for a late step in secretion and the internalization step of endocytosis, respectively. Not only was vacuolar transport of a Golgi membrane protein blocked in the vps1 delta sec4-ts and vps1 delta end4-ts double mutant cells at the non-permissive temperature but vacuolar delivery of the vacuolar membrane protein, alkaline phosphatase was also blocked in these cells. Moreover, both proteins expressed in the vps1 delta end4- ts cells at the elevated temperature could be detected on the plasma membrane by a protease digestion assay indicating that these proteins are transported to the vacuole via the plasma membrane in vps1 mutant cells. These data strongly suggest that a loss of Vps1p function causes all membrane traffic departing from the late Golgi normally destined for the prevacuolar compartment to instead be diverted to the plasma membrane. We propose a model in which Vps1p is required for formation of vesicles from the late Golgi apparatus that carry vacuolar and Golgi membrane proteins bound for the prevacuolar compartment.  相似文献   

14.
The Fur4p uracil permease, like most yeast plasma membrane proteins, undergoes ubiquitin-dependent endocytosis and is then targeted to the vacuole (equivalent to the mammalian lysosome) for degradation. The cell surface ubiquitination of Fur4p is mediated by the essential Rsp5p ubiquitin ligase. Ubiquitination of Fur4p occurs on two target lysines, which receive two ubiquitin moieties linked through ubiquitin Lys63, a type of linkage (termed UbK63) different from that involved in proteasome recognition. We report that pep4 cells deficient for vacuolar protease activities accumulate vacuolar unubiquitinated Fur4p. In contrast, pep4 cells lacking the Doa4p ubiquitin isopeptidase accumulate ubiquitin-conjugated Fur4p. These data suggest that Fur4p undergoes Doa4p-dependent deubiquitination prior to vacuolar degradation. Compared to pep4 cells, pep4 doa4 cells have huge amounts of membrane-bound ubiquitin conjugates. This indicates that Doa4p plays a general role in the deubiquitination of membrane-bound proteins, as suggested by reports describing the suppression of some doa4 phenotypes in endocytosis and vacuolar protein sorting mutants. Some of the small ubiquitin-linked peptides that are a hallmark of Doa4 deficiency are not present in rsp5 mutant cells or after overproduction of a variant ubiquitin modified at Lys 63 (UbK63R). These data suggest that the corresponding peptides are degradation products of Rsp5p substrates and probably of ubiquitin conjugates carrying UbK63 linkages. Doa4p thus appears to be involved in the deubiquitination of endocytosed plasma membrane proteins, some of them carrying UbK63 linkages.  相似文献   

15.
The Saccharomyces cerevisiae actin-related protein Arp2p is an essential component of the actin cytoskeleton. We have tested its potential role in the endocytic and exocytic pathways by using a temperature-sensitive allele, arp2-1. The fate of the plasma membrane transporter uracil permease was followed to determine whether Arp2p plays a role in the endocytic pathway. Inhibition of normal endocytosis as revealed by maintenance of active uracil permease at the plasma membrane and strong protection against subsequent vacuolar degradation of the protein were observed in the mutant at the restrictive temperature. Furthermore, arp2-1 cells accumulated ubiquitin-permease conjugates, formed prior to internalization. These effects were also visible at permissive temperature, whereas the actin cytoskeleton appeared to be normally polarized. The soluble hydrolase carboxypeptidase Y and the lipophilic dye FM 4-64 were targeted normally to the vacuole in arp2-1 cells. Thus, Arp2p is required for internalization but does not play a major role in later steps of endocytosis. Synthetic lethality was demonstrated between arp2-1 and the endocytic mutant end3-1, suggesting participation of Arp2p and End3p in the same process. Finally, no evidence for a major defect in secretion was apparent; invertase secretion and delivery of uracil permease to the plasma membrane were unaffected in arp2-1 cells.  相似文献   

16.
《The Journal of cell biology》1993,123(6):1707-1716
The role of clathrin in endocytosis of the yeast phermone receptors was examined using strains expressing a temperature-sensitive clathrin heavy chain. The yeast phermone receptors belong to the family of seven transmembrane segment, G-protein-coupled receptors. A rapid and reversible defect in uptake of radiolabeled alpha-factor pheromone occurred when the cells were transferred to the nonpermissive temperature. Constitutive, pheromone-independent internalization of newly synthesized a-factor phermone receptor was also rapidly inhibited in mutant strains at the nonpermissive temperature. In both cases residual endocytosis, 30-50% of wild-type levels, was detected in the absence of functional clathrin heavy chain. Once internalized, the a- factor receptor was delivered to the vacuole at comparable rates in chc1-ts and wild-type cells at the nonpermissive temperature. Clathrin heavy chain was also required for maximal uptake of a mutant a-factor receptor which is dependent on pheromone for internalization. In the presence of a-factor, the internalization rate of the mutant receptor in chc1-ts cells at the nonpermissive temperature was 2.5 times slower than the rate observed for endocytosis of the mutant receptor in wild- type cells. These experiments provide in vivo evidence that clathrin plays an important role in the endocytosis of the seven trans-membrane segment pheromone receptors in yeast.  相似文献   

17.
Ste6p, the a-factor transporter in Saccharomyces cerevisiae, is a multispanning membrane protein with 12 transmembrane spans and two cytosolic ATP binding domains. Ste6p belongs to the ATP binding cassette (ABC) superfamily and provides an excellent model for examining the intracellular trafficking of a complex polytopic membrane protein in yeast. Previous studies have shown that Ste6p undergoes constitutive endocytosis from the plasma membrane, followed by delivery to the vacuole, where it is degraded in a Pep4p-dependent manner, even though only a small portion of Ste6p is exposed to the vacuolar lumen where the Pep4p-dependent proteases reside. Ste6p is known to be ubiquitinated, a modification that may facilitate its endocytosis. In the present study, we further investigated the intracellular trafficking of Ste6p, focusing on the role of the ubiquitin-proteasome machinery in the metabolic degradation of Ste6p. We demonstrate by pulse-chase analysis that the degradation of Ste6p is impaired in mutants that exhibit defects in the activity of the proteasome (doa4 and pre1,2). Likewise, by immunofluorescence, we observe that Ste6p accumulates in the vacuole in the doa4 mutant, as it does in the vacuolar protease-deficient pep4 mutant. One model consistent with our results is that the degradation of Ste6p, the bulk of which is exposed to the cytosol, requires the activity of both the cytosolic proteasomal degradative machinery and the vacuolar lumenal proteases, acting in a synergistic fashion. Alternatively, we discuss a second model whereby the ubiquitin-proteasome system may indirectly influence the Pep4p-dependent vacuolar degradation of Ste6p. This study establishes that Ste6p is distinctive in that two independent degradative systems (the vacuolar Pep4p-dependent proteases and the cytosolic proteasome) are both involved, either directly or indirectly, in the metabolic degradation of a single substrate.  相似文献   

18.
We identified DNM1, a novel dynamin-related gene in Saccharomyces cerevisiae. Molecular and genetic mapping showed that DNM1 is the most proximal gene to the right of centromere 12, and is predicted to encode a protein of 85 kD, designated Dnm1p. The protein exhibits 41% overall identity with full-length dynamin I and 55% identity with the most highly conserved 400-amino acid GTPase region. Our findings show that like mammalian dynamin, Dnm1p participates in endocytosis; however, it is unlikely to be a cognate homologue. Cells with a disruption in the DNM1 gene showed mating response defects consistent with a delay in receptor-mediated endocytosis. The half-life of the Ste3p pheromone receptor was increased two- to threefold in the dnm1 mutant, demonstrating that Dnm1p participates in the constitutive turnover of the receptor. To define the step in the endocytic pathway at which Dnm1p acts, we analyzed mutant strains at both early and late steps of the process. Initial internalization of epitope-tagged pheromone receptor or of labeled pheromone proceeded with wild-type kinetics. However, delivery of the internalized receptor to the vacuole was greatly impeded during ligand-induced endocytosis. These data suggest that during receptor-mediated endocytosis, Dnm1p acts after internalization, but before fusion with the vacuole. The dnm1 mutant was not defective for sorting of vacuolar proteins, indicating that Dnm1p is not required for transport from the late endosome to the vacuole. Therefore, we suggest that Dnm1p participates at a novel step before fusion with the late endosome.  相似文献   

19.
The plasma membrane ATPase, encoded by PMA1, is delivered to the cell surface via the secretory pathway. Previously, we characterized a temperature-sensitive pma1 mutant in which newly synthesized Pma1-7 is not delivered to the plasma membrane but is mislocalized instead to the vacuole at 37 degrees C. Several vps mutants, which are defective in vacuolar protein sorting, suppress targeting-defective pma1 by allowing mutant Pma1 to move once again to the plasma membrane. In this study, we have analyzed trafficking in the endosomal system by monitoring the movement of Pma1-7 in vps36, vps1, and vps8 mutants. Upon induction of expression, mutant Pma1 accumulates in the prevacuolar compartment in vps36 cells. After chase, a fraction of newly synthesized Pma1-7 is delivered to the plasma membrane. In both vps1 and vps8 cells, newly synthesized mutant Pma1 appears in small punctate structures before arrival at the cell surface. Nevertheless, biosynthetic membrane traffic appears to follow different routes in vps8 and vps1: the vacuolar protein-sorting receptor Vps10p is stable in vps8 but not in vps1. Furthermore, a defect in endocytic delivery to the vacuole was revealed in vps8 (and vps36) but not vps1 by endocytosis of the bulk membrane marker FM 4-64. Moreover, in vps8 cells, there is defective down-regulation from the cell surface of the mating receptor Ste3, consistent with persistent receptor recycling from an endosomal compartment to the plasma membrane. These data support a model in which mutant Pma1 is diverted from the Golgi to the surface in vps1 cells. We hypothesize that in vps8 and vps36, in contrast to vps1, mutant Pma1 moves to the surface via endosomal intermediates, implicating an endosome-to-surface traffic pathway.  相似文献   

20.
C R Cowles  W B Snyder  C G Burd    S D Emr 《The EMBO journal》1997,16(10):2769-2782
More than 40 vacuolar protein sorting (vps) mutants have been identified which secrete proenzyme forms of soluble vacuolar hydrolases to the cell surface. A subset of these mutants has been found to show selective defects in the sorting of two vacuolar membrane proteins. Under non-permissive conditions, vps45tsf (SEC1 homolog) and pep12/vps6tsf (endosomal t-SNARE) mutants efficiently sort alkaline phosphatase (ALP) to the vacuole while multiple soluble vacuolar proteins and the membrane protein carboxypeptidase yscS (CPS) are no longer delivered to the vacuole. Vacuolar localization of ALP in these mutants does not require transport to the plasma membrane followed by endocytic uptake, as double mutants of pep12tsf and vps45tsf with sec1 and end3 sort and mature ALP at the non-permissive temperature. Given the demonstrated role of t-SNAREs such as Pep12p in transport vesicle recognition, our results indicate that ALP and CPS are packaged into distinct transport intermediates. Consistent with ALP following an alternative route to the vacuole, isolation of a vps41tsf mutant revealed that at non-permissive temperature ALP is mislocalized while vacuolar delivery of CPS and CPY is maintained. A series of domain-swapping experiments was used to define the sorting signal that directs selective packaging and transport of ALP. Our data demonstrate that the amino-terminal 16 amino acid portion of the ALP cytoplasmic tail domain contains a vacuolar sorting signal which is responsible for the active recognition, packaging and transport of ALP from the Golgi to the vacuole via a novel delivery pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号