首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The aberrant activation of oncogenic pathways promotes tumor progression, but concomitantly elicits compensatory tumor-suppressive responses, such as apoptosis or senescence. For example, Ras induces senescence, while Myc generally triggers apoptosis. Myc is in fact viewed as an anti-senescence oncogene, as it is a potent inducer of cell proliferation and immortalization, bypasses growth-inhibitory signals, and cooperates with Ras in cellular transformation. Recent reports prompt re-evaluation of Myc-induced senescence, and of its role in tumor progression and therapy. We have shown that the cyclin-dependent kinase Cdk2, although redundant for cell cycle progression, has a unique role in suppressing a Myc-induced senescence program: Myc activation elicited expression of p16INK4a and p21Cip1, and caused senescence in cell lacking Cdk2, but not in Cdk2-proficient cells. Additional cellular activities have been identified that suppress Myc-induced senescence, including the Wrn helicase, Telomerase and Miz1. These senescence-suppressing activities were critical for tumor progression, as deficiency in Cdk2, telomerase or Miz1 reduced the onset of Myc-induced lymphoma in transgenic mice. Other gene products like p53, SUV39H1 or TGFß promoted senescence, which together with apoptosis contributed to tumor suppression. Paradoxically, Myc directly counteracted the very same senescence program that it potentially elicits, since it positively regulated Wrn, Telomerase and Cdk2 activity, and Cdk2 inhibition re-activated the latent senescence program in Myc expressing cells. Hence, while these molecules are instrumental to the oncogenic action of Myc, they may simultaneously constitute its Achille's heel for therapeutic development.  相似文献   

5.
6.
7.
The ARF and p53 tumor suppressors mediate Myc-induced apoptosis and suppress lymphoma development in E mu-myc transgenic mice. Here we report that the proapoptotic Bcl-2 family member Bax also mediates apoptosis triggered by Myc and inhibits Myc-induced lymphomagenesis. Bax-deficient primary pre-B cells are resistant to the apoptotic effects of Myc, and Bax loss accelerates lymphoma development in E mu-myc transgenics in a dose-dependent fashion. Eighty percent of lymphomas arising in wild-type E mu-myc transgenics have alterations in the ARF-Mdm2-p53 tumor suppressor pathway characterized by deletions in ARF, mutations or deletions of p53, and overexpression of Mdm2. The absence of Bax did not alter the frequency of biallelic deletion of ARF in lymphomas arising in E mu-myc transgenic mice or the rate of tumorigenesis in ARF-null mice. Furthermore, Mdm2 was overexpressed at the same frequency in lymphomas irrespective of Bax status, suggesting that Bax resides in a pathway separate from ARF and Mdm2. Strikingly, lymphomas from Bax-null E mu-myc transgenics lacked p53 alterations, whereas 27% of the tumors in Bax(+/-) E mu-myc transgenic mice contained p53 mutations or deletions. Thus, the loss of Bax eliminates the selection of p53 mutations and deletions, but not ARF deletions or Mdm2 overexpression, during Myc-induced tumorigenesis, formally demonstrating that Myc-induced apoptotic signals through ARF/Mdm2 and p53 must bifurcate: p53 signals through Bax, whereas this is not necessarily the case for ARF and Mdm2.  相似文献   

8.
Animal models suggest that Bax and Bak play an essential role in the implementation of apoptosis and as a result can hinder tumorigenesis. We analyzed the expression of these proteins in 50 human glioblastoma multiforme (GBM) tumors. We found that all the tumors expressed Bak, while three did not express Bax. In vitro, Bax-deficient GBM (BdGBM) exhibited an important resistance to various apoptogenic stimuli (e.g., UV, staurosporine, and doxorubicin) compared to the Bax-expressing GBM (BeGBM). Using an antisense strategy, we generated Bak(-) BeGBM and Bak(-) BdGBM, which enabled us to show that the remaining sensitivity of the BdGBM to apoptosis was due to the overexpression of Bak. Bax/Bak single or double deficiency had no influence on either the clonogenicity or the growth of tumors in Swiss nude mice. Of note, Bak(-) BeGBM cells were resistant to apoptosis induced by caspase 8 (C8) but not to that induced by granzyme B (GrB). Cells lacking both Bax and Bak (i.e., Bak(-) BdGBM) were completely resistant to all stimuli including the microinjection of C8 and GrB. We show that GrB-cleaved Bid and C8-cleaved Bid differ in size and utilize preferentially Bax and Bak, respectively, to promote cytochrome c release from mitochondria. Our results suggest that Bax deficiency is compensated by an increase of the expression of Bak in GBM and show, for the first time in human cancer, that the double Bax and Bak deficiency severely impairs the apoptotic program.  相似文献   

9.
Zhang W  Wang X  Chen T 《Cellular signalling》2012,24(5):1037-1046
Our recent study have shown that resveratrol (RV), a natural plant polyphenol found in red grape skins as well as other food product, induced apoptosis via the downstream factors, caspase-independent AIF and to lesser extent caspase-9, of intrinsic apoptosis pathway in human lung adenocarcinoma (ASTC-a-1) cells. This report is designed to explore the roles of the upstream mediators of the intrinsic pathway, such as Bak/Bax, Bim, Puma and Noxa, during RV-induced apoptosis in human lung adenocarcinoma (ASTC-a-1 and A549) cell lines. RV treatment remarkably induced the activation of Bak but not Bax, and silencing Bak but not Bax by shRNA almost completely prevented RV-induced cell death, mitochondrial dysfunction and also largely prevented RV-induced AIF release, demonstrating the preferential engagement of Bak but not Bax during RV-induced apoptosis. In addition, although RV treatment induced a significant degradation of Mcl-1, knockdown of Mcl-1 by shRNA only modestly increased RV-induced Bak activation. Interestingly, silencing Bim but not Puma and Noxa remarkably attenuated RV-induced cell death, loss of mitochondrial membrane potential, and Bak activation, suggesting the important roles of Bim. Collectively, our findings for the first time demonstrate that RV induces apoptosis dominantly via a Bak- but not Bax-mediated AIF-dependent mitochondrial apoptotic signaling pathway in which Bim but not Puma and Noxa may supply the force to trigger Bak activation and subsequent apoptosis in both ASTC-a-1 and A549 cell lines.  相似文献   

10.
Inhibition of translation plays a role in apoptosis induced by a variety of stimuli, but the mechanism by which it promotes apoptosis has not been established. We have investigated the hypothesis that selective degradation of anti-apoptotic regulatory protein(s) is responsible for apoptosis resulting from translation inhibition. Induction of apoptosis by cycloheximide was detected within 2-4 h and blocked by proteasome inhibitors, indicating that degradation of short-lived protein(s) was required. Caspase inhibition and overexpression of Bcl-x(L) blocked cycloheximide-induced apoptosis. In addition, cycloheximide induced rapid activation of Bak and Bax, which required proteasome activity. Mcl-1 was degraded by the proteasome with a half-life of approximately 30 min following inhibition of protein synthesis, preceding Bak/Bax activation and the onset of apoptosis. Overexpression of Mcl-1 blocked apoptosis induced by cycloheximide, whereas RNA interference knockdown of Mcl-1 induced apoptosis. Knockdown of Bim and Bak, downstream targets of Mcl-1, inhibited cycloheximide-induced apoptosis, as did knockdown of Bax. Apoptosis resulting from inhibition of translation thus involves the rapid degradation of Mcl-1, leading to activation of Bim, Bak, and Bax. Because of its rapid turnover, Mcl-1 may serve as a convergence point for signals that affect global translation, coupling translation to cell survival and the apoptotic machinery.  相似文献   

11.
We recently reported that Bax activation occurs downstream of caspase activation in Triton X-100 (TX)-induced apoptosis. Here, Bak was found to be activated in TX-induced apoptosis. Although z-VAD-fmk completely suppressed Bax activation, it only partially attenuated TX-induced Bak activation. Moreover, activation of both Bak and Bax was detected in apoptosis induced by deoxycholate, a physiological detergent in bile. z-VAD-fmk completely suppressed deoxycholate-induced Bak as well as Bax activation. Furthermore, Bak siRNA attenuated TX- but not deoxycholate-induced caspase activation. These results suggest that Bak activation may occur upstream of caspase activation in TX- but not deoxycholate-induced apoptosis and that the mechanism of TX-induced apoptosis may differ from that of deoxycholate-induced apoptosis at least with regard to the role for Bak.  相似文献   

12.
Norris KL  Youle RJ 《Journal of virology》2008,82(13):6232-6243
Apoptosis is a host defense mechanism against viruses that can be subverted by viral gene products. Human cytomegalovirus encodes viral mitochondria-localized inhibitor of apoptosis (vMIA; also known as pUL37x1), which is targeted to mitochondria and functions as a potent cell death suppressor by binding to and inhibiting proapoptotic Bcl-2 family members Bax and Bak. vMIA expression also dramatically alters mitochondrial morphology, causing the fragmentation of these organelles. A potential ortholog of vMIA, m38.5, which was identified in murine cytomegalovirus, has been shown to localize to mitochondria and protect against chemically induced apoptosis by unknown mechanisms. Despite sharing negligible homology with vMIA and no region detectably corresponding to the vMIA Bax-binding domain, we find that m38.5, like vMIA, binds to Bax and recruits Bax to mitochondria. Interestingly, m38.5 and vMIA appear to block Bax downstream of translocation to mitochondria and after an initial stage of Bax conformational change. In contrast to vMIA, m38.5 neither binds to Bak nor causes mitochondrial fragmentation. Consistently with Bax-selective inactivation by m38.5, m38.5 fragments mitochondria in Bak knockout (KO) cells and protects Bak KO cells from apoptosis better than Bax KO cells. Thus, vMIA and m38.5 share some, but not all, features of apoptosis regulation through Bcl-2 family interaction and allow the dissection of Bax translocation into discrete steps.  相似文献   

13.
Bcl-w, a prosurvival member of the Bcl-2 family, is essential for spermatogenesis. However, the mechanisms by which Bcl-w participates in the regulation of apoptosis in the testis are largely unknown. To explore the potential role of Bcl-w in the regulation of apoptosis in the testis, the expression of Bcl-w mRNA and protein during testicular development and spermatogenesis, the dimerization with the proapoptosis members of the Bcl-2 family, and the responses to hormonal stimulation in vitro and apoptosis-inducing signals in vivo were investigated. Both Bcl-w mRNA and protein were detected in Sertoli cells, spermatogonia, and spermatocytes, as well as in Leydig cells. The steady-state levels of Bcl-w mRNA and protein were much higher in Sertoli cells than in spermatogonia and spermatocytes. In the adult rat testis, both Bcl-w mRNA and protein in Sertoli cells displayed a stage-specific expression pattern. Bcl-w could form complexes with Bax and Bak but not with Bad. Bax and Bak were immunohistochemically localized to the same cell types as Bcl-w, but with higher expression levels in spermatocytes and spermatogonia than in Sertoli cells. FSH could up-regulate Bcl-w mRNA levels in the seminiferous tubules cultured in vitro, whereas no effect was observed when testosterone was applied. Three animal models that display spermatogonial apoptosis induced by blockade of stem cell factor/c-kit interaction by a function-blocking anti-c-kit antibody, spermatocyte apoptosis induced by methoxyacetic acid, and apoptosis of spermatogonia, spermatocytes, and spermatids induced by testosterone withdrawal after ethylene dimethane sulfonate treatment were employed to check the changes of Bcl-w, Bax, and Bak protein levels during apoptosis of specific germ cells. In all three models, the ratios of Bax/Bcl-w and Bak/Bcl-w were significantly elevated. The present study suggests that Bcl-w is an important prosurvival factor of Sertoli cells, spermatogonia, and spermatocytes and participates in the regulation of apoptosis by binding proapoptotic factors Bax and Bak. The ratios of Bax/Bcl-w and Bak/Bcl-w may be decisive for the survival of Sertoli cells, spermatogonia, and spermatocytes.  相似文献   

14.
The serine/threonine kinase Akt inhibits mitochondrial cytochrome c release and apoptosis induced by a variety of proapoptotic stimuli. The antiapoptotic activity of Akt is coupled, at least in part, to its effects on cellular metabolism. Here, we provide genetic evidence that Akt is required to maintain hexokinase association with mitochondria. Targeted disruption of this association impairs the ability of growth factors and Akt to inhibit cytochrome c release and apoptosis. Targeted disruption of mitochondria-hexokinase (HK) interaction or exposure to proapoptotic stimuli that promote rapid dissociation of hexokinase from mitochondria potently induce cytochrome c release and apoptosis, even in the absence of Bax and Bak. These effects are inhibited by activated Akt, but not by Bcl-2, implying that changes in outer mitochondrial membrane (OMM) permeability leading to apoptosis can occur in the absence of Bax and Bak and that Akt inhibits these changes through maintenance of hexokinase association with mitochondria.  相似文献   

15.
This report is designed to explore the exact molecular mechanism by which artesunate (ART), a semisynthetic derivative of the herbal antimalaria drug artemisinin, induces apoptosis in human lung adenocarcinoma (ASTC‐a‐1 and A549) cell lines. ART treatment induced ROS‐mediated apoptosis in a concentration‐ and time‐dependent fashion accompanying the loss of mitochondrial potential and subsequent release of Smac and AIF indicative of intrinsic apoptosis pathway. Blockage of casapse‐8 and ‐9 did not show any inhibitory effect on the ART‐induced apoptosis, but which was remarkably prevented by silencing AIF. Of the utmost importance, ART treatment induced the activation of Bak but not Bax, and silencing Bak but not Bax remarkably inhibited ART‐induced apoptosis and AIF release. Furthermore, although ART treatment did not induced a significant down‐regulation of voltage‐dependent anion channel 2 (VDAC2) expression and up‐regulation of Bim expression, silencing VDAC2 potently enhanced the ART‐induced Bak activation and apoptosis which were significantly prevented by silencing Bim. Collectively, our data firstly demonstrate that ART induces Bak‐mediated caspase‐independent intrinsic apoptosis in which Bim and VDAC2 as well as AIF play important roles in both ASTC‐a‐1 and A549 cell lines, indicating a potential therapeutic effect of ART for lung cancer. J. Cell. Physiol. 227: 3778–3786, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Although murine embryonic fibroblasts (MEFs) with Bax or Bak deleted displayed no defect in apoptosis signaling, MEFs with Bax and Bak double knock-out (DKO) showed dramatic resistance to diverse apoptotic stimuli, suggesting that Bax and Bak are redundant but essential regulators for apoptosis signaling. Chelerythrine has recently been identified as a Bcl-xL inhibitor that is capable of triggering apoptosis via direct action on mitochondria. Here we report that in contrast to classic apoptotic stimuli, chelerythrine is fully competent in inducing apoptosis in the DKO MEFs. Wild-type and DKO MEFs are equally sensitive to chelerythrine-induced morphological and biochemical changes associated with apoptosis phenotype. Interestingly, chelerythrine-mediated release of cytochrome c is rapid and precedes Bax translocation and integration. Although the BH3 peptide of Bim is totally inactive in releasing cytochrome c from isolated mitochondria of DKO MEFs, chelerythrine maintains its potency and efficacy in inducing direct release of cytochrome c from these mitochondria. Furthermore, chelerythrine-mediated mitochondrial swelling and loss in mitochondrial membrane potential (DeltaPsi(m)) are inhibited by cyclosporine A, suggesting that mitochondrial permeability transition pore is involved in chelerythrine-induced apoptosis. Although certain apoptotic stimuli have been shown to elicit cytotoxic effect in the DKO MEFs through alternate death mechanisms, chelerythrine does not appear to engage necrotic or autophagic death mechanism to trigger cell death in the DKO MEFs. These results, thus, argue for the existence of an alternative Bax/Bak-independent apoptotic mechanism that involves cyclosporine A-sensitive mitochondrial membrane permeability.  相似文献   

17.
Mitochondrial dysfunction mediated by Bax and Bak is a critical step in mammalian cell apoptosis. However, the molecular mechanism of Bax activation remains unknown and has been difficult to investigate due to its rapid and stochastic nature. It is currently unclear whether mitochondria play a passive role in the initiation of apoptosis, remaining unaffected by cell stresses until Bax and Bak are active, or whether they actively participate in Bax/Bak activation. Here, two viral proteins, E1B19K and BHRF1, are examined for their ability to block Bax activation at different steps and thereby reveal the timing of mitochondrial changes during apoptosis. We demonstrate that BHRF1 strongly inhibits Bax activation but not upstream apoptotic signaling events, while E1B19K permits initial stages of Bax activation but prevents the subsequent oligomerization of Bax that is required for mitochondrial dysfunction. In this defined system we show that changes in mitochondrial ultrastructure, characteristic of cells undergoing apoptosis, precede Bax activation and are not blocked by E1B19K and BHRF1. We suggest that the ability of mitochondria to respond to apoptotic stress prior to Bax activation indicates that these organelles may play a direct role in activating Bax.  相似文献   

18.
19.
Myc oncoproteins are commonly activated in malignancies and are sufficient to provoke many types of cancer. However, the critical mechanisms by which Myc contributes to malignant transformation are not clear. DNA damage seems to be an important initiating event in tumorigenesis. Here, we show that although Myc does not directly induce double-stranded DNA breaks, it does augment activation of the Atm/p53 DNA damage response pathway, suggesting that Atm may function as a guardian against Myc-induced transformation. Indeed, we show that Atm loss augments Myc-induced lymphomagenesis and impairs Myc-induced apoptosis, which normally harnesses Myc-driven tumorigenesis. Surprisingly, Atm loss also augments the proliferative response induced by Myc, and this augmentation is associated with enhanced suppression of the expression of the cyclin-dependent kinase inhibitor p27(Kip1). Therefore, regulation of cell proliferation and p27(Kip1) seems to be a contributing mechanism by which Atm holds tumor formation in check.  相似文献   

20.
Adenovirus infection and expression of E1A induces both proliferation and apoptosis, the latter of which is blocked by the adenovirus Bcl-2 homologue E1B 19K. The mechanism of apoptosis induction and the role that it plays in productive infection are not known. Unlike apoptosis mediated by death receptors, infection with proapoptotic E1B 19K mutant viruses did not induce cleavage of Bid but nonetheless induced changes in Bak and Bax conformation, Bak-Bax interaction, caspase 9 and 3 activation, and apoptosis. In wild-type-adenovirus-infected cells, in which E1B 19K inhibits apoptosis, E1B 19K was bound to Bak, precluding Bak-Bax interaction and changes in Bax conformation. Infection with E1B 19K mutant viruses induced apoptosis in wild-type and Bax- or Bak-deficient baby mouse kidney cells but not in those deficient for both Bax and Bak. Furthermore, Bax and Bak deficiency dramatically increased E1A expression and virus replication. Thus, Bax- and Bak-mediated apoptosis severely limits adenoviral replication, demonstrating that Bax and Bak function as an antiviral response at the cellular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号