首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While the intracellular pathways of ligands after receptor-mediated endocytosis have been studied extensively in mammalian cells, in insect cells these pathways are largely unknown. We transfected Drosophila Schneider line 2 (S2) cells with the human low-density lipoprotein (LDL) receptor (LDLR) and transferrin (Tf) receptor (TfR), and used endocytosis of LDL and Tf as markers. After endocytosis in mammalian cells, LDL is degraded in lysosomes, whereas Tf is recycled. Fluorescence microscopy analysis revealed that LDL and Tf are internalized by S2 cells transfected with LDLR or TfR, respectively. In transfectants simultaneously expressing LDLR and TfR, both ligands colocalize in endosomes immediately after endocytic uptake, and their location remained unchanged after a chase. Similar results were obtained with Spodoptera frugiperda Sf9 cells that were transfected with TfR, suggesting that Tf is retained intracellularly by both cell lines. The insect lipoprotein, lipophorin, is recycled upon lipophorin receptor (LpR)-mediated endocytosis by mammalian cells, however, not after endocytosis by LpR-expressing S2 transfectants, suggesting that this recycling mechanism is cell-type specific. LpR is endogenously expressed by fat body tissue of Locusta migratoria for a limited period after an ecdysis. A chase following endocytosis of labeled lipophorin by isolated fat body tissue at this developmental stage resulted in a significant decrease of lipophorin-containing vesicles, indicative of recycling of the ligand.  相似文献   

2.
The uptake of inorganic iron complexes by human melanoma cells   总被引:9,自引:0,他引:9  
The human melanoma cell line, SK-MEL-28, expresses high levels of melanotransferrin. The uptake of inorganic iron (Fe) complexes compared to transferrin-bound Fe by these cells has been investigated to determine whether melanotransferrin has a role in Fe uptake. The mechanisms of Fe uptake have been characterised using 59Fe complexes of citrate, nitrilotriacetate, desferrioxamine, and 59Fe added to Eagle's minimum essential medium (MEM) and compared with human transferrin (Tf) labelled with 59Fe and iodine-125. Iron uptake from the Fe complexes of citrate, nitrilotriacetate and MEM were similar, and far greater than that from Tf at the same Fe concentration (2.5 microM). Ammonium chloride and a monoclonal antibody to the transferrin receptor (42/6), had no effect on the uptake of Fe from inorganic Fe complexes, suggesting that receptor-mediated endocytosis of Tf was not involved. The monoclonal antibody, 96.5, specific for melanotransferrin did not alter total Fe uptake but slightly increased the proportion of Fe internalised, possibly due to the modulation of the antigen by the antibody. However, from the time required for modulation to occur (approximately 2 h), the small increase in internalisation observed and the fact that no increase in total cell Fe occurred, it is suggested that melanotransferrin has little role in Fe uptake.  相似文献   

3.
Endocytosis of vasoactive intestinal peptide (VIP) and of transferrin (Tf) was comparatively studied in human cancerous colonic HT-29 cells. Cellular depletion in potassium inhibits the internalization of VIP (23%) and to a greater extent (42%) that of Tf. This indicates that clathrin-coated pits are also involved, at least in part, in VIP uptake. The distribution of 125I-Tf- or 125I-VIP-containing vesicles in sucrose gradients revealed low and high density vesicle subpopulations. The low density vesicle subpopulation represented a transient compartment from which incoming vesicles containing N-leucyl-beta naphthylamidase were recycled back to the membrane while those containing beta-hexosaminidase (HA) and ligand were mostly transferred into the high density compartment. Subsequent fusion of the latter with heavy vesicles was demonstrated by the shift of HA and ligand with vesicles that had been prelabeled with horseradish peroxidase (HRP). Simultaneous internalization of Tf-HRP and 125I-VIP showed that both the low and high density vesicle subpopulations comprised of two types of VIP-containing vesicle, as confirmed by the density shift reaction: two-thirds of VIP shifted with the Tf-HRP-containing vesicles to denser fractions and the remaining was found with unshifted vesicles. These findings indicate that the VIP-receptor complex processing in HT-29 cells follows two routes, the major route being common with Tf endocytosis.  相似文献   

4.
Binding, endocytosis, and degradation of asialo-orosomucoid (ASOR) mediated by the galactosyl (Gal) receptor were examined in isolated rat hepatocytes in complete media supplemented with an osmolite. The specific binding of 125I-ASOR to cells at 4 degrees C was unaffected by up to 0.4 M sucrose or NaCl. Unlike sucrose or NaCl, mannitol stimulated 125I-ASOR binding at low concentrations but inhibited binding at higher concentrations. Continuous internalization at 37 degrees C, which requires receptor recycling, was completely blocked at 0.2 M sucrose or 0.15 M NaCl, corresponding in each case to a total osmolality of about 550 mmol/kg. This effect was reversed and endocytic function was restored by washing the cells, indicating that cell viability was unaffected. The rate of degradation of internalized 125I-ASOR was also inhibited by increasing sucrose concentrations. This inhibition is due to a block in the delivery of ligand to lysosomes and not an effect on degradation per se. In the presence of 0.2 M sucrose, the rate and extent of endocytosis of surface-bound 125I-ASOR were, respectively, 33.0 +/- 8.1% and 69.4 +/- 10.5% (n = 8) of the control without sucrose. Under these conditions, the dissociation of internalized receptor-ASOR complexes was completely inhibited. When sucrose was added, the effect on the endocytosis of surface-bound 125I-ASOR was virtually immediate. Previous studies showed that about 40% of the surface-bound 125I-ASOR which is internalized can return to the cell surface still bound to receptor (Weigel and Oka: J Biol Chem 259:1150, 1984). If 0.2 M sucrose was added after endocytosis occurred, 125I-ASOR still returned to the cell surface, although the rate and extent of return were inhibited by more than 50%. Interestingly, hyperosmolarity is the only treatment we have found which can reversibly inhibit, although only partially, the endocytosis of surface-bound 125I-ASOR.  相似文献   

5.
Transferrin (Tf) receptor-variant Chinese hamster ovary cells have been isolated by selection for resistance to two Tf-toxin conjugates. The hybrid toxins contain Tf covalently linked to ricin A chain or a genetically engineered diphtheria toxin fragment. The Tf-receptor-variant (TRV) cells do not have detectable cell-surface Tf receptor; they do not bind fluorescein-Tf or 125I-Tf. TRV cells are at least 100-fold more resistant to the Tf-diphtheria toxin conjugate than are the parent cells. The TRV cells have retained sensitivity to native diphtheria toxin, indicating that the increased resistance to the conjugate is correlated with the loss of Tf binding. The endocytosis of fluorescein-labeled alpha 2-macroglobulin is normal in TRV cells, demonstrating that the defect does not pleiotropically affect endocytosis. Since these cells lack endogenous Tf receptor activity, they are ideally suited for studies of the functional expression of normal or altered Tf receptors introduced into the cells by cDNA transfection. One advantage of this system is that Tf binding and uptake can be used to monitor the behavior of the transfected receptor. A cDNA clone of the human Tf receptor has been transfected into TRV cells. In the stably expressing transfectants, the behavior of the human receptor is very similar to that of the endogenous Chinese hamster ovary cell Tf receptor. Tf binds to cell surface receptors, and is internalized into the para-Golgi region of the cell. Iron is released from Tf, and the apo-Tf and its receptor are recycled back to the cell surface. Thus, the TRV cells can be used to study the behavior of genetically altered Tf receptors in the absence of interfering effects from endogenous receptors.  相似文献   

6.
The cytotoxicity of amyloidogenic proteins such as transthyretin (TTR) has implications for neurodegeneration and other pathologies, but is not well understood. In the current study, potential effects of misfolded, aggregated TTRs (agTTR) upon a major cell membrane function—endocytosis—were assessed. Internalization of transferrin (Tf), a ligand whose receptor-mediated endocytosis is well characterized, was analyzed in different cell types after treatment with agTTR. The results indicate disruption of Tf endocytosis: 20–25% inhibition by agTTR relative to the same concentrations of normal soluble TTR, or relative to another control protein, albumin (p < 0.05 for agTTR relative to controls). No statistically significant difference was observed for cell surface Tf binding between agTTR-treated and control cells. This is the first evidence for endocytic disruption by agTTR, and presents a novel cytotoxicity mechanism that may account for previously reported inhibitory effects of amyloidogenic TTR on neuronal growth.  相似文献   

7.
We compared the intracellular pathways of the transferrin receptor (TfR) with those of the asialoglycoprotein receptor (ASGPR) and the cation-independent mannose 6-phosphate receptor (MPR)/insulin-like growth factor II receptor during endocytosis in Hep G2 cells. Cells were allowed to endocytose a conjugate of horseradish peroxidase and transferrin (Tf/HRP) via the TfR system. Postnuclear supernatants of homogenized cells were incubated with 3,3'-diaminobenzidine (DAB) and H2O2. Peroxidase-catalyzed oxidation of DAB within Tf/HRP-containing endosomes cross-linked their contents to DAB polymer. The cross-linking efficiency was dependent on the intravesicular Tf/HRP concentration. The loss of detectable receptors from samples of cell homogenates treated with DAB/H2O2 was used as a measure of colocalization with Tf/HRP. To compare the distribution of internalized plasma membrane receptors with Tf/HRP, cells were first surface-labeled with 125I at 0 degrees C. After uptake of surface 125I-labeled receptors at 37 degrees C in the presence of Tf/HRP, proteinase K was used at 0 degrees C to remove receptors remaining at the plasma membrane. Endocytosed receptors were isolated by means of immunoprecipitation. 125I-TfR and 125I-ASGPR were not sorted from endocytosed Tf/HRP. 125I-MPR initially also resided in Tf/HRP-containing compartments, however 70% was sorted from the Tf/HRP pathway between 20 and 45 min after uptake. To study the accessibility of total intracellular receptor pools to endocytosed Tf/HRP, nonlabeled cells were used, and the receptors were detected by means of Western blotting. The entire intracellular TfR population, but only 70 and 50% of ASGPR and MPR, respectively, were accessible to endocytosed Tf/HRP. These steady-state levels were reached by 10 min of continuous Tf/HRP uptake at 37 degrees C. We conclude that 30% of the intracellular ASGPR pool is not involved in endocytosis (i.e., is silent). Double-labeling immunoelectron microscopy on DAB-labeled cells showed a considerable pool of ASGPR in secretory albumin-positive, Tf/HRP-negative, trans-Golgi reticulum. We suggest that this pool represents the silent ASGPR that has been biochemically determined. A model of receptor transport routes is presented and discussed.  相似文献   

8.
Previously we had demonstrated the presence of transferrin receptor (TfR) on the plasma membrane of cultured rat cortical astrocytes. In this study, we investigated the roles of TfR in transferrin-bound iron (Tf-Fe) as well as transferrin-free iron (Fe II) uptake by the cells. The cultured rat astrocytes were incubated with 1 microM of double-labelled transferrin (125I-Tf-59Fe) in serum- free DMEM F12 medium or 59Fe II in isotonic sucrose solution at 37 degrees C or 4 degrees C for varying times. The cellular Tf-Fe, Tf and Fe II uptake was analyzed by measuring the intracellular radioactivity with gamma counter. The result showed that Tf-Fe uptake kept increasing in a linear manner at least in the first 30-min. In contrast to Tf-Fe uptake, the internalization of Tf into the cells was rapid initially but then slowed to a plateau level after 10 min. of incubation. The addition of either NH4Cl or CH3NH2, the blockers of Tf-Fe uptake via inhibiting iron release from Tf within endosomes, decreased the cellular Tf-Fe uptake but had no significant effect on Tf uptake. Pre-treated cells with trypsin inhibited significantly the cellular uptake of Tf-Fe as well as Tf. These findings suggested that Tf-Fe transport across the membrane of astrocytes is mediated by Tf-TfR endocytosis. The results of transferrin-free iron uptake indicated that the cultured rat cortical astrocytes had the capacity to acquire Fe II. The highest uptake of Fe II occurred at pH 6.5. The Fe II uptake was time and temperature dependent, iron concentration saturable, inhibited by several divalent metal ions, such as Co2+, Zn2+, Mn2+ and Ni2+ and not significantly affected by phenylarsine oxide treatment. These characteristics of Fe II uptake by the cultured astrocytes suggested that Fe II uptake is not mediated by TfR and implied that a carrier-mediated iron transport system might be present on the membrane of the cultured cells.  相似文献   

9.
We have investigated receptor-mediated endocytosis of transferrin (Tf) in baby hamster kidney (BHK) cells, using fluorescence and electron microscopy, and by carrying out colocalization experiments with clathrin antibodies and a fluorescently tagged glycolipid. Early during internalization, Tf was found in small vesicles (100-150 nm in diameter) located at the cell periphery. The ligand remained associated with such vesicles when the latter concentrated towards the cell center, before ending up in the juxtanuclear area. Throughout this vesicular trafficking pathway, clathrin colocalized with Tf. We conclude that Tf is processed intracellularly via small coated endosomal vesicles (CEV) and is not delivered into large tubular endosomes (CURL; compartment for uncoupling receptors and ligands), typical for ligand trafficking to lysosomes. By determining the kinetics of Tf internalization and by comparing the flow of Tf to that of a fluorescent glycolipid, it can also be concluded that CEVs display sorting and recycling properties, implying that small vesicles can be shed from or fuse with CEVs. Acidic pH does not prevent the formation of CEVs, but their intracellular movement, towards the cell center, is impeded.  相似文献   

10.
《The Journal of cell biology》1988,106(6):1821-1829
We used a conjugate of transferrin and horseradish peroxidase (Tf/HRP) to label the intracellular transferrin receptor route in the human hepatoma cell line HepG2. The recycling kinetics of [125I]Tf/HRP were similar to those of unmodified [125I]Tf, implying identical routes for both ligands. 3,3'Diaminobenzidine (DAB)-cytochemistry was performed on post-nuclear supernatants of homogenates of cells which were incubated with both Tf/HRP and [125I]Tf, and caused two different effects: (a) the equilibrium density of [125I]Tf containing microsomes in a Percoll density gradient was increased, and (b) the amount of immunoprecipitable [125I]Tf from density-shifted lysed microsomes was only 20% of that of nonDAB treated microsomes. The whole biosynthetic route of alpha 1-antitrypsin (AT), a typical secretory glycoprotein in HepG2 cells, was labeled during a 60-min incubation with [35S]methionine. DAB cytochemistry was performed on post-nuclear supernatants of homogenates of cells which were also incubated with Tf/HRP. DAB cytochemistry caused approximately 40% of microsome- associated "complex" glycosylated [35S]alpha 1-antitrypsin ([35S]c-AT) to shift in a Percoll density gradient. Only part of the density shifted [35S]c-AT could be recovered by immunoprecipitation. A maximum effect was measured already after 10 min of Tf/HRP uptake. The density distribution of the "high mannose" glycosylated form of 35S-alpha 1- anti-trypsin [( 35S]hm-AT) was not affected by Tf/HRP. If in addition to Tf/HRP also an excess of non-conjugated transferrin was present in the medium, [35S]c-AT was not accessible for Tf/HRP, showing the involvement of the transferrin receptor (TfR) in the process. Furthermore, we show that if Tf/HRP and [35S]c-AT were located in different vesicles, the density distribution of [35S]c-AT was not affected by DAB-cytochemistry. Pulse-labeling with [35S]methionine was used to show that [35S]c-AT became accessible to endocytosed Tf/HRP minutes after acquirement of the complex configuration. A common intracellular localization of endocytosed Tf/HRP and secretory protein could be confirmed by immuno-electron microscopy: cryosections labeled with anti-albumin (protein A-colloidal gold) as well as DAB reaction product showed double-labeling in the trans-Golgi reticulum.  相似文献   

11.
The uptake and binding of 59Fe, 67Ga and 239Pu complexed with citrate of transferrin (Tf) and of 125I-labelled Fe-Tf by human lymphoblasts (WI-L2 cells) have been studied. Uptake kinetics of 59Fe-Tf and [125I]-Tf point to internalization by receptor mediated endocytosis. 67Ga binding and uptake is always less. This may be explained by a lower affinity of Ga-complexes for the cell surface. Factors which influence Fe uptake have a similar effect on Ga. 239Pu uptake and binding, however, are different, especially in that Tf does not stimulate 239Pu uptake and may actually decrease it.  相似文献   

12.
The effects of brefeldin A (BFA) on transferrin (Tf) transcellular transport, Tf receptor (TfR) distribution, and TfR-mediated endocytosis in filter-grown Madin-Darby canine kidney (MDCK) cells were studied. BFA (1.6 micrograms/ml) markedly enhanced the transcytosis of 125I-labeled Tf (125I-Tf) in both apical-to-basal and basal-to-apical directions; yet, BFA did not enhance the transcytosis of either native horseradish peroxidase (HRP) or membrane-bound HRP-poly(L-lysine) conjugates. Furthermore, this enhanced transcytosis of 125I-Tf was abolished either by competition with excess unlabeled Tf or by incubation at temperatures less than or equal to 25 degrees C. In addition, BFA treatment to MDCK cells: (a) increased 125I-Tf specific binding to the apical membrane and decreased 125I-Tf specific binding to the basal membrane; (b) decreased TfR recycling at the basolateral membrane; (c) altered the apical/basolateral distribution of TfRs in favor of the apical side; and (d) markedly increased 59Fe extraction, but not transcytosis, from apically endocytosed 59Fe-loaded Tf. These effects are consistent with a model in which BFA alters the traffic pattern of internalized Tf by decreasing basolateral TfR recycling, while diverting the nonrecycled fraction to the apical side of the cell. Our results indicate that, unlike the reported inhibition of polymeric IgA transcytosis (Hunziker, W., Whitney, J. A., and Mellman, I. (1991) Cell 67, 617-627), BFA can enhance the transcytosis of Tf in MDCK cells. Thus, by altering the intracellular traffic of ligand-receptor complexes, BFA can elicit either a decrease or an increase in transcytosis depending on the nature of the intracellular receptor processing.  相似文献   

13.
Sialic acids, occupying a terminal position in cell surface glycoconjugates, are major contributors to the net negative charge of the vascular endothelial cell surface. As integral membrane glycoproteins, LDL receptors also bear terminal sialic acid residues. Pretreatment of near-confluent, cultured bovine aortic endothelial cells (BAEC) with neuraminidase (50 mU/ml, 30 min, 37 degrees C) stimulated a significant increase in receptor-mediated 125I-LDL internalization and degradation relative to PBS-treated control cells. Binding studies at 4 degrees C revealed an increased affinity of LDL receptor sites on neuraminidase-treated cells compared to control BAEC (6.9 vs. 16.2 nM/10(6) BAEC) without a change in receptor site number. This enhanced LDL endocytosis in neuraminidase-treated cells was dependent upon the enzymatic activity of the neuraminidase and the removal of sialic acid from the cell surface. Furthermore, enhanced endocytosis due to enzymatic alteration of the 125I-LDL molecules was excluded. In contrast to BAEC, neuraminidase pretreatment of LDL receptor-upregulated cultured normal human fibroblasts resulted in an inhibition of 125I-LDL binding, internalization, and degradation. Specifically, a significant inhibition in 125I-LDL internalization was observed at 1 hr after neuraminidase treatment, which was associated with a decrease in the number of cell surface LDL receptor sites. Like BAEC, neuraminidase pretreatment of human umbilical vein endothelial cells resulted in enhanced receptor-mediated 125I-LDL endocytosis. These results indicate that sialic acid associated with either adjacent endothelial cell surface molecules or the endothelial LDL receptor itself may modulate LDL receptor-mediated endocytosis and suggest that this regulatory mechanism may be of particular importance to endothelial cells.  相似文献   

14.
Mutants of LM fibroblasts selected for their decreased ability to undergo polyethylene glycol-induced cell-to-cell fusion (F40 subline) were examined for possible alterations of their ability to carry out endocytosis. Both fluidphase endocytosis of inulin and horseradish peroxidase and nonreceptor mediated adsorptive endocytosis of poly(L-lysine) were reduced to 60% of control values. Comparable results were obtained when the uptake of poly(L-lysine) was measured as internalization of surface-bound label in label-free medium or following continuous exposure. Accelerated breakdown of internalized label was ruled out as a cause for decreased label accumulation. Accelerated exocytosis is an unlikely cause, and it is suggested that the decreased uptake is due to a decrease in the constitutive membrane vesiculation process that leads to the formation of endocytotic vesicles. The capacity of F40 cells to degrade internalized horseradish peroxidase and poly(L-lysine) was not impaired, nor was their susceptibility to the cytotoxic action of methotrexate-poly(L-lysine). This drug conjugate must be degraded inside cells and release small molecular methotrexate in order to be cytocidal. These data suggest that only the first step of nonspecific endocytosis is impaired, while the subsequent steps that require fusion of endosomes to lysosomes proceed normally. Since the formation of primary endosomes requires membrane fusion through the external aspect of the plasma membrane and in that respect resembles cell-cell fusion, we propose the hypothesis that the observed decrease in endocytosis is related to the decreased ability of F40 cells to fuse with each other, and reflects a decreased efficiency of fusion processes at the external face of the plasma membrane.  相似文献   

15.
Substrate mechanical properties have emerged as potent determinants of cell functions and fate. We here tested the hypothesis that different forms of endocytosis are regulated by the elasticity of the synthetic hydrogels cells are cultured on. Towards this objective, we quantified cell-associated fluorescence of the established endocytosis markers transferrin (Tf) and cholera toxin subunit B (CTb) using a flow-cytometry based protocol, and imaged marker internalization using microscopy techniques. Our results demonstrated that clathrin-mediated endocytosis of Tf following a 10-minute incubation with a fibroblast cell line was lower on the softer substrates studied (5 kPa) compared to those with elasticities of 40 and 85 kPa. This effect was cancelled after 1-hour incubation revealing that intracellular accumulation of Tf at this time point did not depend on substrate elasticity. Lipid-raft mediated endocytosis of CTb, on the other hand, was not affected by substrate elasticity in the studied range of time and substrate elasticity. The use of pharmacologic contractility inhibitors revealed inhibition of endocytosis for both Tf and CTb after a 10-minute incubation and a dissimilar effect after 1 hour depending on the inhibitor type. Further, the internalization of fluorescent NPs, used as model drug delivery systems, showed a dependence on substrate elasticity, while transfection efficiency was unaffected by it. Finally, an independence on substrate elasticity of Tf and CTb association with HeLa cells indicated that there are cell-type differences in this respect. Overall, our results suggest that clathrin-mediated but not lipid-raft mediated endocytosis is potentially influenced by substrate mechanics at the cellular level, while intracellular trafficking and accumulation show a more complex dependence. Our findings are discussed in the context of previous work on how substrate mechanics affect the fundamental process of endocytosis and highlight important considerations for future studies.  相似文献   

16.
We have investigated the effects of hyperosmolarity induced by sucrose on the fluid phase endocytosis of the fluorescent dye lucifer yellow CH (LY) and the endocytosis of 125I-asialo-orosomucoid (ASOR) by the galactosyl receptor system in isolated rat hepatocytes. Continuous uptake of LY by cells at 37 degrees C is biphasic, occurs for 3-4 h, and then plateaus. Permeabilized cells or crude membranes do not bind LY at 4 or 37 degrees C. Intact cells also do not accumulate LY at 4 degrees C. The rate and extent of LY accumulation are concentration- and energy-dependent, and internalized LY is released from permeabilized cells. Efflux of internalized LY from washed cells is also biphasic and occurs with halftimes of approximately 38 and 82 min. LY is taken up into vesicles throughout the cytoplasm and the perinuclear region with a distribution pattern typical of the endocytic pathway. LY, therefore, behaves as a fluid phase marker in hepatocytes. LY has no effect on the uptake of 125I-ASOR at 37 degrees C. The rate of LY uptake by cells in suspension is not affected for at least 30 min by up to 0.2 M sucrose. The rate of endocytosis of 125I-ASOR, however, is progressively inhibited by increasing the osmolality of the medium with sucrose (greater than 98% with 0.2 M sucrose; Oka and Weigel (1988) J. Cell. Biochem. 36, 169-183). Hyperosmolarity completely inhibits endocytosis of 125I-ASOR by the galactosyl receptor, whereas fluid phase endocytosis of LY is unaffected. Cultured hepatocytes contained about 100 coated pits/mm of apical membrane length as assessed by transmission electron microscopy. In the presence of 0.4 M sucrose, only 17 coated pits/mm of membrane were observed, an 83% decrease. Only a few percent of the total cellular fluid phase uptake in hepatocytes is due to the coated pit endocytic pathway. We conclude that the fluid phase and receptor-mediated endocytic processes must operate via two separate pathways.  相似文献   

17.
Transferrin receptor 2 (TfR2) is a homologue of transferrin receptor 1 (TfR1), the protein that delivers iron to cells through receptor-mediated endocytosis of diferric transferrin (Fe(2)Tf). TfR2 also binds Fe(2)Tf, but it seems to function primarily in the regulation of systemic iron homeostasis. In contrast to TfR1, the trafficking of TfR2 within the cell has not been extensively characterized. Previously, we showed that Fe(2)Tf increases TfR2 stability, suggesting that trafficking of TfR2 may be regulated by interaction with its ligand. In the present study, therefore, we sought to identify the mode of TfR2 degradation, to characterize TfR2 trafficking, and to determine how Fe(2)Tf stabilizes TfR2. Stabilization of TfR2 by bafilomycin implies that TfR2 traffics to the lysosome for degradation. Confocal microscopy reveals that treatment of cells with Fe(2)Tf increases the fraction of TfR2 localizing to recycling endosomes and decreases the fraction of TfR2 localizing to late endosomes. Mutational analysis of TfR2 shows that the mutation G679A, which blocks TfR2 binding to Fe(2)Tf, increases the rate of receptor turnover and prevents stabilization by Fe(2)Tf, indicating a direct role of Fe(2)Tf in TfR2 stabilization. The mutation Y23A in the cytoplasmic domain of TfR2 inhibits its internalization and degradation, implicating YQRV as an endocytic motif.  相似文献   

18.
Hyaluronic acid (HA) is cleared from the blood by liver endothelial cells through receptor-mediated endocytosis [Eriksson, Fraser, Laurent, Pertoft & Smedsrod (1983) Exp. Cell Res. 144, 223-238]. We have measured the capacity of cultured rat liver endothelial cells to endocytose and degrade 125I-HA (Mr approximately 44,000) at 37 degrees C. Endocytosis was linear for 3 h and then reached a plateau. The rate of endocytosis was concentration-dependent and reached a maximum of 250 molecules/s per cell. Endocytosis of 125I-HA was inhibited more than 92% by a 150-fold excess of non-radiolabelled HA. HA, chondroitin sulphate and heparin effectively competed for endocytosis of 125I-HA, whereas glucuronic acid, N-acetylglucosamine, DNA, RNA, polygalacturonic acid and dextran did not compete. In the absence of cycloheximide, endothelial cells processed 13 times more 125I-HA in 6 h than their total (cell-surface and intracellular) specific HA-binding capacity. This result was not due to degradation and rapid replacement of receptors, because, even in the presence of cycloheximide, these cells processed 6 times more HA than their total receptor content in 6 h. Also, in the presence of cycloheximide, no decrease in 125I-HA-binding capacity was seen in cells processing or not processing HA for 6 h, indicating that receptors are not degraded after the endocytosis of HA. During endocytosis of HA at 37 degrees C, at least 65% of the intracellular HA receptors became occupied with HA within 30 min. This indicates that the intracellular HA receptors (75% of the total) function during continuous endocytosis. Hyperosmolarity inhibits endocytosis and receptor recycling in the asialoglycoprotein and low-density-lipoprotein receptor systems by disrupting the coated-pit pathway [Heuser & Anderson (1987) J. Cell Biol. 105, 230a; Oka & Weigel (1988) J. Cell. Biochem. 36, 169-183]. Hyperosmolarity inhibited 125I-HA endocytosis in liver endothelial cells by more than 90%, suggesting use of a coated-pit pathway by this HA receptor. We conclude that liver endothelial cell HA receptors are recycled during the continuous endocytosis and processing of HA.  相似文献   

19.
While it has been well demonstrated that quantum dots (QDs) play an important role inbiological labeling both in vitro and in vivo,there is no report describing the cellular nanostructure basis ofreceptor-mediated endocytosis.Here,nanostructure evolution responses to the endocytosis of transferrin(Tf)-conjugated QDs were characterized by atomic force microscopy (AFM).AFM-based nanostructureanalysis demonstrated that the Tf-conjugated QDs were specifically and tightly bound to the cell receptorsand the nanostructure evolution is highly correlated with the cell membrane receptor-mediated transduction.Consistently,confocal microscopic and flow cytometry results have demonstrated the specificity anddynamic property of Tf-QD binding and internalization.We found that the internalization of Tf-QD is linearlyrelated to time.Moreover,while the nanoparticles on the cell membrane increased,the endocytosis was stillvery active,suggesting that QD nanoparticles did not interfere sterically with the binding and function ofreceptors.Therefore,ligand-conjugated QDs are potentially useful in biological labeling of cells at a nanometerscale.  相似文献   

20.
The uptake of transferrin-bound iron by receptor-mediated endocytosis has been the subject of extensive experimental investigation. However, the path followed by iron (Fe) after release from transferrin (Tf) remains obscure. Once Fe is released from Tf within the endosome, it must be transported across the endosomal membrane into the cell. The present investigation describes the presence of a cytoplasmic Tf-free Fe pool which is detectable only when cells are detached from their culture dishes at low temperature, after initial incorporation of diferric transferrin at 37 degrees C. This cellular iron pool was greatly reduced if incubation temperatures were maintained at 37 degrees C or if cells were treated with pronase. Human melanoma cells (SK-MEL-28) in culture were prelabeled by incubation with human 125I-59Fe-transferrin for 2 h, washed, and reincubated at 4 degrees C or 37 degrees C in balanced salt solution in the presence or absence of pronase. The cells were then mechanically detached from the plates and separated into "internalized" and supernatant fractions by centrifugation. Approximately 90% of cellular 59Fe and 20% of 125I-Tf remained internalized when this reincubation procedure was carried out in balanced salt solution at 37 degrees C. However, at 4 degrees C, cellular internalized iron was reduced to approximately 50% of the initial value. The release of this component of cellular 59Fe (approximately 40% of total cell 59Fe) at 4 degrees C was completely inhibited in the presence of pronase and other general proteinases at 4 degrees C and at 37 degrees C, without affecting internalized transferrin levels. Similar results were obtained in fibroblasts and hepatoma cells, indicating that this phenomenon is not unique to melanoma cells. The characterization of this Tf-free cellular Fe pool which is detectable at low temperature may yield valuable insights into the metabolic fate of iron following its transport across the membrane of the endocytotic vesicle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号