首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In primary cultures of rat hepatocytes, prostaglandin E2 and prostaglandin D2 (PGE2 and PGD2) inhibited the secretion of very low density lipoprotein (VLDL)-associated apoB, triacylglycerol, and cholesterol. These effects were concentration-dependent and remained apparent for at least 3 days of culture without an effect on the apoB/triacylglycerol ratio of the secreted VLDL. Prostaglandins had no effect on the overall synthesis of triacylglycerol but triacylglycerol accumulated within the cells, without intracellular accumulation of apoB. PGE2, when added to the medium together with glucagon, increased the inhibition of VLDL secretion, compared to that observed with glucagon alone. However, PGE2 did not increase the stimulatory effect of glucagon on ketogenesis. Unlike glucagon, the prostaglandins did not inhibit fatty acid synthesis nor did they stimulate ketogenesis or production of cAMP. Thus, of all the parameters of hepatic lipid metabolism studied, PGE2 and PGD2 selectively affected VLDL. Selective inhibition of VLDL secretion was also observed with the calcium antagonist verapamil. The divalent cation ionophore A23187 also inhibited VLDL release but, in contrast, also inhibited fatty acid and cholesterol synthesis. The results suggest that VLDL secretion is modulated at some optimal cell calcium concentration that may be mediated selectively by agents such as prostaglandins.  相似文献   

2.
Prostaglandins (PGs) are known to have effects on hepatic glucose metabolism. Some actions of PGs in intact liver systems may not involve PG effects directly at the level of the hepatocyte. To define the ability of structurally distinct prostaglandins to affect hepatocyte metabolism directly, the regulation of glycogenolysis was studied in hepatocytes isolated from male Sprague-Dawley rats. PGF and PGB2 inhibited glucagon-stimulated glycogenolysis in the hepatocyte system. Pinane thromboxane A2 (PTA2) and PGD2 had no effect on glucagon-stimulated glycogenolysis. Consistent with their inhibition of glucagon-stimulated glycogenolysis, PGF2 and PGF2 alpha inhibited glucagon-stimulated hepatocyte cyclic AMP accumulation. These actions of PGB2 and PGF2 alpha are identical with those previously reported for PGE2. Additionally, PGE2, PGF2 alpha and PGB2 inhibited glucagon-stimulated adenylate cyclase activity in purified hepatic plasma membranes. In contrast, PGF2 alpha, PGD2 and PTA2 were all without affect on basal rates of hepatocyte glycogenolysis or hepatocyte cyclic AMP content. PGE2 also inhibited glycogenolysis stimulated by the alpha-adrenergic agonist phenylephrine. Exogenous arachidonic acid was not able to reproduce the affects of PGE2 or PGF2 alpha on hepatocyte glycogenolysis, consistent with an extra-hepatocyte source of the prostaglandins in the intact liver. Thus PGE2 and PGF2 alpha act specifically to inhibit glucagon-stimulated adenylate cyclase activity. No prostaglandin tested was found to stimulate glycogenolysis. PGE2 and PGF2 alpha may represent intra-hepatic modulators of hepatocyte glucose metabolism.  相似文献   

3.
Zonation affects liver parenchymal cell function and metabolism as well as nonparenchymal cell activation, but whether VLDL production is zonated has yet to be elucidated. Infection induces enhanced VLDL secretion by the liver. Ex vivo studies were undertaken to examine the liver heterogeneity for VLDL formation and secretion and their in vivo response to endotoxin. Highly pure periportal (PP) and perivenous (PV) hepatocytes were isolated from fasted lipopolysaccharide-treated, fasted, and fed rats. They were used to assess their capacity to release VLDL-apolipoprotein B (apoB) and lipid classes in relation to de novo lipid synthesis and the expression of genes crucial to VLDL production. Despite the common superior ability of PP hepatocytes for lipid release and zonal differences in lipid synthesis, zonated secretion of VLDL particles was observed in septic but not in normal fed or fasted livers. The endotoxin-induced apoB secretion was more accentuated in PP hepatocytes; this was accompanied by a preferential PP increase in apoB and microsomal triglyceride transfer protein mRNA levels, whereas lipogenesis indicators were, if anything, similarly modified in hepatocytes of either acinar origin. We conclude that PP and PV hepatocytes exhibited similar capabilities for VLDL formation/secretion in normal conditions; however, the endotoxic pressure did zonate periportally.  相似文献   

4.
The role of prostaglandins (PGs) in liver injury induced by D-galactosamine was investigated in the rat. The contents of PGD2 and PGF2 alpha in the liver were significantly increased from 3 h and 24 h after the D-galactosamine administration, respectively, but that of PGE2 was not significantly changed. Administration of 16,16-dimethyl PGE2, a long acting derivative of PGE2, or indomethacin, but not 16,16-dimethyl PGF2 alpha, a long acting derivative of PGF2 alpha, significantly depressed the increase in the serum transaminase activities induced by D-galactosamine. The protective effect of indomethacin was not disturbed by the 16, 16-dimethyl PGF2 alpha administration. These results indicate that PGE2 has a cytoprotective effect against the D-galactosamine induced liver injury and suggest that the protective effect of indomethacin is ascribable to its suppression of synthesis of PGs other than PGE2 or PGF2 alpha, e.g., PGD2.  相似文献   

5.
Plasma VLDL accumulation in Gram-negative sepsis is partly ascribed to an increased hepatic VLDL production driven by pro-inflammatory cytokines. We previously showed that hepatocytes of the Kupffer cell (KC)-rich periportal area are major contributors to enhanced VLDL production in lipopolysaccharide (LPS)-injected rats. However, it remains to be established whether KC generated products directly affect the number (apoB) and composition of secreted VLDL. Using rat primary cells, we show here that hepatocytes respond to stimulation by soluble mediators released by LPS-stimulated Kupffer cells with enhanced secretion of apoB and triglycerides in phospholipid-rich VLDL particles. Unstimulated KC products also augmented the secretion of normal VLDL, doubling apoB mRNA abundance. IL-1beta treatment resulted in concentration-dependent increases of hepatocyte apoB mRNA and protein secretion, increases that were greater, but not additive, when combined with IL-6 and TNF-alpha. Lipid secretion and MTP mRNA levels were unaffected by cytokines. In summary: (i) enhanced secretion of phospholipid-rich VLDL particles is a net hepatocyte response to LPS-stimulated KC products, which gives a clue about the local role of Kupffer cells in septic dyslipidemia induction; and (ii) pro-inflammatory cytokines act redundantly to enhance apoB secretion involving translational apoB up-regulation, but other humoral components or KC mediators are necessary to accomplish increased lipid association.  相似文献   

6.
The effects of several prostaglandins on the proliferation of secondary cultures of osteoblast-like cells, as measured by the incorporation of [3H]-thymidine into DNA and total DNA content of the cultures, were studied. PGE2 in the concentration range of 10(-8) to 10(-5) M caused a direct, dose-related stimulation of proliferation, while PGF2 alpha and PGD2 were less effective. PGA2 and 6-keto-PGF1 alpha were inactive in the osteoblasts in concentrations of 10(-7) to 10(-6) M. A similar stimulation profile was observed for the induction of ornithine decarboxylase (ODC, L-ornithine decarboxy-lyase, EC 4.1.1.17): the order of potency of the different prostaglandins in the induction of the ODC activity was PGE2 greater than PGF2 alpha = PGD2; again, PGA2 and 6-keto-PGF1 alpha were without effect in concentrations up to 10(-6) M. These results show that the primary prostaglandins, in order of potency PGE2 greater than PGF2 alpha = PGD2, can have a direct, stimulatory effect on the proliferation of osteoblasts, which is closely related to the induction of ODC activity.  相似文献   

7.
Nerve growth factor (NGF) has recently been shown to be secreted from white adipocytes, its production being strongly stimulated by the proinflammatory cytokine tumor necrosis factor-alpha. In this study, we have examined whether a series of prostaglandins and other inflammation-related factors also stimulate NGF expression and secretion by adipocytes, using 3T3-L1 cells. Although interleukin (IL)-1beta, IL-10, and IL-18 each induced a small decrease in NGF mRNA level in 3T3-L1 adipocytes, there was no significant effect of these cytokines on NGF secretion. A small reduction in NGF expression and/or secretion was also observed with adiponectin and prostaglandins PGE(2), PGF(2alpha), and PGI(2). In marked contrast, prostaglandin PGD(2) induced a major, dose-dependent increase (up to 20- to 40-fold) in NGF expression and secretion. The PGD(2) metabolites, PGJ(2) and Delta(12)-PGJ(2), also induced major increases (up to 30-fold) in NGF production. A further metabolite of PGJ(2), 15-deoxy-Delta(12,14)-PGJ(2), a peroxisome proliferator-activated receptor-gamma agonist, led paradoxically to a small increase in NGF mRNA level but a fall in NGF secretion. Both PGD(2) and PGJ(2) induced significant increases in NGF gene expression by 4 h after their addition. It is concluded that PGD(2) and the J series prostaglandins, PGJ(2) and Delta(12)-PGJ(2), can play a significant role in the regulation of NGF production by white adipocytes. These results provide support for the view that NGF is an important inflammatory response protein, as well as a target-derived neurotrophin, in white adipose tissue.  相似文献   

8.
Studies in vivo using inhibitors of eicosanoid synthesis suggested that prostaglandins may play a role in mediating tumor promotion in liver by agents such as phenobarbital (PB). However, it is not clear whether any stimulation of arachidonic acid metabolism/prostaglandin formation results directly from the action of tumor promoters on hepatocytes or indirectly from effects of promoters on Kupffer cells or other non-hepatocytes. Our laboratory has been utilizing relatively pure populations of rat hepatocytes under the defined conditions of primary cultures, to investigate growth-stimulatory actions of tumor promoters, an important element in the promotion stage of carcinogenesis. It has been shown that most if not all liver tumor promoters tested stimulate hepatocyte DNA synthesis when added in combination with factors such as EGF, insulin, and glucocorticoid. In the present study, we sought evidence for a role of prostaglandins (PGs) in the direct growth-stimulatory actions of tumor promoters on hepatocytes. PGE(2), PGF(2 alpha), and PGD(2) cause concentration-dependent stimulation of hepatocyte DNA synthesis, while arachidonic acid was without any effect. PGE(2) and PGF(2 alpha) required the presence of dexamethasone to exert significant effects. These PGs did not further augment the stimulatory effect of EGF. In contrast, PGD(2) stimulated DNA synthesis in the presence or absence of insulin, dexamethasone, or EGF. The effect of tumor promoters on arachidonic acid metabolism, as measured by [(3)H]arachidonic acid release and PGE(2) production, was determined. The phorbol ester TPA significantly increased [(3)H]arachidonic acid release as well as PGE(2) formation in hepatocytes in line with known effects in other cell types. However, liver tumor promoters phenobarbital (PB), alpha-hexachlorocycohexane (HCH), 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (DDT), and pregnenolone-16 alpha-carbonitrile (PCN) were without effects. Finally, inhibitors of arachidonic acid metabolism were tested for effects on the ability of TPA or liver tumor promoters to stimulate DNA synthesis by direct action on cultured hepatocytes. In all cases, lack of selective inhibition was observed. Taken together, the results show that while prostaglandins may directly stimulate DNA synthesis in hepatocytes, they are unlikely to mediate the direct growth-stimulatory actions of liver tumor promoters.  相似文献   

9.
A fast and reliable method for the separation and quantitation of arachidonic acid metabolites PGF1 alpha, PGF2 alpha, PGD2, PGE1, PGE2, PGB2, PGA2, 6-keto PGE1, 6-keto PGF1 alpha, TxB2 and 15-keto PGE2 by high-performance liquid chromatography has been developed. Utilizing a single reverse-phase column and a UV spectrophotometer, sensitivity as little as 30 nanograms of each of these prostaglandins can be separated and subsequently detected. Although this study was performed using standards, it is highly promising for future application to biological fluids.  相似文献   

10.
The exogenous and endogenous syntheses of prostaglandins (PG's) by the cochlea of adult mongolian gerbils were studied in vitro. After incubation of the whole membraneous cochlea with [3H]-arachidonic acid (AA), syntheses of PGF2 alpha, 6-keto PGF1 alpha, PGE2, thromboxane (TX) P2 and PGD2 were evidenced in this order. The synthesis of radioactive PG's was almost completely inhibited by incubation with 10(-5) M indomethacin. No significant amounts of those PG's were detected by radioimmunoassay (RIA) in the cochlea obtained from animals killed by microwave irradiation at 5.0 kw for 0.8 sec. However, when the homogenate of the whole membraneous cochlea obtained from animals without microwave irradiation was incubated at 37 degrees C for 0-15 min, PGD2, PGE2, PGF2 alpha and 6-keto PGF1 alpha were found to be formed from endogenous AA in the cochlea by RIA. PG's were formed already at 0 time to considerable level (PGD2, PGF2 alpha and 6-keto PGF1 alpha, 90-120 pg/cochlea; PGE2, 370 pg/cochlea), reached to the maximum level (PGD2, PGF2 alpha and 6-keto PGF1 alpha, 170-200 pg/cochlea; PGE2, 500 pg/cochlea) at a 5-min incubation, and then gradually decreased. On the other hand, the amount of TXB2 was lower than the detection limit by RIA (less than 50 pg/cochlea) even after the incubation. The cochlea was dissected into three parts: organ of Corti + modiolus (OC + M), lateral wall (LW), and cochlear nerve (CN), and then PG's formed by these tissues were determined after a 5-min incubation of the homogenates. In the CN and OC + M, PGE2 was the major PG (100 and 160 pg/tissue, respectively), and the amounts of PGD2, PGF2 alpha and 6-keto PGF1 alpha were about 1/3 of those of PGE2. In the LW, the amounts of PGD2, PGE2, PGF2 alpha and 6-keto PGF1 alpha were about the same level (70-100 pg/LW).  相似文献   

11.
This study provided a pharmacological evaluation of prostaglandin binding to bovine luteal plasma membrane. It was found that [3H]PGF2 alpha' [3H]PGE2' [3H]PGE1 and [3H]PGD2 all bound with high affinity to luteal plasma membrane but had different specificities. Binding of [3H]PGF2 alpha and [3H]PGD2 was inhibited by non-radioactive PGF2 alpha (IC50 values of 21 and 9 nmol l-1, respectively), PGD2 (35 and 21 nmol l-1), and PGE2 (223 and 81 nmol l-1), but not by PGE1 (> 10,000 and 5616 nmol l-1). In contrast, [3H]PGE1 was inhibited by non-radioactive PGE1 (14 nmol l-1) and PGE2 (7 nmol l-1), but minimally by PGD2 (2316 nmol l-1) and PGF2 alpha (595 nmol l-1). Binding of [3H]PGE2 was inhibited by all four prostaglandins, but slopes of the dissociation curves indicated two binding sites. Binding of [3H]PGE1 was inhibited, resulting in low IC50 values, by pharmacological agonists that are specific for EP3 receptor and possibly EP2 receptor. High affinity binding of [3H]PGF2 alpha required a C15 hydroxyl group and a C1 carboxylic acid that are present on all physiological prostaglandins. Specificity of binding for the FP receptor depended on the C9 hydroxyl group and the C5/C6 double bond. Alteration of the C11 position had little effect on affinity for the FP receptor. In conclusion, there is a luteal EP receptor with high affinity for PGE1' PGE2' agonists of EP3 receptors, and some agonists of EP2 receptors. The luteal FP receptor binds PGF2 alpha' PGD2 (high affinity), and PGE2 (moderate affinity) but not PGE1 due to affinity determination by the C9 and C5/C6 moieties, but not the C11 moiety.  相似文献   

12.
Tumor necrosis factor (TNF) is known to be a mitogen for human diploid FS-4 fibroblasts. We have shown in an earlier study (Hori et al. (1989) J. Cell. Physiol. 141, 275-280) that indomethacin further enhances the cell proliferation stimulated by TNF. Since indomethacin inhibits the activity of cyclooxygenase, the role of prostaglandins in TNF-stimulated cell growth was examined. Cell growth stimulated by TNF and indomethacin was inhibited by exogenously added prostaglandins (PGE2, PGF2 alpha, and PGD2), among which PGE2 caused the greatest inhibition of cell growth. Treatment of FS-4 cells with 10 ng/ml TNF resulted in the release of prostaglandins (PGE2, 6-keto-PGF1 alpha, PGA2, PGD2, and PGF2 alpha) 2 to 4 fold over that of untreated cells. The amount of all these prostaglandins increased in a time-dependent manner over 6 h after treatment. In both TNF-treated and control cells, PGE2 was released as the predominant prostaglandin. Furthermore, when PGE2 production and DNA synthesis were determined in FS-4 cells treated with increasing doses of indomethacin, these two cellular responses were inversely affected by indomethacin. These data show that prostaglandins induced by TNF antagonize growth stimulatory action of TNF.  相似文献   

13.
The actions of prostacyclin (PGI2) and its stable metabolite 6-OXO-PGF1alpha were investigated in strips of normal human uterus and in fallopian tubes. Both compounds were also compared with natural prostaglandins (PGE2, PGF2alpha and PGD2). PGI2 showed biphasic response both in uterus and fallopian tubes qualitatively and quantitatively similar to that induced by PGE2 and PGD2; prostacyclin was also able to inhibit the spasmus induced by PGF2alpha but not that induced by BaCl2 and vasopressin. 6-0XO-PGF1alpha on the other hand induced only small contractions on both tissues investigated. The authors discusse the possible implication of these findings in the physiology of the reproductive system.  相似文献   

14.
Several prostaglandins inhibit the cAMP response to glucagon and beta-adrenergic stimulation in hepatocytes. To probe the mechanism of this inhibition, we have examined in primary hepatocyte cultures how pretreatment with pertussis toxin (islet-activating protein) influences the ability of the cells to respond to hormones and prostaglandins. Pertussis toxin augmented the effects of glucagon, epinephrine and isoproterenol, and also markedly enhanced the cAMP response to prostaglandin E1 (PGE1). Furthermore, whereas PGE1, PGE2, PGI2 and PGF2 alpha attenuated the cAMP responses to glucagon in control cultures, this inhibition was abolished in cells pretreated with pertussis toxin. A more detailed comparison was made of the effects of PGE1 and PGF2 alpha. In cells not treated with pertussis toxin, both these prostaglandins at high concentrations reduced the cAMP response to glucagon and isoproterenol by approximately 50%, but dose-effect curves showed that PGE1 was about 100-fold more potent as an inhibitor than PGF2 alpha. Pertussis toxin abolished the inhibitory effects of PGE1 and PGF2 alpha with almost identical time and dose requirements. The results obtained with PGE1, PGE2, PGI2 and PGF2 alpha suggest that prostaglandins of different series attenuate hormone-activable adenylate cyclase in hepatocytes through a common mechanism, dependent on the inhibitory GTP-binding protein.  相似文献   

15.
Prostaglandin E2 (PGE2) and prostaglandin F2 alpha (PGF2 alpha) inactivated glycogen synthase and activated glycogen phosphorylase in rat hepatocytes in a dose- and time-dependent manner. These effects were dependent on the presence of Ca2+ in the incubation medium. When glycogen synthase was immunoprecipitated from cells incubated with [32P]Pi and then treated with PGE2 or PGF2 alpha, there was increased phosphorylation of the 88 kDa subunit of the enzyme. This phosphorylation affected two CNBr fragments of the glycogen synthase, CB-1 and CB-2, the same fragments that are phosphorylated by different glycogenolytic hormones. No phosphorylation of glycogen synthase by prostaglandins was observed in the absence of Ca2+. Thus the effect of PGE2 and PGF2 alpha on these glycogen-metabolizing enzymes supports a role for regulation by prostaglandins of glucose metabolism in parenchymal liver cells.  相似文献   

16.
We examined the involvement of cyclooxygenase (COX)-1 and COX-2 on mechanical scratching-induced prostaglandins (PGs) production in the skin of mice. The dorsal regions of mice were scratched using a stainless brush. COXs expressions in the skin were analyzed using real-time PCR and Western blotting. The effect of acetylsalicylic acid (ASA) on the ability of PGs production were determined based on skin PGs level induced by arachidonic acid (AA) application. Mechanical scratching increased PGD2, PGE2, PGI2 and PGF(2 alpha). COX-1 was constitutively expressed and COX-2 expression was enhanced by scratching. Intravenous administration of ASA inhibited PGs biosynthesis in the normal skin. PGs levels of the skin 6h after ASA administration (ASA 6 h) were almost equal to those of the skin 10 min after ASA administration (ASA 10 min). In the scratched skin, AA-induced PGE2 and PGI2 of ASA 6 h were significantly higher than those of ASA 10 min. The skin PGD2 and PGF(2 alpha) of ASA 10 min were almost same to those of ASA 6 h. In the normal skin of COX-1-deficient mice, skin PGD2 level was lower than that of wild-type mice, although PGE2, PGI2 and PGF(2 alpha) levels were almost equal to those of wild type. In the scratched skin of COX-1-deficient mice, PGD2, PGE2, PGI2 and PGF(2 alpha) levels were lower than those of wild-type mice. These results suggested that cutaneous PGD2 could be mainly produced by COX-1, and PGE2 and PGI2 could be produced by COX-1 and COX-2, respectively, in mice.  相似文献   

17.
The outputs of PGF(2 alpha), PGE(2) and 6-keto-PGF(1 alpha) were higher from the day 29 guinea-pig placenta than from the sub-placenta in culture, with PGF(2 alpha)being the major prostaglandin produced by the placenta. Lack of extracellular calcium reduced the production of all three prostaglandins by the sub-placenta and 6-keto-PGF(1 alpha) production by the placenta, but had no effect on the production of PGF(2 alpha) and PGE(2) by the placenta. EGTA (a calcium chelator) and a low concentration (30 microM) of TMB-8 (an intracellular calcium antagonist) generally inhibited prostaglandin output from the placenta and sub-placenta at various time points during culture, although EGTA had no effect on PGE(2) output from the placenta. Trifluoperazine and W-7 (calmodulin inhibitors) had no inhibitory effect on the outputs of PGF(2 alpha) and PGE(2) from the placenta, nor on the outputs of any prostaglandin from the sub-placenta. However, these two compounds inhibited the output of 6-keto-PGF(1 alpha) from the placenta. Nifedipine and verapamil (calcium channel blocking drugs) generally reduced the outputs of prostaglandins from the placenta and sub-placenta, except verapamil had no inhibitory effect on PGF(2 alpha) output from the sub-placenta. Gonadotrophin-releasing hormone (GnRH) did not stimulate the output of prostaglandins from the placenta, and tended to have a weak inhibitory action on this tissue. On the sub-placenta, GnRH had an initial inhibitory action on the outputs of PGF(2alpha) and 6-keto-PGF(1 alpha), which was then followed by a stimulation of the outputs of PGF(2 alpha) and, to a lesser extent, of PGE(2).  相似文献   

18.
Ginea pig ear epidermal cells (keratinocytes) were established in primary cultures using trypsin, and treated in their proliferative phase of growth with prostaglandins E1, D1, F1 alpha, E2, D2, or F2 alpha. This phase is induced by the addition of retinoic acid during cell plating. Intracellular content of cAMP and cGMP was measured by radioimmunoassay at various times after treatment. Maximum stimulation of cAMP levels was observed with PGD2, smaller increases with PGE2 and relatively transient rises with PGF2 alpha which were of low significance, but confirm earlier data. Similar results were observed with PGD1, PGE1, and PGF1 alpha with smaller increases. The effects of D and E PGs were biphasic. Significant increases in cGMP were immediately observed with PGD2 and PGE2. With PGF2 alpha, maximum cGMP levels were noted after some delay. All PGs tested showed some effect in elevating cyclic nucleotides in keratinocytes. The most striking result was the increase in cAMP on PGD2 treatment.  相似文献   

19.
We have developed a method for measuring prostaglandins (PGs) in rat gastric mucosa by high-performance liquid chromatography (HPLC). The levels of PGD2 and 6-keto-PGF1 alpha, a degradation product of PGI2, were five times higher than those of PGE2 and PGF2 alpha. Oral administration of indomethacin (6 mg/kg body weight) completely abolished the synthesis of all detectable PGs uniformly. These results suggest that endogenous PGs, especially PGD2 and I2, play some roles in the function of the gastric mucosa.  相似文献   

20.
The present study was carried out to evaluate the in vitro brain release of prostaglandin F2 alpha (PGF2 alpha), prostaglandin E2 (PGE2), androgens, and 17 beta-estradiol in male and female crested newt, Triturus carnifex, during three different periods of the annual sexual cycle; in addition, the effects of mammalian gonadotropin-releasing hormone (mGnRH), PGF2 alpha, and PGE2 on prostaglandins and steroids release by the brain were evaluated during the same periods. In brain incubations of both sexes, PGF2 alpha and estradiol were higher during postreproduction, while PGE2 and androgens were higher during reproduction. In both sexes, mGnRH increased PGF2 alpha and estradiol during postreproduction, and PGE2 during reproduction; PGF2 alpha increased estradiol secretion during postreproduction. Only in the male, did both mGnRH and PGE2 increase androgens during reproduction. It could be suggested that in Triturus carnifex, the regulation of the reproductive activity in the central nervous system (CNS) depends on the relationships among mGnRH, prostaglandins and steroids. In particular, PGF2 alpha and PGE2 seem to play different roles in the CNS of the newt: PGF2 alpha is involved in the postreproductive processes, through estradiol secretion, while PGE2 in the reproductive ones (through androgens secretion?).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号