首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polycyclic aromatic hydrocarbon (PAH)-degrading bacteria were isolated from contaminated estuarine sediment and salt marsh rhizosphere by enrichment using either naphthalene, phenanthrene, or biphenyl as the sole source of carbon and energy. Pasteurization of samples prior to enrichment resulted in isolation of gram-positive, spore-forming bacteria. The isolates were characterized using a variety of phenotypic, morphologic, and molecular properties. Identification of the isolates based on their fatty acid profiles and partial 16S rRNA gene sequences assigned them to three main bacterial groups: gram-negative pseudomonads; gram-positive, non-spore-forming nocardioforms; and the gram-positive, spore-forming group, Paenibacillus. Genomic digest patterns of all isolates were used to determine unique isolates, and representatives from each bacterial group were chosen for further investigation. Southern hybridization was performed using genes for PAH degradation from Pseudomonas putida NCIB 9816-4, Comamonas testosteroni GZ42, Sphingomonas yanoikuyae B1, and Mycobacterium sp. strain PY01. None of the isolates from the three groups showed homology to the B1 genes, only two nocardioform isolates showed homology to the PY01 genes, and only members of the pseudomonad group showed homology to the NCIB 9816-4 or GZ42 probes. The Paenibacillus isolates showed no homology to any of the tested gene probes, indicating the possibility of novel genes for PAH degradation. Pure culture substrate utilization experiments using several selected isolates from each of the three groups showed that the phenanthrene-enriched isolates are able to utilize a greater number of PAHs than are the naphthalene-enriched isolates. Inoculating two of the gram-positive isolates to a marine sediment slurry spiked with a mixture of PAHs (naphthalene, fluorene, phenanthrene, and pyrene) and biphenyl resulted in rapid transformation of pyrene, in addition to the two- and three-ringed PAHs and biphenyl. This study indicates that the rhizosphere of salt marsh plants contains a diverse population of PAH-degrading bacteria, and the use of plant-associated microorganisms has the potential for bioremediation of contaminated sediments.  相似文献   

2.
Y Yang  R F Chen    M P Shiaris 《Journal of bacteriology》1994,176(8):2158-2164
A modified cloning procedure was used to obtain large DNA insertions (20 to 30 kb) from Pseudomonas putida NCIB 9816 that expressed polycyclic aromatic hydrocarbon (PAH) transformation activity in Escherichia coli HB101. Four subclones (16 [in both orientations], 12, and 8.5 kb in size) were constructed from the initial clones. Naphthalene, fluorene, and phenanthrene transformations were investigated in these eight NCIB 9816 clones by a simple agar plate assay method, which was developed to detect and identify potential PAH metabolites. Results indicated that the necessary genes encoding the initial ring fission of the three PAHs in E. coli cells are located in an 8.5-kb EcoRI-XhoI portion, but the lower-pathway genes are not present in a 38-kb neighborhood region. These NCIB 9816 clones could transform naphthalene and phenanthrene to salicylic acid and 1-hydroxy-2-naphthoic acid, respectively. With the same clones, fluorene was degraded to 9-hydroxyfluorene, 9-fluorenone, and two unidentified compounds. Genetic similarity between the NAH7 upper-pathway genes and the cloned NCIB 9816 genes was confirmed by Southern blot DNA-DNA hybridization. In spite of this genetic similarity, the abilities of the two clusters to transform multiple PAHs were different. Under our experimental conditions, only the metabolites from naphthalene transformation by the NAH7 clone (pE317) were detected, whereas the NCIB 9816 clones produced metabolites from all three PAHs.  相似文献   

3.
Naphthalene and phenanthrene have long been used as model compounds to investigate the ability of bacteria to degrade polycyclic aromatic hydrocarbons. The catabolic pathways have been determined, several of the enzymes have been purified to homogeneity, and genes have been cloned and sequenced. However, the majority of this work has been performed with fast growing Pseudomonas strains related to the archetypal naphthalene-degrading P. putida strains G7 and NCIB 9816-4. Recently Comamonas testosteroni strains able to degrade naphthalene and phenanthrene have been isolated and shown to possess genes for polycyclic aromatic hydrocarbon degradation that are different from the canonical genes found in Pseudomonas species. For instance, C. testosteroni GZ39 has genes for naphthalene and phenanthrene degradation which are not only different from those found in Pseudomonas species but are also arranged in a different configuration. C. testosteroni GZ42, on the other hand, has genes for naphthalene and phenanthrene degradation which are arranged almost the same as those found in Pseudomonas species but show significant divergence in their sequences. Received 10 August 1997/ Accepted in revised form 15 August 1997  相似文献   

4.
Cycloclasticus sp. strain A5 is able to grow with petroleum polycyclic aromatic hydrocarbons (PAHs), including unsubstituted and substituted naphthalenes, dibenzothiophenes, phenanthrenes, and fluorenes. A set of genes responsible for the degradation of petroleum PAHs was isolated by using the ability of the organism to oxidize indole to indigo. This 10.5-kb DNA fragment was sequenced and found to contain 10 open reading frames (ORFs). Seven ORFs showed homology to previously characterized genes for PAH degradation and were designated phn genes, although the sequence and order of these phn genes were significantly different from the sequence and order of the known PAH-degrading genes. The phnA1, phnA2, phnA3, and phnA4 genes, which encode the α and β subunits of an iron-sulfur protein, a ferredoxin, and a ferredoxin reductase, respectively, were identified as the genes coding for PAH dioxygenase. The phnA4A3 gene cluster was located 3.7 kb downstream of the phnA2 gene. PhnA1 and PhnA2 exhibited moderate (less than 62%) sequence identity to the α and β subunits of other aromatic ring-hydroxylating dioxygenases, but motifs such as the Fe(II)-binding site and the [2Fe-2S] cluster ligands were conserved. Escherichia coli cells possessing the phnA1A2A3A4 genes were able to convert phenanthrene, naphthalene, and methylnaphthalene in addition to the tricyclic heterocycles dibenzofuran and dibenzothiophene to their hydroxylated forms. Significantly, the E. coli cells also transformed biphenyl and diphenylmethane, which are ordinarily the substrates of biphenyl dioxygenases.  相似文献   

5.
Abstract Naphthalene 1,2-dioxygenase from Pseudomonas sp. NCIB 9816-4 and biphenyl dioxygenase from Beijerinckia sp. B8/36 oxidized the aromatic N-heterocycle carbazole to 3-hydroxycarbazole. Toluene dioxygenase from Pseudomonas putida F39/D did not oxidize carbazole. Transformations were carried out by mutant strains which oxidize naphthalene and biphenyl to cis -dihydrodiols, and with a recombinant E. coli strain expressing the structural genes of naphthalene 1,2-dioxygenase from Pseudomonas sp. NCIB 9816-4. 3-Hydroxycarbazole is presumed to result from the dehydration of an unstable cis -dihydrodiol.  相似文献   

6.
Phenanthrene-degrading bacteria were isolated from a 1-m2 intertidal sediment site in Boston Harbor. Samples were taken six times over 2 years. A total of 432 bacteria were isolated and characterized by biochemical testing. When clustered on the basis of phenotypic characteristics, the isolates could be separated into 68 groups at a similarity level of approximately 70%. Several groups (a total of 200 isolates) corresponded to well-characterized species belonging the genera Vibrio and Pseudomonas. Only 51 of the 437 isolates (<11.7% of the total) hybridized to a DNA probe that encodes the upper pathway of naphthalene and phenanthrene degradation in Pseudomonas putida NCIB 9816. A cluster analysis indicated that the species composition of the phenanthrene-degrading community changed significantly from sampling date to sampling date. At one sampling time, 12 6-mm-diameter core subsamples were taken within the 1-m2 site to determine the spatial variability of the degrading communities. An analysis of molecular variance, performed with the phenotypic characteristics, indicated that only 6% of the variation occurred among the 12 subsamples, suggesting that the subsamples were almost identical in composition. We concluded that the communities of phenanthrene-degrading bacteria in the sediments are very diverse, that the community structure undergoes significant change with time but does not vary significantly on a spatial scale of centimeters, and that the predominant genes that encode phenanthrene degradation in the communities are not well-characterized.  相似文献   

7.
《Gene》1988,73(2):355-362
We have cloned the naphthalene dioxygenase(ND)-coding genes from Pseudomonas putida strain NCIB9816 based on their ability to convert indole to indigo. The region coding for this enzyme activity was sequenced and three successive open reading frames were found. The corresponding gene products were identified using the T7 polymerase/promoter system. All of them are necessary for the ND activity. A comparison of the ND-coding genes with the ones coding for benzene dioxygenase revealed significant homology which was more pronounced at the nucleotide level than at the amino acid level.  相似文献   

8.
Phenanthrene- and naphthalene-degrading bacteria were isolated from four offshore and nearshore locations in the Gulf of Mexico by using a modified most-probable-number technique. The concentrations of these bacteria ranged from 102 to 106 cells per ml of wet surficial sediment in mildly contaminated and noncontaminated sediments. A total of 23 strains of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria were obtained. Based on partial 16S ribosomal DNA sequences and phenotypic characteristics, these 23 strains are members of the genus Cycloclasticus. Three representatives were chosen for a complete phylogenetic analysis, which confirmed the close relationship of these isolates to type strain Cycloclasticus pugetii PS-1, which was isolated from Puget Sound. PAH substrate utilization tests which included high-molecular-weight PAHs revealed that these isolates had similar, broad substrate ranges which included naphthalene, substituted naphthalenes, phenanthrene, biphenyl, anthracene, acenaphthene, and fluorene. Degradation of pyrene and fluoranthene occurred only when the strains were incubated with phenanthrene. Two distinct partial PAH dioxygenase iron sulfur protein (ISP) gene sequences were PCR amplified from Puget Sound and Gulf of Mexico Cycloclasticus strains. Phylogenetic analyses of these sequences revealed that one ISP type is related to the bph type of ISP sequences, while the other ISP type is related to the nah type of ISP sequences. The predicted ISP amino acid sequences for the Gulf of Mexico and Puget Sound strains are identical, which supports the hypothesis that these geographically separated isolates are closely related phylogentically. Cycloclasticus species appear to be numerically important and widespread PAH-degrading bacteria in both Puget Sound and the Gulf of Mexico.  相似文献   

9.
The goal of these studies was to determine how sorption by humic acids affected the bioavailability of polynuclear aromatic hydrocarbons (PAHs) to PAH-degrading microbes. Micellar solutions of humic acid were used as sorbents, and phenanthrene was used as a model PAH. Enrichments from PAH-contaminated soils established with nonsorbed phenanthrene yielded a total of 25 different isolates representing a diversity of bacterial phylotypes. In contrast, only three strains of Burkholderia spp. and one strain each of Delftia sp. and Sphingomonas sp. were isolated from enrichments with humic acid-sorbed phenanthrene (HASP). Using [14C]phenanthrene as a radiotracer, we verified that only HASP isolates were capable of mineralizing HASP, a phenotype hence termed “competence.” Competence was an all-or-nothing phenotype: noncompetent strains showed no detectable phenanthrene mineralization in HASP cultures, but levels of phenanthrene mineralization effected by competent strains in HASP and NSP cultures were not significantly different. Levels and rates of phenanthrene mineralization exceeded those predicted to be supported solely by the metabolism of phenanthrene in the aqueous phase of HASP cultures. Thus, competent strains were able to directly access phenanthrene sorbed by the humic acids and did not rely on desorption for substrate uptake. To the best of our knowledge, this is the first report of (i) a selective interaction between aerobic bacteria and humic acid molecules and (ii) differential bioavailability to bacteria of PAHs sorbed to a natural biogeopolymer.  相似文献   

10.
Despite the considerable knowledge of bacterial high-molecular-weight (HMW) polycyclic aromatic hydrocarbon (PAH) metabolism, the key enzyme(s) and its pleiotropic and epistatic behavior(s) responsible for low-molecular-weight (LMW) PAHs in HMW PAH-metabolic networks remain poorly understood. In this study, a phenotype-based strategy, coupled with a spray plate method, selected a Mycobacterium vanbaalenii PYR-1 mutant (6G11) that degrades HMW PAHs but not LMW PAHs. Sequence analysis determined that the mutant was defective in pdoA2, encoding an aromatic ring-hydroxylating oxygenase (RHO). A series of metabolic comparisons using high-performance liquid chromatography (HPLC) analysis revealed that the mutant had a lower rate of degradation of fluorene, anthracene, and pyrene. Unlike the wild type, the mutant did not produce a color change in culture media containing fluorene, phenanthrene, and fluoranthene. An Escherichia coli expression experiment confirmed the ability of the Pdo system to oxidize biphenyl, the LMW PAHs naphthalene, phenanthrene, anthracene, and fluorene, and the HMW PAHs pyrene, fluoranthene, and benzo[a]pyrene, with the highest enzymatic activity directed toward three-ring PAHs. Structure analysis and PAH substrate docking simulations of the Pdo substrate-binding pocket rationalized the experimentally observed metabolic versatility on a molecular scale. Using information obtained in this study and from previous work, we constructed an RHO-centric functional map, allowing pleiotropic and epistatic enzymatic explanation of PAH metabolism. Taking the findings together, the Pdo system is an RHO system with the pleiotropic responsibility of LMW PAH-centric hydroxylation, and its epistatic functional contribution is also crucial for the metabolic quality and quantity of the PAH-MN.  相似文献   

11.
Sphingobium yanoikuyae B1 utilizes both polycyclic aromatic hydrocarbons (biphenyl, naphthalene, and phenanthrene) and monocyclic aromatic hydrocarbons (toluene, m- and p-xylene) as its sole source of carbon and energy for growth. The majority of the genes for these intertwined monocyclic and polycyclic aromatic pathways are grouped together on a 39 kb fragment of chromosomal DNA. However, this gene cluster is missing several genes encoding essential enzymatic steps in the aromatic degradation pathway, most notably the genes encoding the oxygenase component of the initial polycyclic aromatic hydrocarbon (PAH) dioxygenase. Transposon mutagenesis of strain B1 yielded a mutant blocked in the initial oxidation of PAHs. The transposon insertion point was sequenced and a partial gene sequence encoding an oxygenase component of a putative PAH dioxygenase identified. A cosmid clone from a genomic library of S. yanoikuyae B1 was identified which contains the complete putative PAH oxygenase gene sequence. Separate clones expressing the genes encoding the electron transport components (ferredoxin and reductase) and the PAH dioxygenase were constructed. Incubation of cells expressing the dioxygenase enzyme system with biphenyl or naphthalene resulted in production of the corresponding cis-dihydrodiol confirming PAH dioxygenase activity. This demonstrates that a single multicomponent dioxygenase enzyme is involved in the initial oxidation of both biphenyl and naphthalene in S. yanoikuyae B1.  相似文献   

12.
Cycloclasticus sp. strain A5 is able to grow with petroleum polycyclic aromatic hydrocarbons (PAHs), including unsubstituted and substituted naphthalenes, dibenzothiophenes, phenanthrenes, and fluorenes. A set of genes responsible for the degradation of petroleum PAHs was isolated by using the ability of the organism to oxidize indole to indigo. This 10.5-kb DNA fragment was sequenced and found to contain 10 open reading frames (ORFs). Seven ORFs showed homology to previously characterized genes for PAH degradation and were designated phn genes, although the sequence and order of these phn genes were significantly different from the sequence and order of the known PAH-degrading genes. The phnA1, phnA2, phnA3, and phnA4 genes, which encode the alpha and beta subunits of an iron-sulfur protein, a ferredoxin, and a ferredoxin reductase, respectively, were identified as the genes coding for PAH dioxygenase. The phnA4A3 gene cluster was located 3.7 kb downstream of the phnA2 gene. PhnA1 and PhnA2 exhibited moderate (less than 62%) sequence identity to the alpha and beta subunits of other aromatic ring-hydroxylating dioxygenases, but motifs such as the Fe(II)-binding site and the [2Fe-2S] cluster ligands were conserved. Escherichia coli cells possessing the phnA1A2A3A4 genes were able to convert phenanthrene, naphthalene, and methylnaphthalene in addition to the tricyclic heterocycles dibenzofuran and dibenzothiophene to their hydroxylated forms. Significantly, the E. coli cells also transformed biphenyl and diphenylmethane, which are ordinarily the substrates of biphenyl dioxygenases.  相似文献   

13.
14.
Experiments were carried out to develop methods to generate well-characterized, polycyclic aromatic hydrocarbon (PAH)-spiked, aged but minimally altered sediments for fate, biodegradation, and bioavailability experiments. Changes in indigenous bacterial populations were monitored in mesocosms constructed of relatively clean San Diego Bay sediments, with and without exposure to gamma radiation, and then spiked with five different PAHs and hexadecane. While phenanthrene and chrysene degraders were present in the unspiked sediments and increased during handling, PAH spiking of nonirradiated sediments led to dramatic increases in their numbers. Phenotypic characterization of isolates able to grow on phenanthrene or chrysene placed them in several genera of marine bacteria: Vibrio, Marinobacter or Cycloclasticus, Pseudoalteromonas, Marinomonas, and Halomonas. This is the first time that marine PAH degraders have been identified as the latter two genera, expanding the diversity of marine bacteria with this ability. Even at the highest irradiation dose (10 megarads), heterotrophs and endospore formers reappeared within weeks. However, while bacteria from the unirradiated sediments had the capacity to both grow on and mineralize 14C-labeled phenanthrene and chrysene, irradiation prevented the reappearance of PAH degraders for up to 4 months, allowing spikes to age onto the sediments, which can be used to model biodegradation in marine sediments.  相似文献   

15.
Dredged harbor sediment contaminated with polycyclic aromatic hydrocarbons (PAHs) was removed from the Milwaukee Confined Disposal Facility and examined for in situ biodegradative capacity. Molecular techniques were used to determine the successional characteristics of the indigenous microbiota during a 4-month bioslurry evaluation. Ester-linked phospholipid fatty acids (PLFA), multiplex PCR of targeted genes, and radiorespirometry techniques were used to define in situ microbial phenotypic, genotypic, and metabolic responses, respectively. Soxhlet extractions revealed a loss in total PAH concentrations of 52%. Individual PAHs showed reductions as great as 75% (i.e., acenapthene and fluorene). Rates of 14C-PAH mineralization (percent/day) were greatest for phenanthrene, followed by pyrene and then chrysene. There was no mineralization capacity for benzo[a]pyrene. Ester-linked phospholipid fatty acid analysis revealed a threefold increase in total microbial biomass and a dynamic microbial community composition that showed a strong correlation with observed changes in the PAH chemistry (canonical r2 of 0.999). Nucleic acid analyses showed copies of genes encoding PAH-degrading enzymes (extradiol dioxygenases, hydroxylases, and meta-cleavage enzymes) to increase by as much as 4 orders of magnitude. Shifts in gene copy numbers showed strong correlations with shifts in specific subsets of the extant microbial community. Specifically, declines in the concentrations of three-ring PAH moieties (i.e., phenanthrene) correlated with PLFA indicative of certain gram-negative bacteria (i.e., Rhodococcus spp. and/or actinomycetes) and genes encoding for naphthalene-, biphenyl-, and catechol-2,3-dioxygenase degradative enzymes. The results of this study suggest that the intrinsic biodegradative potential of an environmental site can be derived from the polyphasic characterization of the in situ microbial community.  相似文献   

16.
The biotransformation of the polycyclic aromatic hydrocarbons (PAHs) naphthalene and phenanthrene was investigated by using two dioxygenase-expressing bacteria, Pseudomonas sp. strain 9816/11 and Sphingomonas yanoikuyae B8/36, under conditions which facilitate mass-transfer limited substrate oxidation. Both of these strains are mutants that accumulate cis-dihydrodiol metabolites under the reaction conditions used. The effects of the nonpolar solvent 2,2,4, 4,6,8,8-heptamethylnonane (HMN) and the nonionic surfactant Triton X-100 on the rate of accumulation of these metabolites were determined. HMN increased the rate of accumulation of metabolites for both microorganisms, with both substrates. The enhancement effect was most noticeable with phenanthrene, which has a lower aqueous solubility than naphthalene. Triton X-100 increased the rate of oxidation of the PAHs with strain 9816/11 with the effect being most noticeable when phenanthrene was used as a substrate. However, the surfactant inhibited the biotransformation of both naphthalene and phenanthrene with strain B8/36 under the same conditions. The observation that a nonionic surfactant could have such contrasting effects on PAH oxidation by different bacteria, which are known to be important for the degradation of these compounds in the environment, may explain why previous research on the application of the surfactants to PAH bioremediation has yielded inconclusive results. The surfactant inhibited growth of the wild-type strain S. yanoikuyae B1 on aromatic compounds but did not inhibit B8/36 dioxygenase enzyme activity in vitro.  相似文献   

17.
Ring-hydroxylating dioxygenases (RHDs) play a crucial role in the biodegradation of a range of aromatic hydrocarbons found on polluted sites, including polycyclic aromatic hydrocarbons (PAHs). Current knowledge on RHDs comes essentially from studies on culturable bacterial strains, while compelling evidence indicates that pollutant removal is mostly achieved by uncultured species. In this study, a combination of DNA-SIP labeling and metagenomic sequence analysis was implemented to investigate the metabolic potential of main PAH degraders on a polluted site. Following in situ labeling using [13C]phenanthrene, the labeled metagenomic DNA was isolated from soil and subjected to shotgun sequencing. Most annotated sequences were predicted to belong to Betaproteobacteria, especially Rhodocyclaceae and Burkholderiales, which is consistent with previous findings showing that main PAH degraders on this site were affiliated to these taxa. Based on metagenomic data, four RHD gene sets were amplified and cloned from soil DNA. For each set, PCR yielded multiple amplicons with sequences differing by up to 321 nucleotides (17%), reflecting the great genetic diversity prevailing in soil. RHDs were successfully overexpressed in Escherichia coli, but full activity required the coexpression of two electron carrier genes, also cloned from soil DNA. Remarkably, two RHDs exhibited much higher activity when associated with electron carriers from a sphingomonad. The four RHDs showed markedly different preferences for two- and three-ring PAHs but were poorly active on four-ring PAHs. Three RHDs preferentially hydroxylated phenanthrene on the C-1 and C-2 positions rather than on the C-3 and C-4 positions, suggesting that degradation occurred through an alternate pathway.  相似文献   

18.
A Pseudomonas isolate, designated PAHAs-1, was found capable of reducing arsenate and degrading polycyclic aromatic hydrocarbons (PAHs) independently and simultaneously. This isolate completely reduced 1.5 mM arsenate within 48 h and removed approximately 100% and 50% of 60 mg l−1 phenanthrene and 20 mg l−1 pyrene within 60 h, respectively. Using PAHs as the sole carbon source, however, this isolate showed a slow arsenate reduction rate (4.62 μM h−1). The presence of arsenic affected cell growth and concurrent PAHs removal, depending on PAH species and arsenic concentration. Adding sodium lactate to the medium greatly enhanced the arsenate reduction and pyrene metabolism. The presence of the alpha subunit of the aromatic ring-hydroxylating dioxygenase (ARHD) gene, arsenate reductase (arsC) and arsenite transporter (ACR3(2)) genes supported the dual function of the isolate. The finding of latter two genes indicated that PAHAs-1 possibly reduced arsenate via the known detoxification mechanism. Preliminary data from hydroponic experiment showed that PAHAs-1 degraded the majority of phenanthrene (>60%) and enhanced arsenic uptake by Pteris vittata L. (from 246.7 to 1187.4 mg kg−1 As in the fronds). The versatile isolate PAHAs-1 may have potentials in improving the bioremediation of PAHs and arsenic co-contamination using the plant-microbe integrated strategy.  相似文献   

19.
The mechanism of transport of polycyclic aromatic hydrocarbons (PAHs) by Pseudomonas fluorescens LP6a, a PAH-degrading bacterium, was studied by inhibiting membrane transport and measuring the resulting change in cellular uptake. Three cultures were used: wild-type LP6a which carried a plasmid for PAH degradation, a transposon mutant lacking the first enzyme in the pathway for PAH degradation, and a cured strain without the plasmid. Washed cells were mixed with aqueous solutions of radiolabelled PAH; then the cells were removed by centrifugation, and the concentrations of PAH in the supernatant and the cell pellet were measured. The change in the pellet and supernatant concentrations after inhibitors of membrane transport (azide, cyanide, or carbonyl cyanide m-chlorophenyl hydrazone) were added indicated the role of active transport. The data were consistent with the presence of two conflicting transport mechanisms: uptake by passive diffusion and an energy-driven efflux system to transport PAHs out of the cell. The efflux mechanism was chromosomally encoded. Under the test conditions used, neither uptake nor efflux of phenanthrene by P. fluorescens LP6a was saturated. The efflux mechanism showed selectivity since phenanthrene, anthracene, and fluoranthene were transported out of the cell but naphthalene was not.  相似文献   

20.
Mycobacterium sp. strain CH1 was isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated freshwater sediments and identified by analysis of 16S rDNA sequences. Strain CH1 was capable of mineralizing three- and four-ring PAHs including phenanthrene, pyrene, and fluoranthene. In addition, strain CH1 could utilize phenanthrene or pyrene as a sole carbon and energy source. A lag phase of at least 3 days was observed during pyrene mineralization. This lag phase decreased to less than 1 day when strain CH1 was grown in the presence of phenanthrene or fluoranthene. Strain CH1 also was capable of using a wide range of alkanes as sole carbon and energy sources. No DNA hybridization was detected with the nahAc gene probe, indicating that enzymes involved in PAH metabolism are not related to the well-characterized naphthalene dioxygenase gene. DNA hybridization was not detected when the alkB gene from Pseudomonas oleovorans was used under high-stringency conditions. However, there was slight but detectable hybridization under low-stringency conditions. This suggests a distant relationship between genes involved in alkane oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号