首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Secondary structure prediction for the 4 legume lectins: Concanavalin A, soybean agglutinin, favabean lectin and lentil lectin, was done by the method of Chou and Fasman. This prediction shows that these four lectins fall into a structurally distinct class of proteins, containing high amounts of β-sheet and β-turns. There is a notable similarity in the gross structure of these proteins; all four of them contain about 40–50% of β-sheet, 35–45 % β-turn and 0–10% of α-helix. When the secondary structure of corresponding residues in each pair of these lectins was compared, there was a striking similarity in the Concanavalin A-soybean agglutinin and favabean lectin-lentil lectin pairs, and considerably less similarity in the other pairs, suggesting that these legume lectins have probably evolved in a divergent manner from a common ancestor. A comparison of the predicted potential β-turn sites also supports the hypothesis of divergent evolution in this class of lectins.  相似文献   

2.
The Erythrina corallodendron lectin (EcorL) crystallizes in monoclinic and hexagonal crystal forms. Comparison of the newly determined hexagonal form (PDB code 1fyu) with the monoclinic form shows that the dimeric structure of EcorL reflects the inherent biological structure of the protein and is not an artifact of the crystal packing. To further understand the factors determining the dimerization modes of legume lectins, EcorL, concanavalin A (ConA), and Griffonia simplicifolia (GS4) were taken as representatives of the three unique dimers found in the family. Six virtual homodimers were generated. The hydropathy, amino acid composition, and solvation energy were calculated for all nine homodimers. Each of the three native dimers has a distinct chemical composition. EcorL has a dominant hydrophobic component, and ConA has a strong polar component, but in GS4 the three components contribute equally to the interface. This distribution pattern at the interface is unique to the native dimers and distinct from the partition observed in the virtual dimers. Amino acid composition of other members of the family that dimerize like EcorL or ConA maintain the same pattern of amino acids distribution observed in EcorL and ConA. However, lectins that dimerize like GS4 do not show a particularly distinct distribution. In all cases, the calculated solvation energy of the native dimer was lower than that of the virtual dimers, suggesting that the observed mode of dimerization is the most stable organization for the given sequence and tertiary structure. The dimerization type cannot be predicted by sequence analysis.  相似文献   

3.
The legume pod-borer Maruca vitrata (Fabricius), [Lepidoptera: Pyralidae] is a major constraint restricting increased cowpea production in tropical Africa and Asia. Since lectins are known to have insecticidal properties against several pests, a survey was undertaken to screen for the effects of 25 lectins from 15 plant families on the development of Maruca pod borer (MPB) larvae. The list included 8 galactose/N-acetylgalactosamine-, 7 mannose-, 5 complex glycan-, 2 sialic acid- and 3, N-acetylglucosamine-specific lectins. Feeding bioassays using artificial diet were carried out at 2% (w/w) topical levels. Although a total of 16 lectins had detrimental effects pertaining either to larval survival, weight, feeding inhibition, pupation, adult emergence and/or fecundity, only the Listera ovata agglutinin (LOA) (Orchidaceae) and Galanthus nivalis (Amaryllidaceae) agglutinin were effective against MPB larvae for all six parameters examined. Larval mortality and feeding inhibition caused by the most active lectin (LOA) was above 60%.  相似文献   

4.
基于最近邻居算法,从蛋白质一级序列出发,利用蛋白质序列氨基酸组成、二肤组成以及混合组成方法对蛋白质单聚体、二聚体、三聚体、四聚体、五聚体、六聚体和八聚体进行分类研究。结果表明:采用二肽组成编码方法的预洲效果最好,Jackknife检验和独立测试集检验的总体预测精度分别达到90.83%和95.48%,比相同数据集上基于伪氨基酸组成和组分耦合预测的方法提高了12和15个百分点;特别是对于五聚体蛋白,预测精度分别提高了90和50个百分点;说明二肽组成对于蛋白质四级结构分类研究是一种非常有效的特征提取方法。  相似文献   

5.
On pig farms, a high proportion of the cost of production comes from feed costs. However, the use of alternative ingredients such as legume seeds may help to reduce this cost. In fact, legume seeds are an important source of essential amino acids (EAA) and can therefore be an alternative to oilseed meals. However, the accurate use of these legume seeds requires a precise knowledge of the standardized ileal digestibility (SID) of EAA, which may vary depending on its botanical variety. A meta-analysis was performed on a database compiling data from 41 studies published between 1981 and 2013 and 178 dietary treatments. Models of prediction of the SID of EAA as well as the dietary concentration of digestible standardized EAA (dEAA) were obtained, based on the chemical composition of ingredients reported in the publications. The effect of the type of legume seeds (faba bean, lupin, pea and soya bean), surgical procedures (T-cannula, re-entrant cannulas, post valve T-cannulas and ileo-rectal anastomosis), and BW of pigs (BW⩽25 kg BW>25 kg) were also tested in each model. Results showed that dietary CP and crude fibre (CF) were, respectively, the best predictors of each EAA SID for faba bean, lupin and pea (R2=0.42 to 0.89) and soya bean (R2=0.32 to 0.77). For the dEAA content, the best prediction models included dietary CP and ADF for faba bean, lupin and pea and soya bean, respectively, with R2 ranging from 0.66 to 0.98. Models developed in this study allow predicting the digestibility of EAA in these alternatives feedstuffs.  相似文献   

6.
Glu-50 of aspartate transcarbamoylase from Escherichia coli forms a set of interdomain bridging interactions between the 2 domains of the catalytic chain; these interactions are critical for stabilization of the high-activity high-affinity form of the enzyme. The mutant enzyme with an alanine substituted for Glu-50 (Glu-50-->Ala) exhibits significantly reduced activity, little cooperativity, and altered regulatory behavior (Newton CJ, Kantrowitz ER, 1990, Biochemistry 29:1444-1451). A study of the structural consequences of replacing Glu-50 by alanine using solution X-ray scattering is reported here. Correspondingly, in the absence of substrates, the mutant enzyme is in the same, so-called T quaternary conformation as is the wild-type enzyme. In the presence of a saturating concentration of the bisubstrate analog N-phosphonacetyl-L-aspartate (PALA), the mutant enzyme is in the same, so-called R quaternary conformation as the wild-type enzyme. However, the Glu-50-->Ala enzyme differs from the wild-type enzyme, in that its scattering pattern is hardly altered by a combination of carbamoyl phosphate and succinate. Addition of ATP under these conditions does result in a slight shift toward the R structure. Steady-state kinetic studies indicate that, in contrast to the wild-type enzyme, the Glu-50-->Ala enzyme is activated by PALA at saturating concentrations of carbamoyl phosphate and aspartate, and that PALA increases the affinity of the mutant enzyme for aspartate. These data suggest that the enzyme does not undergo the normal T to R transition upon binding of the physiological substrates and verifies the previous suggestion that the interdomain bridging interactions involving Glu-50 are critical for the creation of the high-activity, high-affinity R state of the enzyme.  相似文献   

7.
Under conditions relevant to the manufacturing of insulin (e.g., pH 3, room temperature), biosynthetic human insulin (BHI), and Lispro insulin (Lispro) require a nucleation step to initiate aggregation. However, upon seeding with preformed aggregates, both insulins rapidly aggregate into nonnative fibrils. Far ultraviolet circular dichroism (far‐UV CD) and second derivative Fourier transform infrared (2D‐FTIR) spectroscopic analyses show that the fibrillation process involves a change in protein secondary structure from α‐helical in native insulin to predominantly β‐sheet in the nonnative fibrils. After seeding, Lispro aggregates faster than BHI, likely because of a reduced propensity to reversibly self‐associate. Composition gradient multi‐angle light scattering (CG‐MALS) analyses show that Lispro is more monomeric than BHI, whereas their conformational stabilities measured by denaturant‐induced unfolding are statistically indistinguishable. For both BHI and Lispro, as the protein concentration increases, the apparent first‐order rate constant for soluble protein loss decreases. To explain these phenomena, we propose an aggregation model that assumes fibril growth through monomer addition with competitive inhibition by insulin dimers. Biotechnol. Bioeng. 2011;108: 2359–2370. © 2011 Wiley Periodicals, Inc.  相似文献   

8.
Prabu MM  Suguna K  Vijayan M 《Proteins》1999,35(1):58-69
Legume lectins constitute a family of proteins in which small alterations arising from sequence variations in essentially the same tertiary structure lead to large changes in quaternary association. All of them are dimers or tetramers made up of dimers. Dimerization involves side-by-side or back-to-back association of the flat six-membered beta-sheets in the protomers. Variations within these modes of dimerization can be satisfactorily described in terms of angles defining the mutual disposition of the two subunits. In all tetrameric lectins, except peanut lectin, oligomerization involves the back-to-back association of side-by-side dimers. An attempt has been made to rationalize the observed modes of oligomerization in terms of hydrophobic surface area buried on association, interaction energy and shape complementarity, by constructing energy minimised models in each of which the subunit of one legume lectin is fitted in the quaternary structure of another. The results indicate that all the three indices favor and, thus, provide a rationale for the observed arrangements. However, the discrimination provided by buried hydrophobic surface area is marginal in a few instances. The same is true, to a lesser extent, about that provided by shape complementarity. The relative values of interaction energy turns out to be a still better discriminator than the other two indices. Variability in the quaternary association of homologous proteins is a widely observed phenomenon and the present study is relevant to the general problem of protein folding.  相似文献   

9.
The crystal structures of a monoclinic and a triclinic form of the peanut lectin-lactose complex, grown at pH 4.6, have been determined. They contain two and one crystallographically independent tetramers, respectively. The unusual "open" quaternary structure of the lectin, observed in the orthorhombic complex grown in neutral pH, is retained at the acidic pH. The sugar molecule is bound to three of the eight subunits in the monoclinic crystals, whereas the combining sites in four are empty. The lectin-sugar interactions are almost the same at neutral and acidic pH. A comparison of the sugar-bound and free subunits indicates that the geometry of the combining site is relatively unaffected by ligand binding. The combining site of the eighth subunit in the monoclinic crystals is bound to a peptide stretch in a loop from a neighboring molecule. The same interaction exists in two subunits of the triclinic crystals, whereas density corresponding to sugar exists in the combining sites of the other two subunits. Solution studies show that oligopeptides with sequences corresponding to that in the loop bind to the lectin at acidic pH, but only with reduced affinity at neutral pH. The reverse is the case with the binding of lactose to the lectin. A comparison of the neutral and acidic pH crystal structures indicates that the molecular packing in the latter is directed to a substantial extent by the increased affinity of the peptide loop to the combining site at acidic pH.  相似文献   

10.
Arabidopsis thaliana grows efficiently on GABA as the sole nitrogen source, thereby providing evidence for the existence of GABA transporters in plants. Heterologous complementation of a GABA uptake-deficient yeast mutant identified two previously known plant amino acid transporters, AAP3 and ProT2, as GABA transporters with Michaelis constants of 12.9±1.7 and 1.7±0.3 mM at pH 4, respectively. The simultaneous transport of [1-14C]GABA and [2,3-3H]proline by ProT2 as a function of pH, provided evidence that the zwitterionic state of GABA is an important parameter in substrate recognition. ProT2-mediated [1-14C]GABA transport was inhibited by proline and quaternary ammonium compounds.  相似文献   

11.
Kim WK  Ison JC 《Proteins》2005,61(4):1075-1088
Considering the limited success of the most sophisticated docking methods available and the amount of computation required for systematic docking, cataloging all the known interfaces may be an alternative basis for the prediction of protein tertiary and quaternary structures. We classify domain interfaces according to the geometry of domain-domain association. By applying a simple and efficient method called "interface tag clustering," more than 4,000 distinct types of domain interfaces are collected from Protein Quaternary Structure Server and Protein Data Bank. Given a pair of interacting domains, we define "face" as the set of interacting residues in each single domain and the pair of interacting faces as an "interface." We investigate how the geometry of interfaces relates to a network of interacting protein families, such as how many different binding orientations are possible between two families or whether a family uses distinct surfaces or the same surface when the family has diverse interaction partners from various families. We show there are, on average, 1.2-1.9 different types of interfaces between interacting domains and a significant number of family pairs associate in multiple orientations. In general, a family tends to use distinct faces for each partner when the family has diverse interaction partners. Each face is highly specific to its interaction partner and the binding orientation. The relative positions of interface residues are generally well conserved within the same type of interface even between remote homologs. The classification result is available at http://www.biotec.tu-dresden.de/~wkim/supplement.  相似文献   

12.
The allosteric transition of glycogen phosphorylase promoted by protein phosphorylation is accompanied by the association of a pair of functional dimers to form a tetramer. The conformational changes within the dimer that lead to the creation of a protein recognition surface have been analyzed from a comparison of the crystal structures of T-state dimeric phosphorylase b and R-state tetrameric phosphorylase a. Regions of the structure that participate in the tetramer interface are situated within structural subdomains. These include the glycogen storage subdomain, the C-terminal subdomain and the tower helix. The subdomains undergo concerted conformational transitions on conversion from the T to the R state (overall r.m.s. shifts between 1 and 1.7 A) and, together with the quaternary conformational change within the functional dimer, create the tetramer interface. The glycogen storage subdomain and the C-terminal subdomain are distinct from those regions that contribute to the dimer interface, but shifts in the subdomains are correlated with the allosteric transitions that are mediated by the dimer interface. The structural properties of the tetramer interface are atypical of an oligomeric protein interface and are more similar to protein recognition surfaces observed in protease inhibitors and antibody-protein antigen complexes. There is a preponderance of polar and charged residues at the tetramer interface and a high number of H-bonds per surface area (one H-bond per 130 A2). In addition, the surface area made inaccessible at the interface is relatively small (1,142 A2 per subunit on dimer to tetramer association compared with 2,217 A2 per subunit on monomer-to-dimer association).  相似文献   

13.
Arodź T  Płonka PM 《Proteins》2012,80(7):1780-1790
Inspection of structure changes in proteins borne by altering their sequences brings understanding of physics, functioning and evolution of existing proteins, and helps engineer modified ones. On single amino acid substitutions, the most frequent mutation type, shifts in backbone conformation are typically small, raising doubts if and how such minor modifications could drive evolutionary divergence. Here, we report that the distribution of magnitudes of structure change on such substitutions is heavy-tailed--whereas protein structures are robust to most substitutions, changes much larger than average occur with raised odds compared to what would be expected for exponential distribution with the same mean. This nonexponential behavior allows for reconciling the apparent contradiction between the observed conservation of protein structures and the substantial evolutionary plasticity implied in their diversity. The presence of the heavy tail in the distribution promotes structure divergence, facilitating exploration of new functionality, and conformations within folds, as well as exploration of structure space for new folds.  相似文献   

14.
Cyclic protein oligomers are common in cells. However, the importance of the residues that line the central tunnel of protein rings for overall architectural integrity is not well understood. To investigate the role of tunnel positions in protein assembly and stability, we prepared variants of the homo-pentameric lumazine synthase (LS) from Saccharomyces cerevisiae in which the three residues that line the middle of the tunnel were simultaneously changed. As a consequence of symmetry, these mutations cause a total of 15 changes in the structure of the pentameric complex. Detailed characterization of the variants indicates that they retain quaternary structural integrity, even in cases where the mutations induce considerable secondary structure alterations. The tunnels of symmetric ring-shaped proteins, such as LS, may consequently represent an overlooked site for protein engineering.  相似文献   

15.
16.
Amelogenin is a unique protein that self‐assembles into spherical aggregates called “nanospheres” and is believed to be involved in controlling the formation of the highly anisotropic and ordered hydroxyapatite crystallites that form enamel. The adsorption behavior of amelogenin onto substrates is of great interest because protein‐surface interactions are critical to its function. We report studies of the adsorption of amelogenin onto self‐assembled monolayers containing COOH end group functionality as well as single crystal fluoroapatite, a biologically relevant surface. We found that although our solutions contained only nanospheres of narrow size distribution, smaller structures such as dimers or trimers were observed on the hydrophilic surfaces. This suggests that amelogenin can adsorb onto surfaces as small structures that “shed” or disassemble from the nanospheres that are present in solution. © 2008 Wiley Periodicals, Inc. Biopolymers 91: 103–107, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

17.
The role of carbohydrate chains for the structure, function, stability, and folding of glycoproteins has been investigated using invertase as a model. The protein is encoded by several different genes, and its carbohydrate moiety is heterogeneous. Both properties complicate physicochemical comparisons. Here we used the temperature-sensitive sec18 secretion mutant of yeast with a single invertase gene (SUC2). This mutant produces the carbohydrate-free internal invertase, the core-glycosylated form, and, at the permissive temperature, the fully glycosylated external enzyme, all with identical protein moieties. The core-glycosylated enzyme resembles the nascent glycoprotein chain that folds in the endoplasmic reticulum. Therefore, it may be considered a model for the in vivo folding of glycoproteins. In addition, because of its uniform glycosylation, it can be used to investigate the state of association of native invertase. Glycosylation is found to stabilize the protein with respect to thermal denaturation and chaotropic solvent components; the stabilizing effect does not differ for the external and the core-glycosylated forms. Unlike the internal enzyme, the glycosylated forms are protected from aggregation. Native internal invertase is a dimer (115 kDa) whereas the core-glycosylated enzyme is a mixture of dimers, tetramers, and octamers. This implies that core-glycosylation is necessary for oligomerization to tetramers and octamers. Dimerization is required and sufficient to generate enzymatic activity; further association does not alter the specific activity of core-glycosylated invertase, suggesting that the active sites of invertase are not affected by the association of the dimeric units. Reconstitution of the glycosylated and nonglycosylated forms of the enzyme after preceding guanidine denaturation depends on protein concentration. The maximum yield (approximately 80%) is obtained at pH 6-8 and protein concentrations < or = 4 micrograms/mL for the nonglycosylated and < or = 40 for the glycosylated forms of the enzyme. The lower stability of the internal enzyme is reflected by a narrower pH range of reactivation and enhanced aggregation. As indicated by the sigmoidal reactivation kinetics at low protein concentration both folding and association are rate-determining.  相似文献   

18.
Point mutations at the dimer interface of the homodimeric enzyme ascorbate peroxidase (APx) were constructed to assess the role of quaternary interactions in the stability and activity of APx. Analysis of the APx crystal structure shows that Glu112 forms a salt bridge with Lys20 and Arg24 of the opposing subunit near the axis of dyad symmetry between the subunits. Two point mutants, E112A and E112K, were made to determine the effects of a neutral (alanine) and repulsive (lysine) mutation on dimerization, stability, and activity. Gel filtration analysis indicated that the ratio of the monomer to dimer increased as the dimer interface interactions went from attractive to repulsive. Differential scanning calorimetry (DSC) data exhibited a decrease in both the transition temperature (Tm) and enthalpy of unfolding (deltaHc) with Tm = 58.3 +/- 0.5 degrees C, 56.0 +/- 0.8 degrees C, and 53.0 +/- 0.9 degrees C and deltaHc = 245 +/- 29 kcal/mol, 199 +/- 38 kcal/mol, and 170 +/- 25 kcal/mol for wild-type APx, E112A, and E112K, respectively. Similar changes were observed based on thermal melting curves obtained by absorption spectroscopy. No change in enzyme activity was found for the E112A mutant, and only a 25% drop in activity was observed for the E112K mutant which demonstrates that the non-Michaelis Menten kinetics of APx is not due to the APx oligomeric structure. The cryogenic crystal structures of the wild-type and mutant proteins show that mutation induced changes are limited to the dimer interface including an alteration in solvent structure.  相似文献   

19.
  1. Download : Download high-res image (339KB)
  2. Download : Download full-size image
  相似文献   

20.
Carbonmonoxy hemoglobin Ypsilanti (beta 99 Asp-Tyr) exhibits a quaternary form distinctly different from any structures previously observed for human hemoglobins. The relative orientation of alpha beta dimers in the new quaternary form lies well outside the range of values observed for normal unliganded and liganded tetramers (Baldwin, J., Chothia, C., J. Mol. Biol. 129:175-220, 1979). Despite this large quaternary structural difference between carbonmonoxy hemoglobin Ypsilanti and the two canonical structures, the new quaternary structure's hydrogen bonding interactions in the "switch" region, and packing interactions in the "flexible joint" region, show noncovalent interactions characteristic of the alpha 1 beta 2 contacts of both unliganded and liganded normal hemoglobins. In contrast to both canonical structures, the beta 97 histidine residue in carbonmonoxy hemoglobin Ypsilanti is disengaged from quaternary packing interactions that are generally believed to enforce two-state behavior in ligand binding. These features of the new quaternary structure, denoted Y, may therefore be representative of quaternary states that occur transiently along pathways between the normal unliganded, T, and liganded, R, hemoglobin structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号