首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Resveratrol exhibited the inhibitory activity against mushroom tyrosinase (EC1.14.18.1) through a k(cat) inhibition. Resveratrol itself did not inhibit tyrosinase but rather was oxidized by tyrosinase. In the enzymatic assays, resveratrol did not inhibit the diphenolase activity of tyrosinase when l-3,4-dihydroxyphenylalanin (L-DOPA) was used as a substrate; however, L-tyrosine oxidation by tyrosinase was suppressed in presence of 100 μM resveratrol. Oxidation of resveratrol and inhibition of L-tyrosine oxidation suggested the inhibitory effects of metabolites of resveratrol on tyrosinase. After the 30 min of preincubation of tyrosinase and resveratrol, both monophenolase and diphenolase activities of tyrosinase were significantly suppressed. This preincubational effect was reduced with the addition of L-cysteine, which indicated k(cat) inhibition or suicide inhibition of resveratrol. Furthermore, investigation was extended to the cellular experiments by using B16-F10 murine melanoma cells. Cellular melanin production was significantly suppressed by resveratrol without any cytotoxicity up to 200 μM. trans-Pinosylvin, cis-pinosylvin, dihydropinosylvin were also tested for a comparison. These results suggest that possible usage of resveratrol as a tyrosinase inhibitor and a melanogenesis inhibitor.  相似文献   

3.
Ratna WN  Simonelli JA 《Life sciences》2002,70(13):1577-1589
Hepatic expression of apolipoprotein (apo) II is in part modulated by estrogen-mediated stabilization of its mRNA. This stabilization is due to the estrogen-regulated mRNA stabilizing factor (E-RmRNASF) expressed in the liver in response to estrogen (Ratnasabapathy, 1995, Cell. Mol. Biol. Res, 41: 583-594). E-RmRNASF protects the RNA from targeted endonucleolytic degradation. The hepatic expression of E-RmRNASF is modulated by certain estrogenic and antiestrogenic nonsteroidal environmental xenobiotics (Ratnasabapathy et al. 1997, Biochem. Pharmacol., 53: 1425-1434). To determine whether dietary phytochemicals purported to prevent hormone-dependent breast and prostate cancers, and atherosclerosis, acted via the estrogen-cell-signaling pathway, roosters were administered increasing doses up to 1 mmole/kg of resveratrol, quercetin, catechin or naringenin parenterally and tested for hepatic expression of E-RmRNASF. Besides estrogen, the expression of E-RmRNASF in the liver was stimulated by resveratrol and catechin, indicating these agents to be estrogenic. A lack of E-RmRNASF expression was seen with the roosters treated with the vehicle, naringenin or quercetin. To determine whether the agents exerted partial agonistic or antagonistic effects, roosters were administered combinations of estrogen and increasing doses of the above phytochemicals. Resveratrol showed agonistic activity at all concentrations (10-1000 micromol/kg) tested. Catechin showed partial agonistic activity, while quercetin and naringenin appeared to be antagonistic.  相似文献   

4.
The protective effects of resveratrol and 4-hexylresorcinol against oxidative DNA damage in human lymphocytes induced by hydrogen peroxide were investigated. Resveratrol and 4-hexylresorcinol showed no cytotoxicity to human lymphocytes at the tested concentration (10-100 μM). In addition, DNA damage in human lymphocytes induced by H 2 O 2 was inhibited by resveratrol and 4-hexylresorcinol. Resveratrol and 4-hexylresorcinol at concentrations of 10-100 μM induced an increase in glutathione (GSH) levels in a concentration-dependent manner. Moreover, these two compounds also induced activity of glutathione peroxidase (GPX) and glutathione reductase (GR). The activity of glutathione-S-transferase (GST) in human lymphocytes was induced by resveratrol. Resveratrol and 4-hexylresorcinol inhibited the activity of catalase (CAT). These data indicate that the inhibition of resveratrol and 4-hexylresorcinol on oxidative DNA damage in human lymphocytes induced by H 2 O 2 might be attributed to increase levels of GSH and modulation of antioxidant enzymes (GPX, GR and GST).  相似文献   

5.
Yoon SH  Kim YS  Ghim SY  Song BH  Bae YS 《Life sciences》2002,71(18):2145-2152
Resveratrol is a phytoalexin found in grapes and other foods that has been shown to have anticancer and anti-inflammatory effects. Because protein kinase CKII is involved in cell proliferation and oncogenesis, we examined whether resveratrol could modulate CKII activity. Resveratrol was shown to inhibit the phosphotransferase activity of CKII with IC(50) of about 10 microM. Steady state studies revealed that resveratrol acted as a competitive inhibitor with respect to the substrate ATP. A value of 1.2 microM was obtained for the apparent K(i). Resveratrol also inhibited the catalytic reaction of CKII with GTP as substrate. Furthermore, resveratrol inhibits endogenous CKII activity on protein substrates in HeLa cell lysates. These results suggest that resveratrol is likely to function by inhibiting oncogenic disease, at least in part, through the inhibition of CKII activity.  相似文献   

6.
7.
Reactive oxygen species (ROS) produced upon collagen stimulation are implicated in propagating various platelet-activating pathways. Among ROS-producing enzymes, NADPH oxidase (NOX) is largely responsible for collagen receptor-dependent ROS production. Therefore, NOX has been proposed as a novel target for the development of antiplatelet agent. We here investigate whether resveratrol inhibits collagen-induced NOX activation and further examine the effects of resveratrol on ROS-dependent signaling pathways in collagen-stimulated platelets. Collagen-induced superoxide anion production in platelets was inhibited by resveratrol. Resveratrol suppressed collagen-induced phosphorylation of p47phox, a major regulatory subunit of NOX. Correlated with the inhibitory effects on NOX, resveratrol protected SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) from ROS-mediated inactivation and subsequently attenuated the specific tyrosine phosphorylation of key components (spleen tyrosine kinase, Vav1, Bruton’s tyrosine kinase, and phospholipase Cγ2) for collagen receptor signaling cascades. Resveratrol also inhibited downstream responses such as cytosolic calcium elevation, P-selectin surface exposure, and integrin-αIIbβ3 activation. Furthermore, resveratrol inhibited platelet aggregation and adhesion in response to collagen. The antiplatelet effects of resveratrol through the inhibition of NOX-derived ROS production and subsequent oxidative inactivation of SHP-2 suggest that resveratrol is a potential compound for prevention and treatment of thrombovascular diseases.  相似文献   

8.
Glucose-induced oxidative stress is involved in endothelial dysfunction. Dimethylarginine dimethylaminohydrolase (DDAH) and arginase are regulators of the endothelial NO synthase (eNOS). This study aimed to compare the effect of two polyphenolic antioxidants, resveratrol and piceatannol, on DDAH and arginase pathways in bovine aortic endothelial cells under 25 mM glucose for 24 h. DDAH activity and expression were decreased in these cells as compared to control cells, whereas arginase activity was unchanged. DDAH inhibition led to intracellular accumulation of asymmetric dimethylarginine (ADMA), a natural inhibitor of eNOS. Under these conditions, cell pre-treatment with resveratrol (0.1-10 μM) restored basal DDAH activity and ADMA level with a dose-dependent effect. Piceatannol acted as resveratrol on DDAH pathway but at 10-fold lower concentrations. Resveratrol and piceatannol restored DDAH activity even in the presence of splitomicin, a specific inhibitor of Sirtuin 1. These results suggest potential therapeutic intervention targeting resveratrol or piceatannol administration to improve endothelial dysfunction.  相似文献   

9.
Flavonoids as superoxide scavengers and antioxidants   总被引:26,自引:1,他引:25  
The superoxide anions scavenging activity and antioxidation of seven flavonoids--quercetin, rutin, morin, acacetin, hispidulin, hesperidin, and naringin--were studied. The superoxide anions were generated in a phenazin methosulphate-NADH system and were assayed by reduction of nitroblue tetrazolium. The scavenging activity ranked: rutin was the strongest, and quercetin and naringin the second, while morin and hispidulin were very weak. The concentration values yielding 50% inhibition of lipid peroxidation in mouse liver homogenate were in order of 10(-6) M for quercetin, rutin, and morin; and of 10(-5) M for acacetin and hispidulin, while naringin and hesperidin had no antioxidative action. In comparison with the antioxidative and scavenging activities of flavonoids, there are no correlations.  相似文献   

10.
Combination therapy using two or more small molecule inhibitors of aberrant signaling cascade in aggressive breast cancers is a promising therapeutic strategy over traditional monotherapeutic approaches. Here, we have studied the synergistic mechanism of resveratrol and curcumin induced apoptosis using in vitro (cigarette smoke condensate mediated transformed breast epithelial cell, MCF-10A-Tr) and in vivo (tumor xenograft mice) model system. Resveratrol exposure increased the intracellular uptake of curcumin in a dose dependent manner and caused apoptosis in MCF-10A-Tr cells. Approximately, ten fold lower IC50 value was noted in cells treated with the combination of resveratrol (3 μM) and curcumin (3 μM) in comparison to 30 μM of resveratrol or curcumin alone. Resveratrol + curcumin combination caused apoptosis by increasing Bax/Bcl-xL ratio, Cytochrome C release, cleaved product of PARP and caspase 3 in cells. Interestingly, this combination unaltered the protein expressions of WNT-TCF and Notch signaling components, β-catenin and cleaved notch-1 val1744, respectively. Furthermore, the combination also significantly decreased the intermediates of Hedgehog-Gli cascade including SMO, SHH, Gli-1, c-MYC, Cyclin-D1, etc. and increased the level of p21Waf/Cip1 in vitro and in vivo. A significant reduction of Gli- promoter activity was noted in combinational drug treated cells in comparison to individual drug treatment. Un-alteration of the expressions of the above proteins and Gli1 promoter activity in p21Waf/Cip1 knockout cells suggests this combination caused apoptosis through p21Waf/Cip1. Thus, our findings revealed resveratrol and curcumin synergistically caused apoptosis in cigarette smoke induced breast cancer cells through p2  Waf/Cip1 mediated inhibition of Hedgehog-Gli cascade.  相似文献   

11.
We have studied the inhibitory effect of five polyphenols namely, resveratrol, piceatannol, quercetin, quercetrin, and quercetin-3-β-d glucoside on Escherichia coli ATP synthase. Recently published X-ray crystal structures of bovine mitochondrial ATP synthase inhibited by resveratrol, piceatannol, and quercetin, suggest that these compounds bind in a hydrophobic pocket between the γ-subunit C-terminal tip and the hydrophobic inside of the surrounding annulus in a region critical for rotation of the γ-subunit. Herein, we show that resveratrol, piceatannol, quercetin, quercetrin, or quercetin-3-β-d glucoside all inhibit E. coli ATP synthase but to different degrees. Whereas piceatannol inhibited ATPase essentially completely (~0 residual activity), inhibition by other compounds was partial with ~20% residual activity by quercetin, ~50% residual activity by quercetin-3-β-d glucoside, and ~60% residual activity by quercetrin or resveratrol. Piceatannol was the most potent inhibitor (IC50 ~14 μM) followed by quercetin (IC50 ~33 μM), quercetin-3-β-d glucoside (IC50 ~71 μM), resveratrol (IC50 ~94 μM), quercitrin (IC50 ~120 μM). Inhibition was identical in both F1Fo membrane preparations as well as in isolated purified F1. In all cases inhibition was reversible. Interestingly, resveratrol and piceatannol inhibited both ATPase and ATP synthesis whereas quercetin, quercetrin or quercetin-3-β-d glucoside inhibited only ATPase activity and not ATP synthesis.  相似文献   

12.
Stable free radical scavenging and antiperoxidative activities of resveratrol, a component of grapes and red wine, were evaluated and compared with some other known bioflavonoids (quercetin, catechin, kaempferol, myricetin, fisetin, ellagic acid and naringenin) widely present in the plant kingdom. Free radical scavenging activity was measured in an in vitro chemical system (DPPH assay), while for antiperoxidative activity, biological system comprising of hepatic and pulmonary homogenates was employed. Antiradical activity assay showed quercetin and myricetin to be stronger antiradical agents than resveratrol. Structure-activity study revealed that O-dihydroxy group on ring B of flavonoid plays a crucial role. A double bond at 2-3 position conjugated with a 4-oxo function and hydroxy groups at positions 3 and 5 also contribute towards antiradical activity of flavonoids. Resveratrol exhibited stronger antiradical activity than kaempferol and naringenin and was also more efficient than alpha-tocopherol, a known strong endogenous non-flavonoid antioxidant, used for comparison. In vitro antiperoxidative assay showed fisetin as the strongest and kaempferol as the weakest antioxidant. Resveratrol was found to be stronger antioxidant than catechin, myricetin, kaempferol and naringenin, but was weaker than quercetin, fisetin and alpha-tocopherol. Antiradical and antiperoxidative activities of resveratrol may explain its beneficial effects in disease states. Assays exhibited no direct correlation between antiradical and antiperoxidative activities of the phenolics.  相似文献   

13.
Epidemiological studies suggest that Mediterranean diets rich in resveratrol are associated with reduced risk of coronary artery disease. However, the mechanisms by which resveratrol exerts its cardioprotective effects are not completely understood. Because TNF-alpha-induced endothelial activation and vascular inflammation play a critical role in vascular aging and atherogenesis, we evaluated whether resveratrol inhibits TNF-alpha-induced signal transduction in human coronary arterial endothelial cells (HCAECs). We found that TNF-alpha significantly increased adhesiveness of the monocytic THP-1 cells to HCAECs, an effect that could be inhibited by pretreatment with resveratrol and the NF-kappaB inhibitor pyrrolidine dithiocarbamate. Previously, we found that TNF-alpha activates NAD(P)H oxidases, and our recent data showed that TNF-alpha-induced endothelial activation was prevented by the NAD(P)H oxidase inhibitor apocynin or catalase plus SOD. Resveratrol also inhibited H(2)O(2)-induced monocyte adhesiveness. Using a reporter gene assay, we found that, in HCAECs, TNF-alpha significantly increased NF-kappaB activity, which could be inhibited by resveratrol (>50% inhibition at 10(-6) mol/l) and pyrrolidine dithiocarbamate. Resveratrol also inhibited TNF-alpha-induced, NF-kappaB-driven luciferase expression in rat aortas electroporated with the reporter gene construct. In TNF-alpha-treated HCAECs, resveratrol (in the submicromolar range) significantly attenuated expression of NF-kappaB-dependent inflammatory markers inducible nitric oxide synthase, IL-6, bone morphogenetic protein-2, ICAM-1, and VCAM. Thus resveratrol at nutritionally relevant concentrations inhibits TNF-alpha-induced NF-kappaB activation and inflammatory gene expression and attenuates monocyte adhesiveness to HCAECs. We propose that these anti-inflammatory actions of resveratrol are responsible, at least in part, for its cardioprotective effects.  相似文献   

14.
Resveratrol is a natural phytoalexin compound found in grapes and other food products. In this study, the effect of resveratrol on the growth of human breast cancer cells was examined. Results show that resveratrol inhibits the growth of estrogen receptor(ER)-positive MCF-7 cells in a dose-dependent fashion. Detailed studies with MCF-7 cells demonstrate that resveratrol antagonized the growth-promoting effect of 17-beta-estradiol (E2) in a dose-dependent fashion at both the cellular (cell growth) and the molecular (gene activation) levels. At 5 x 10(-6) M, resveratrol abolished the growth-stimulatory effect mediated by concentrations of E2 up to 10(-9) M. The antiestrogenic effect of resveratrol could be observed at a concentration of 10(-6) M and above. The antiestrogenic effect of resveratrol was also demonstrated at the molecular level. Resveratrol in a dose-dependent fashion antagonized the stimulation by E2 of progesterone receptor gene expression in MCF-7 cells. Moreover, expression of transforming growth factor-alpha and insulin-like growth factor I receptor mRNA was inhibited while the expression of transforming growth factor beta2 mRNA was significantly elevated in MCF-7 cells cultivated in the presence of resveratrol (10(-5) M). In summary, our results show that resveratrol, a partial ER agonist itself, acts as an ER antagonist in the presence of estrogen leading to inhibition of human breast cancer cells.  相似文献   

15.
This study investigated the ex vivo effects of the moderate red wine (RW) and grape juice (GJ) consumption, and the in vitro effects of the resveratrol, caffeic acid, gallic acid, quercetin, and rutin on NTPDase (nucleoside triphosphate diphosphohydrolase), ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP), 5′-nucleotidase, and adenosine deaminase (ADA) activities in platelets and platelet aggregation from streptozotocin-induced diabetic rats. The animals were divided into six groups (n = 10): control/saline, control/GJ, control/RW, diabetic/saline, diabetic/GJ, and diabetic/RW. RW and GJ were administered for 45 days; after this period, the blood was collected for experimental determinations. Results showed that NTPDase, E-NPP, 5′-nucleotidase, and ADA activities as well as platelet aggregation were increased in the diabetic/saline group compared to the control/saline group. Treatment with RW and GJ increased ectonucleotidases activities and prevented the increase in the ADA activity in the diabetic/GJ and diabetic/RW groups. Platelet aggregation was also decreased by the treatment with RW and GJ in the diabetic/GJ and diabetic/RW groups. In the in vitro tests, resveratrol, caffeic acid, and gallic acid increased ATP, ADP, and AMP hydrolysis, while quercetin and rutin decreased the hydrolysis of these nucleotides in platelets of diabetic rats. The ADA activity and platelet aggregation were reduced in platelets of diabetic rats in the presence of all polyphenols tested in vitro. These findings suggest that RW, GJ, and all polyphenols tested were able to modulate the ectoenzymes activities. Moreover, a decrease in the platelet aggregation was observed and it could contribute to the prevention of platelet abnormality, and consequently vascular complications in diabetic state.  相似文献   

16.
The mitogen-activated protein kinase (MAPK) pathway is stimulated in differentiated chondrocytes and is an important signaling cascade for chondrocyte differentiation and survival. Pro-inflammatory cytokines such as interleukin 1β (IL-1β) play important roles in the pathogenesis of osteoarthritis (OA) and rheumatoid arthritis (RA). In this study, we investigated whether curcumin and resveratrol can synergistically inhibit the catabolic effects of IL-1β, specifically the inhibition of the MAPK and subsequent apoptosis in human articular chondrocytes. Chondrocytes were either left untreated or treated with 10 ng/ml IL-1β or 1 μM U0126, a specific inhibitor of MAPK pathway alone for the indicated time periods or pre-treated with 10 μM curcumin, 10 μM resveratrol or 10 μM resveratrol and 10 μM curcumin for 4 h followed by co-treatment with 10 ng/ml IL-1β or 1 μM U0126 and 10 μM resveratrol, 10 μM curcumin or 10 μM resveratrol and 10 μM curcumin for the indicated time periods. Cultures were evaluated by immunoblotting and transmission electron microscopy. Incubation of chondrocytes with IL-1β resulted in induction of apoptosis, downregulation of β1-integrins and the extracellular signal-regulated kinase 1/2 (Erk1/2). Interestingly, U0126 induced apoptosis and blocked the above-mentioned proteins in a similar way to IL-1β. Furthermore, curcumin and resveratrol inhibited IL-1β- or U0126-induced apoptosis and downregulation of β1-integrins and Erk1/2 in human articular chondrocytes. These results suggest that combining these two natural compounds activates MEK/Erk signaling, a pathway that is involved in the maintenance of chondrocyte differentiation and survival.  相似文献   

17.
Buryanovskyy L  Fu Y  Boyd M  Ma Y  Hsieh TC  Wu JM  Zhang Z 《Biochemistry》2004,43(36):11417-11426
Resveratrol has been shown to have chemopreventive, cardioprotective, and antiaging properties. Here, we report that resveratrol is a potent inhibitor of quinone reductase 2 (QR2) activity in vitro with a dissociation constant of 35 nM and show that it specifically binds to the deep active-site cleft of QR2 using high-resolution structural analysis. All three resveratrol hydroxyl groups form hydrogen bonds with amino acids from QR2, anchoring a flat resveratrol molecule in parallel with the isoalloxazine ring of FAD. The unique active-site pocket in QR2 could potentially bind other natural polyphenols such as flavonoids, as proven by the high affinity exhibited by quercetin toward QR2. K562 cells with QR2 expression suppressed by RNAi showed similar properties as resveratrol-treated cells in their resistance to quinone toxicity. Furthermore, the QR2 knockdown K562 cells exhibit increased antioxidant and detoxification enzyme expression and reduced proliferation rates. These observations could imply that the chemopreventive and cardioprotective properties of resveratrol are possibly the results of QR2 activity inhibition, which in turn, up-regulates the expression of cellular antioxidant enzymes and cellular resistance to oxidative stress.  相似文献   

18.
Vitrification induces mitochondrial dysfunction in warmed oocytes, and degeneration and biogenesis of mitochondria are crucial for maintaining oocyte quality. The present study addresses a hypothesis that treatment of vitrified-warmed oocytes with resveratrol could improve the viability of oocytes by activating mitochondrial biosynthesis. Cumulus oocyte complexes (COCs) collected from gilt ovaries were vitrified, warmed, and cultured in a medium containing vehicle or 1 μM resveratrol. Resveratrol treatment improved survival, maturation, and mitochondrial membrane potential of vitrified-warmed oocytes, but did not improve the development into blastocysts after parthenogenetic activation. Resveratrol treatment increased mitochondrial synthesis, as determined by the expression levels of TOMM20 and mitochondrial DNA copy number, in vitrified-warmed oocytes, but not in non-vitrified oocytes. In addition, the effect of resveratrol treatment on mitochondrial synthesis was reduced by EX527, a SIRT1 inhibitor. Resveratrol treatment of vitrified-warmed oocytes increased the expression levels of genes involved in mitochondrial synthesis (TFAM, POLG, and PGC1α) and increased nuclear translocation of NRF2. Furthermore, vitrification induced mitophagy, as confirmed by a reduction in TOMM20 expression and decreased p62 aggregation, whereas resveratrol treatment did not affect these mitophagic features. In conclusion, vitrification induced mitochondrial clearance in oocytes, whereas activation of SIRT1 by resveratrol treatment facilitated the recovery of vitrified-warmed oocytes through the activation of mitochondrial synthesis.  相似文献   

19.
Resveratrol is a natural dietary polyphenol found in grape skin, red wine, and various other food products. Resveratrol has proved to be an effective chemopreventive agent for different malignant tumors. It has also been shown to prevent vascular alterations such as atherosclerosis and inflammatory-associated events. In view of these observations, we investigated the anti-proliferative and pro-apoptotic activities of resveratrol on a tumoral cardiac cell line (HL-1 NB) derived from mouse tumoral atrial cardiac myocytes. These effects were compared with those found on normal neonatal mouse cardiomyocytes. HL-1 NB cells and neonatal cardiomyocytes were treated with resveratrol (5, 30, and/or 100 μM) for different times of culture (24, 48, and/or 72 h). Resveratrol effects were determined by various microscopical and flow cytometric methods. After resveratrol treatment, a strong inhibition of tumoral cardiac HL1-NB cell growth associated with a loss of cell adhesion was observed. This cell proliferation arrest was associated with an apoptotic process revealed by an increased percentage of cells with fragmented and/or condensed nuclei (characteristic of apoptotic cells) identified after staining with Hoechst 33342 and by the presence of cells in subG1. At the opposite, on normal cardiomyocytes, no cytotoxic effects of resveratrol were observed, and a protective effect of resveratrol against norepinephrine-induced apoptosis was found on normal cardiomyocytes. Altogether, the present data demonstrate that resveratrol (1) induces apoptosis of tumoral cardiac HL1-NB cells, (2) does not induce cell death on normal cardiomyocytes, and (3) prevents norepinephrine-induced apoptosis on normal cardiomyocytes.  相似文献   

20.
Among the structurally related flavonoids tested on the bovine kidney low molecular weight protein tyrosine phosphatase (LMrPTP) activity, quercetin activated by about 2.6-fold the p-nitrophenyl-phosphate (p-NPP)-directed reaction, in contrast to morin that acted as a competitive inhibitor, with Ki values of 87, 73 and 50 μM for p-NPP, FMN, and tyrosine-phosphate, respectively. Other related flavonoids, such as rutin, kaempferol, catechin, narigin, phloretin and taxifolin did not significantly affect the LMrPTP activity.

The positions of the hydroxyl groups in the structures of the flavonoids were important for their distinct effects on LMrPTP activity. The hydroxyl groups at C3′ and C4′ and the presence of a double bond at C2 and C3 were essential for the activating effect of quercetin. The absence of the 3′-OH (kaempferol), absence of the double bond (taxifolin) and the presence of the sugar rutinose at the 3-OH (rutin) suppressed the effect of quercetin. The C2′- and C4′-hydroxyl groups, the presence of the double bond, and a C4-ketone group were important requirements for the inhibitory effects of morin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号