首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The organization of biochemical networks that make up the living cell can be defined by studying the dynamics of protein-protein interactions. To this end, experimental strategies based on protein fragment complementation assays (PCAs) have been used to map biochemical networks and to identify novel components of these networks. Pharmacological perturbations of the interactions can be observed, and the resulting pharmacological profiles and subcellular locations of interactions allow each gene product to be 'placed' at its relevant point in a network. Network mapping by PCA could be used with, or instead of, traditional target-based drug discovery strategies to increase the quantity and quality of information about the actions of small molecules on living cells and the intricate networks that make up their chemical machinery.  相似文献   

2.
This review is devoted to describing, summarizing, and analyzing of dynamic proteomics data obtained over the last few years and concerning the role of protein-protein interactions in modeling of the living cell. Principles of modern high-throughput experimental methods for investigation of protein-protein interactions are described. Systems biology approaches based on integrative view on cellular processes are used to analyze organization of protein interaction networks. It is proposed that finding of some proteins in different protein complexes can be explained by their multi-modular and polyfunctional properties; the different protein modules can be located in the nodes of protein interaction networks. Mathematical and computational approaches to modeling of the living cell with emphasis on molecular dynamics simulation are provided. The role of the network analysis in fundamental medicine is also briefly reviewed.  相似文献   

3.
Genomes,proteomes, and dynamic networks in the cell nucleus   总被引:9,自引:6,他引:3  
  相似文献   

4.
5.
How do biochemical signaling pathways generate biological specificity? This question is fundamental to modern biology, and its enigma has been accentuated by the discovery that most proteins in signaling networks serve multifunctional roles. An answer to this question may lie in analyzing network properties rather than individual traits of proteins in order to elucidate design principles of biochemical networks that enable biological decision-making. We discuss how this is achieved in the MST2/Hippo-Raf-1 signaling network with the help of mathematical modeling and model-based analysis, which showed that competing protein interactions with affinities controlled by dynamic protein modifications can function as Boolean computing devices that determine cell fate decisions. In addition, we discuss areas of interest for future research and highlight how systems approaches would be of benefit.  相似文献   

6.
The identification of temporal protein complexes would make great contribution to our knowledge of the dynamic organization characteristics in protein interaction networks (PINs). Recent studies have focused on integrating gene expression data into static PIN to construct dynamic PIN which reveals the dynamic evolutionary procedure of protein interactions, but they fail in practice for recognizing the active time points of proteins with low or high expression levels. We construct a Time-Evolving PIN (TEPIN) with a novel method called Deviation Degree, which is designed to identify the active time points of proteins based on the deviation degree of their own expression values. Owing to the differences between protein interactions, moreover, we weight TEPIN with connected affinity and gene co-expression to quantify the degree of these interactions. To validate the efficiencies of our methods, ClusterONE, CAMSE and MCL algorithms are applied on the TEPIN, DPIN (a dynamic PIN constructed with state-of-the-art three-sigma method) and SPIN (the original static PIN) to detect temporal protein complexes. Each algorithm on our TEPIN outperforms that on other networks in terms of match degree, sensitivity, specificity, F-measure and function enrichment etc. In conclusion, our Deviation Degree method successfully eliminates the disadvantages which exist in the previous state-of-the-art dynamic PIN construction methods. Moreover, the biological nature of protein interactions can be well described in our weighted network. Weighted TEPIN is a useful approach for detecting temporal protein complexes and revealing the dynamic protein assembly process for cellular organization.  相似文献   

7.

Background  

We consider the problem of identifying the dynamic interactions in biochemical networks from noisy experimental data. Typically, approaches for solving this problem make use of an estimation algorithm such as the well-known linear Least-Squares (LS) estimation technique. We demonstrate that when time-series measurements are corrupted by white noise and/or drift noise, more accurate and reliable identification of network interactions can be achieved by employing an estimation algorithm known as Constrained Total Least Squares (CTLS). The Total Least Squares (TLS) technique is a generalised least squares method to solve an overdetermined set of equations whose coefficients are noisy. The CTLS is a natural extension of TLS to the case where the noise components of the coefficients are correlated, as is usually the case with time-series measurements of concentrations and expression profiles in gene networks.  相似文献   

8.
9.
Cell signaling pathways interact with one another to form networks in mammalian systems. Such networks are complex in their organization and exhibit emergent properties such as bistability and ultrasensitivity. Analysis of signaling networks requires a combination of experimental and theoretical approaches including the development and analysis of models. This review focuses on theoretical approaches to understanding cell signaling networks. Using heterotrimeric G protein pathways an example, we demonstrate how interactions between two pathways can result in a network that contains a positive feedback loop and function as a switch. Different mathematical approaches that are currently used to model signaling networks are described, and future challenges including the need for databases as well as enhanced computing environments are discussed.  相似文献   

10.
MOTIVATION: Interpretation of high-throughput gene expression profiling requires a knowledge of the design principles underlying the networks that sustain cellular machinery. Recently a novel approach based on the study of network topologies has been proposed. This methodology has proven to be useful for the analysis of a variety of biological systems, including metabolic networks, networks of protein-protein interactions, and gene networks that can be derived from gene expression data. In the present paper, we focus on several important issues related to the topology of gene expression networks that have not yet been fully studied. RESULTS: The networks derived from gene expression profiles for both time series experiments in yeast and perturbation experiments in cell lines are studied. We demonstrate that independent from the experimental organism (yeast versus cell lines) and the type of experiment (time courses versus perturbations) the extracted networks have similar topological characteristics suggesting together with the results of other common principles of the structural organization of biological networks. A novel computational model of network growth that reproduces the basic design principles of the observed networks is presented. Advantage of the model is that it provides a general mechanism to generate networks with different types of topology by a variation of a few parameters. We investigate the robustness of the network structure to random damages and to deliberate removal of the most important parts of the system and show a surprising tolerance of gene expression networks to both kinds of disturbance.  相似文献   

11.
Development of characteristic tissue patterns requires that individual cells be switched locally between different phenotypes or "fates;" while one cell may proliferate, its neighbors may differentiate or die. Recent studies have revealed that local switching between these different gene programs is controlled through interplay between soluble growth factors, insoluble extracellular matrix molecules, and mechanical forces which produce cell shape distortion. Although the precise molecular basis remains unknown, shape-dependent control of cell growth and function appears to be mediated by tension-dependent changes in the actin cytoskeleton. However, the question remains: how can a generalized physical stimulus, such as cell distortion, activate the same set of genes and signaling proteins that are triggered by molecules which bind to specific cell surface receptors. In this article, we use computer simulations based on dynamic Boolean networks to show that the different cell fates that a particular cell can exhibit may represent a preprogrammed set of common end programs or "attractors" which self-organize within the cell's regulatory networks. In this type of dynamic network model of information processing, generalized stimuli (e.g., mechanical forces) and specific molecular cues elicit signals which follow different trajectories, but eventually converge onto one of a small set of common end programs (growth, quiescence, differentiation, apoptosis, etc.). In other words, if cells use this type of information processing system, then control of cell function would involve selection of preexisting (latent) behavioral modes of the cell, rather than instruction by specific binding molecules. Importantly, the results of the computer simulation closely mimic experimental data obtained with living endothelial cells. The major implication of this finding is that current methods used for analysis of cell function that rely on characterization of linear signaling pathways or clusters of genes with common activity profiles may overlook the most critical features of cellular information processing which normally determine how signal specificity is established and maintained in living cells.  相似文献   

12.
Systems theory and cell biology have enjoyed a long relationship that has received renewed interest in recent years in the context of systems biology. The term 'systems' in systems biology comes from systems theory or dynamic systems theory: systems biology is defined through the application of systems- and signal-oriented approaches for an understanding of inter- and intra-cellular dynamic processes. The aim of the present text is to review the systems and control perspective of dynamic systems. The biologist's conceptual framework for representing the variables of a biochemical reaction network, and for describing their relationships, are pathway maps. A principal goal of systems biology is to turn these static maps into dynamic models, which can provide insight into the temporal evolution of biochemical reaction networks. Towards this end, we review the case for differential equation models as a 'natural' representation of causal entailment in pathways. Block-diagrams, commonly used in the engineering sciences, are introduced and compared to pathway maps. The stimulus-response representation of a molecular system is a necessary condition for an understanding of dynamic interactions among the components that make up a pathway. Using simple examples, we show how biochemical reactions are modelled in the dynamic systems framework and visualized using block-diagrams.  相似文献   

13.
Complex regulatory networks orchestrate most cellular processes in biological systems. Genes in such networks are subject to expression noise, resulting in isogenic cell populations exhibiting cell-to-cell variation in protein levels. Increasing evidence suggests that cells have evolved regulatory strategies to limit, tolerate or amplify expression noise. In this context, fundamental questions arise: how can the architecture of gene regulatory networks generate, make use of or be constrained by expression noise? Here, we discuss the interplay between expression noise and gene regulatory network at different levels of organization, ranging from a single regulatory interaction to entire regulatory networks. We then consider how this interplay impacts a variety of phenomena, such as pathogenicity, disease, adaptation to changing environments, differential cell-fate outcome and incomplete or partial penetrance effects. Finally, we highlight recent technological developments that permit measurements at the single-cell level, and discuss directions for future research.  相似文献   

14.
Schmidt H  Cho KH  Jacobsen EW 《The FEBS journal》2005,272(9):2141-2151
New technologies enable acquisition of large data-sets containing genomic, proteomic and metabolic information that describe the state of a cell. These data-sets call for systematic methods enabling relevant information about the inner workings of the cell to be extracted. One important issue at hand is the understanding of the functional interactions between genes, proteins and metabolites. We here present a method for identifying the dynamic interactions between biochemical components within the cell, in the vicinity of a steady-state. Key features of the proposed method are that it can deal with data obtained under perturbations of any system parameter, not only concentrations of specific components, and that the direct effect of the perturbations does not need to be known. This is important as concentration perturbations are often difficult to perform in biochemical systems and the specific effects of general type perturbations are usually highly uncertain, or unknown. The basis of the method is a linear least-squares estimation, using time-series measurements of concentrations and expression profiles, in which system states and parameter perturbations are estimated simultaneously. An important side-effect of also employing estimation of the parameter perturbations is that knowledge of the system's steady-state concentrations, or activities, is not required and that deviations from steady-state prior to the perturbation can be dealt with. Time derivatives are computed using a zero-order hold discretization, shown to yield significant improvements over the widely used Euler approximation. We also show how network interactions with dynamics that are too fast to be captured within the available sampling time can be determined and excluded from the network identification. Known and unknown moiety conservation relationships can be processed in the same manner. The method requires that the number of samples equals at least the number of network components and, hence, is at present restricted to relatively small-scale networks. We demonstrate herein the performance of the method on two small-scale in silico genetic networks.  相似文献   

15.
16.
17.
Many biological networks are signed molecular networks which consist of positive and negative links. To reveal the distinct features between links with different signs, we proposed signed link-clustering coefficients that assess the similarity of inter-action profiles between linked molecules. We found that positive links tended to cluster together, while negative links usually behaved like bridges between positive clusters. Positive links with higher adhesiveness tended to share protein domains, be associated with protein-protein interactions and make intra-connections within protein complexes. Negative links that were more bridge-like tended to make interconnections between protein complexes. Utilizing the proposed measures to group positive links, we observed hierarchical modules that could be well characterized by functional annotations or known protein complexes. Our results imply that the proposed sign-specific measures can help reveal the network structural characteristics and the embedded biological contexts of signed links, as well as the functional organization of signed molecular networks.  相似文献   

18.
19.
Large-scale functional analysis using peptide or protein arrays   总被引:22,自引:0,他引:22  
The array format for analyzing peptide and protein function offers an attractive experimental alternative to traditional library screens. Powerful new approaches have recently been described, ranging from synthetic peptide arrays to whole proteins expressed in living cells. Comprehensive sets of purified peptides and proteins permit high-throughput screening for discrete biochemical properties, whereas formats involving living cells facilitate large-scale genetic screening for novel biological activities. In the past year, three major genome-scale studies using yeast as a model organism have investigated different aspects of protein function, including biochemical activities, gene disruption phenotypes, and protein-protein interactions. Such studies show that protein arrays can be used to examine in parallel the functions of thousands of proteins previously known only by their DNA sequence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号