首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
During vertebrate oogenesis and early embryogenesis, gene expression is governed mainly by translational control. The recruitment of Poly(A) Binding Protein (PABP) during poly(A) tail lengthening appears to be the key to translational activation during this period of development in Xenopus laevis. We showed that PABP1 and ePABP proteins are both present during oogenesis and early development. We selected ePABP as an eRF3 binding protein in a two-hybrid screening of a X. laevis cDNA library and demonstrated that this protein is associated with translational complexes. It can complement essential functions of the yeast homologue Pab1p. We discuss specific expression patterns of the finely tuned PABP1 and ePABP proteins.  相似文献   

3.
Poly (A) binding proteins are intimately implicated in controlling a number of events in mRNA metabolism from nuclear polyadenylation to cytoplasmic translation and stability. The known poly(A) binding proteins can be divided into three distinct structural groups (prototypes PABP1, PABPN1/PABP2 and Nab2p) and two functional families, showing that similar functions can be accomplished by differing structural units. This has prompted us to perform a screen for novel poly(A) binding proteins using Xenopus laevis. A novel poly(A) binding protein of 32 kDa (p32) was identified. Sequence analysis showed that p32 has about 50% identity to the known nuclear poly(A) binding proteins (PABPN1) but is more closely related to a group of mammalian proteins of unknown function. The expression of Xenopus laevis ePABP2 is restricted to early embryos. Accordingly, we propose that p32 is the founder member of a novel class of poly(A) binding proteins named ePABP2.  相似文献   

4.
A number of viral proteases are able to cleave translation initiation factors leading to the inhibition of cellular translation. This is the case of human immunodeficiency virus type 1 protease (HIV-1 PR), which hydrolyzes eIF4GI and poly(A)-binding protein (PABP). Here, the effect of HIV-1 PR on cellular and viral protein synthesis has been examined using cell-free systems. HIV-1 PR strongly hampers translation of pre-existing capped luc mRNAs, particularly when these mRNAs contain a poly(A) tail. In fact, HIV-1 PR efficiently blocks cap- and poly(A)-dependent translation initiation in HeLa extracts. Addition of exogenous PABP to HIV-1 PR treated extracts partially restores the translation of polyadenylated luc mRNAs, suggesting that PABP cleavage is directly involved in the inhibition of poly(A)-dependent translation. In contrast to these data, PABP cleavage induced by HIV-1 PR has little impact on the translation of polyadenylated encephalomyocarditis virus internal ribosome entry site (IRES)-containing mRNAs. In this case, the loss of poly(A)-dependent translation is compensated by the IRES transactivation provided by eIF4G cleavage. Finally, translation of capped and polyadenylated HIV-1 genomic mRNA takes place in HeLa extracts when eIF4GI and PABP have been cleaved by HIV-1 PR. Together these results suggest that proteolytic cleavage of eIF4GI and PABP by HIV-1 PR blocks cap- and poly(A)-dependent initiation of translation, leading to the inhibition of cellular protein synthesis. However, HIV-1 genomic mRNA can be translated under these conditions, giving rise to the production of Gag polyprotein.  相似文献   

5.
Autoregulation of poly(A)-binding protein synthesis in vitro.   总被引:2,自引:0,他引:2       下载免费PDF全文
The poly(A)-binding protein (PABP), in a complex with the 3'poly(A) tail of eukaryotic mRNAs, plays important roles in the control of translation and message stability. All known examples of PABP mRNAs contain an extensive A-rich sequence in their 5' untranslated regions. Studies in mammalian cells undergoing growth stimulation or terminal differentiation indicate that PABP expression is regulated at the translational level. Here we examine the hypothesis that synthesis of the PABP is autogenously controlled. We show that the endogenous inactive PABP mRNA in rabbit reticulocytes can be specifically stimulated by addition of low concentrations of poly(A) and that this stimulation is also observed with in vitro transcribed human PABP mRNA. By deleting the A-rich region from the leader of human PABP mRNA and adding it upstream of the initiator AUG in a reporter mRNA we show that the adenylate tract is sufficient and necessary for mRNA repression and poly(A)-mediated activation in the reticulocyte cell-free system. UV cross-linking experiments demonstrate that the leader adenylate tract binds PABP. Furthermore, addition of recombinant GST-PABP to the cell-free system represses translation of mRNAs containing the A-rich sequence in their 5'UTR, but has no effect on control mRNA. We thus conclude that in vitro PABP binding to the A-rich sequence in the 5' UTR of PABP mRNA represses its own synthesis.  相似文献   

6.
We describe a new RNA binding protein from Xenopus we have named ePABP2 (embryonic poly(A) binding protein type II). Based on amino acid similarity, ePABP2 is closely related to the ubiquitously expressed nuclear PABP2 protein that directs the elongation of mRNA poly(A) tails during pre-mRNA processing. However, in contrast to known PABP2 proteins, Xenopus ePABP2 is a cytoplasmic protein that is predominantly expressed during the early stages of Xenopus development and in adult ovarian tissue. Biochemical experiments indicate ePABP2 binds poly(A) with specificity and that this binding requires the RRM domain. Mouse and human ePABP2 proteins were also identified and mouse ePABP2 expression is also confined to the earliest stages of mouse development and adult ovarian tissue. We propose that Xenopus ePABP2 is the founding member of a new class of poly(A) binding proteins expressed in vertebrate embryos. Possible roles for this protein in regulating mRNA function in early vertebrate development are discussed.  相似文献   

7.
《Gene》1998,216(1):1-11
A quarter of century following the prediction that mRNAs are translated in a circular form, recent biochemical and genetic evidence has accumulated to support the idea that communication between the termini of an mRNA is necessary to promote translation initiation. The poly(A)-binding protein (PABP) interacts with the cap-associated eukaryotic initiation factor (eIF) 4G (in yeast and plants) and eIF4B (in plants), a functional consequence of which is to increase the affinity of PABP for poly(A) and to increase the affinity of the cap-binding complex, eIF4F (of which eIF4G is a subunit) for the 5′ cap structure. In mammals, PABP interacts with a novel PABP-interacting protein that also binds eIF4A. The interaction between PABP and those initiation factors associated with the 5′ terminus of an mRNA may also explain the role of PABP during mRNA turnover, as it protects the 5′ cap from attack by Dcp1p, the decapping enzyme. Several of those mRNAs that have evolved functional equivalents to a cap or a poly(A) tail nevertheless require a functional interaction between terminal regulatory elements similar to that observed between the 5′ cap and poly(A) tail, suggesting that efficient translation is predicated on communication between largely-separated regulatory elements within an mRNA.  相似文献   

8.
Fukaya T  Tomari Y 《The EMBO journal》2011,30(24):4998-5009
MicroRNAs silence their complementary target genes via formation of the RNA-induced silencing complex (RISC) that contains an Argonaute (Ago) protein at its core. It was previously proposed that GW182, an Ago-associating protein, directly binds to poly(A)-binding protein (PABP) and interferes with its function, leading to silencing of the target mRNAs. Here we show that Drosophila Ago1-RISC induces silencing via two independent pathways: shortening of the poly(A) tail and pure repression of translation. Our data suggest that although PABP generally modulates poly(A) length and translation efficiency, neither PABP function nor GW182-PABP interaction is a prerequisite for these two silencing pathways. Instead, we propose that each of the multiple functional domains within GW182 has a potential for silencing, and yet they need to act together in the context of full-length GW182 to exert maximal silencing.  相似文献   

9.
10.
11.
The poly(A)-binding protein (PABP), bound to the 3' poly(A) tail of eukaryotic mRNAs, plays critical roles in mRNA translation and stability. PABP autoregulates its synthesis by binding to a conserved A-rich sequence present in the 5'-untranslated region of PABP mRNA and repressing its translation. PABP is composed of two parts: the highly conserved N terminus, containing 4 RNA recognition motifs (RRMs) responsible for poly(A) and eIF4G binding; and the more variable C terminus, which includes the recently described PABC domain, and promotes intermolecular interaction between PABP molecules as well as cooperative binding to poly(A). Here we show that, in vitro, GST-PABP represses the translation of reporter mRNAs containing 20 or more A residues in their 5'-untranslated regions and remains effective as a repressor when an A61 tract is placed at different distances from the cap, up to 126 nucleotides. Deletion of the PABP C terminus, but not the PABC domain alone, significantly reduces its ability to inhibit translation when bound to sequences distal to the cap, but not to proximal ones. Moreover, cooperative binding by multiple PABP molecules to poly(A) requires the C terminus, but not the PABC domain. Further analysis using pull-down assays shows that the interaction between PABP molecules, mediated by the C terminus, does not require the PABC domain and is enhanced by the presence of RRM 4. In vivo, fusion proteins containing parts of the PABP C terminus fused to the viral coat protein MS2 have an enhanced ability to prevent the expression of chloramphenicol acetyltransferase reporter mRNAs containing the MS2 binding site at distal distances from the cap. Altogether, our results identify a proline- and glutamine-rich linker located between the RRMs and the PABC domain as being strictly required for PABP/PABP interaction, cooperative binding to poly(A) and enhanced translational repression of reporter mRNAs in vitro and in vivo.  相似文献   

12.
13.
14.
Cleavage of eukaryotic translation initiation factor 4GI (eIF4GI) by viral 2A protease (2Apro) has been proposed to cause severe translation inhibition in poliovirus-infected cells. However, infections containing 1 mM guanidine-HCl result in eIF4GI cleavage but only partial translation shutoff, indicating eIF4GI cleavage is insufficient for drastic translation inhibition. Viral 3C protease (3Cpro) cleaves poly(A)-binding protein (PABP) and removes the C-terminal domain (CTD) that interacts with several translation factors. In HeLa cell translation extracts that exhibit cap-poly(A) synergy, partial cleavage of PABP by 3Cpro inhibited translation of endogenous mRNAs and reporter RNA as effectively as complete cleavage of eIF4GI and eIF4GII by 2Apro. 3Cpro-mediated translation inhibition was poly(A) dependent, and addition of PABP to extracts restored translation. Expression of 3Cpro in HeLa cells resulted in partial PABP cleavage and similar inhibition of translation. PABP cleavage did not affect eIF4GI-PABP interactions, and the results of kinetics experiments suggest that 3Cpro might inhibit late steps in translation or ribosome recycling. The data illustrate the importance of the CTD of PABP in poly(A)-dependent translation in mammalian cells. We propose that enteroviruses use a dual strategy for host translation shutoff, requiring cleavage of PABP by 3Cpro and of eIF4G by 2Apro.  相似文献   

15.
16.
An important determinant for the expression level of cytokines and proto-oncogenes is the rate of degradation of their mRNAs. AU-rich sequence elements (AREs) in the 3(') untranslated regions have been found to impose rapid decay of these mRNAs. ARE-containing mRNAs can be stabilized in response to external signals which activate the p38 MAP kinase cascade including the p38 MAP kinase substrate MAPKAP kinase 2 (MK2). In an attempt to identify components downstream of MK2 in this pathway we analyzed several proteins which selectively interact with the ARE of GM-CSF mRNA. One of them, the cytoplasmic poly(A)-binding protein PABP1, co-migrated with a protein that showed prominent phosphorylation by recombinant MK2. Phosphorylation by MK2 was confirmed using PABP1 purified by affinity chromatography on poly(A) RNA. The selective interaction with an ARE-containing RNA and the phosphorylation by MK2 suggest that PABP1 plays a regulatory role in ARE-dependent mRNA decay and its modulation by the p38 MAP kinase cascade.  相似文献   

17.
18.
H Imataka  A Gradi    N Sonenberg 《The EMBO journal》1998,17(24):7480-7489
Most eukaryotic mRNAs possess a 5' cap and a 3' poly(A) tail, both of which are required for efficient translation. In yeast and plants, binding of eIF4G to poly(A)-binding protein (PABP) was implicated in poly(A)-dependent translation. In mammals, however, there has been no evidence that eIF4G binds PABP. Using 5' rapid amplification of cDNA, we have extended the known human eIF4GI open reading frame from the N-terminus by 156 amino acids. Co-immunoprecipitation experiments showed that the extended eIF4GI binds PABP, while the N-terminally truncated original eIF4GI cannot. Deletion analysis identified a 29 amino acid sequence in the new N-terminal region as the PABP-binding site. The 29 amino acid stretch is almost identical in eIF4GI and eIF4GII, and the full-length eIF4GII also binds PABP. As previously shown for yeast, human eIF4G binds to a fragment composed of RRM1 and RRM2 of PABP. In an in vitro translation system, an N-terminal fragment which includes the PABP-binding site inhibits poly(A)-dependent translation, but has no effect on translation of a deadenylated mRNA. These results indicate that, in addition to a recently identified mammalian PABP-binding protein, PAIP-1, eIF4G binds PABP and probably functions in poly(A)-dependent translation in mammalian cells.  相似文献   

19.
The translational regulation of maternal mRNAs is the primary mechanism by which stage-specific programs of protein synthesis are executed during early development. Translation of a variety of maternal mRNAs requires either the maintenance or cytoplasmic elongation of a 3' poly(A) tail. Conversely, deadenylation results in translational inactivation. Although its precise function remains to be elucidated, the highly conserved poly(A) binding protein I (PABP) mediates poly(A)-dependent events in translation initiation and mRNA stability. Xenopus oocytes contain less than one PABP per poly(A) binding site suggesting that the translation of maternal mRNAs could be either limited by or independent of PABP. In this report, we have analyzed the effects of overexpressing PABP on the regulation of mRNAs during Xenopus oocyte maturation. Increased levels of PABP prevent the maturation-specific deadenylation and translational inactivation of maternal mRNAS that lack cytoplasmic polyadenylation elements. Overexpression of PABP does not interfere with maturation-specific polyadenylation, but reduces the recruitment of some mRNAs onto polysomes. Deletion of the C-terminal basic region and a single RNP motif from PABP significantly reduces both its binding to polyadenylated RNA in vivo and its ability to prevent deadenylation. In contrast to a yeast PABP-dependent poly(A) nuclease, PABP inhibits Xenopus oocyte deadenylase in vitro. These results indicate that maturation-specific deadenylation in Xenopus oocytes is facilitated by a low level of PABP consistent with a primary function for PABP to confer poly(A) stability.  相似文献   

20.
Human testis expresses a specific poly(A)-binding protein   总被引:5,自引:0,他引:5  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号