首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
Recent studies suggest that uromodulin plays an important role in chronic kidney diseases. It can interact with several complement components, various cytokines and immune system cells. Complement factor H (CFH), as a regulator of the complement alternative pathway, is also associated with various renal diseases. Thus, we have been suggested that uromodulin regulates complement activation by interacting with CFH during tubulointerstitial injury. We detected co‐localization of uromodulin and CFH in the renal tubules by using immunofluorescence. Next, we confirmed the binding of uromodulin with CFH in vitro and found that the affinity constant (KD) of uromodulin binding to CFH was 4.07 × 10?6M based on surface plasmon resonance results. The binding sites on CFH were defined as the short consensus repeat (SCR) units SCR1–4, SCR7 and SCR19–20. The uromodulin‐CFH interaction enhanced the cofactor activity of CFH for factor I‐mediated cleavage of C3b to iC3b. These results indicate that uromodulin plays a role via binding and enhancing the function of CFH.  相似文献   

2.

Background

Familial juvenile hyperuricemic nephropathy (FJHN) is an autosomal dominant disorder characterized by hyperuricemia and progressive chronic kidney disease. Uromodulin gene (UMOD) mutations, leading to abnormalities of uromodulin intracellular trafficking contribute to the progress of the disease.

Methods

We did UMOD screening in three Chinese FJHN families. We thus constructed mutant uromodulin express plasmids by site-mutagenesis from wild type uromodulin vector and transfected them into HEK293 (human embryonic kidney) cells. And then we detected uromodulin expression by western blot and observed intracellular distribution by immunofluorescence.

Results

We found three heterozygous mutations. Mutation Val109Glu (c.326T/A; p.Val109Glu) and mutation Pro236Gln (c.707C/A; p.Pro236Gln) were newly indentified mutations in two distinct families (family F1 and family F3). Another previously reported UMOD mutation Cys248Trp (c.744C/G; p.Cys248Trp) was detected in family F2. Phenotypes varied both within the same family and between different families. Uromodulin expression is abnormal in the patient biopsy. Functional analysis of mutation showed that mutant types of uromodulin were secreted into the supernatant medium much less when compared with wild type. In mutant type uromodulin transfected cells, intracellular uromodulin localized less in the Golgi apparatus and more in endoplasmic reticulum(ER).

Conclusions

Our results suggested that the novel uromodulin mutations found in the Chinese families lead to misfolded protein, which was retained in the endoplasmic reticulum, finally contributed to the phenotype of FJHN.  相似文献   

3.
Intracellular protein trafficking is tightly regulated, and improper trafficking might be the fundamental provocateur for human diseases including neurodegeneration. In neurons, protein trafficking to and from the plasma membrane affects synaptic plasticity. Voltage‐gated potassium channel 2.1 (Kv2.1) is a predominant delayed rectifier potassium (K+) current, and electrical activity patterns of dopamine (DA) neurons within the substantia nigra are generated and modulated by the orchestrated function of different ion channels. The pathological hallmark of Parkinson's disease (PD) is the progressive loss of these DA neurons, resulting in the degeneration of striatal dopaminergic terminals. However, whether trafficking of Kv2.1 channels contributes to PD remains unclear. In this study, we demonstrated that MPTP/MPP+ increases the surface expression of the Kv2.1 channel and causes nigrostriatal degeneration by using a subchronic MPTP mouse model. The inhibition of the Kv2.1 channel by using a specific blocker, guangxitoxin‐1E, protected nigrostriatal projections against MPTP/MPP+ insult and thus facilitated the recovery of motor coordination. These findings highlight the importance of trafficking of Kv2.1 channels in the pathogenesis of PD.

  相似文献   

4.
Abstract

Novel compound heterozygous mutations, G701D, a recessive mutation, and A858D, a mild dominant mutation, of human solute carrier family 4, anion exchanger, member 1 (SLC4A1) were identified in two pediatric patients with distal renal tubular acidosis (dRTA). To examine the interaction, trafficking, and cellular localization of the wild-type and two mutant kidney AE1 (kAE1) proteins, we expressed the proteins alone or together in human embryonic kidney (HEK) 293T and Madin-Darby canine kidney (MDCK) epithelial cells. In individual expressions, wild-type kAE1 was localized at the cell surface of HEK 293T and the basolateral membrane of MDCK cells. In contrast, kAE1 G701D was mainly retained intracellularly, while kAE1 A858D was observed intracellularly and at the cell surface. In co-expression experiments, wild-type kAE1 formed heterodimers with kAE1 G701D and kAE1 A858D, and promoted the cell surface expression of the mutant proteins. The co-expressed kAE1 G701D and A858D could also form heterodimers but showed predominant intracellular retention in HEK 293T and MDCK cells. Thus impaired trafficking of the kAE1 G701D and A858D mutants would lead to a profound decrease in functional kAE1 at the basolateral membrane of α-intercalated cells in the distal nephron of the patients with dRTA.  相似文献   

5.
G protein-coupled receptors (GPCRs) constitute a superfamily of cell-surface receptors which share a common topology of seven transmembrane domains and modulate a variety of cell functions through coupling to heterotrimeric G proteins by responding to a vast array of stimuli. The magnitude of cellular response elicited by a given signal is dictated by the level of GPCR expression at the plasma membrane, which is the balance of elaborately regulated endocytic and exocytic trafficking. This review will cover recent advances in understanding the molecular mechanism underlying anterograde transport of the newly synthesized GPCRs from the endoplasmic reticulum (ER) through the Golgi to the plasma membrane. We will focus on recently identified motifs involved in GPCR exit from the ER and the Golgi, GPCR folding in the ER and the rescue of misfolded receptors from within, GPCR-interacting proteins that modulate receptor cell-surface targeting, pathways that mediate GPCR traffic, and the functional role of export in controlling GPCR signaling.  相似文献   

6.
Neurotensin (NT) receptors NTS1 and NTS2 are known to display considerable distributional overlap in mammalian central nervous system (CNS). Using co-immunoprecipitation approaches, we demonstrated here that NTS1 forms constitutive heterodimers with NTS2 in transfected COS-7 cells. We also showed that co-expression of NTS2 with NTS1 markedly decreases the cell surface density of NTS1 without affecting ERK1/2 MAPK activity or NT-induced NTS1 internalization. However, radioligand-binding studies indicated that upon prolonged NT stimulation, cell surface NTS1 receptors are more resistant to down-regulation in cells co-expressing NTS1 and NTS2 than in cells expressing NTS1 alone. Taken together, these data suggest that NTS1/NTS2 heterodimerization affects the intracellular distribution and trafficking of NTS1 by making it more similar to that of NTS2 as witnessed in cells expressing NTS2 alone. NTS1/NTS2 heterodimerization might therefore represent an additional mechanism in the regulation of NT-triggered responses mediated by NTS1 and NTS2 receptors.  相似文献   

7.
Genetic prion diseases are degenerative brain disorders caused by mutations in the gene encoding the prion protein (PrP). Different PrP mutations cause different diseases, including Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker (GSS) syndrome and fatal familial insomnia (FFI). The reason for this variability is not known. It has been suggested that prion strains with unique self-replicating and neurotoxic properties emerge spontaneously in individuals carrying PrP mutations, dictating the phenotypic expression of disease. We generated transgenic mice expressing the FFI mutation, and found that they developed a fatal neurological illness highly reminiscent of FFI, and different from those of similarly generated mice modeling genetic CJD and GSS. Thus transgenic mice recapitulate the phenotypic differences seen in humans. The mutant PrPs expressed in these mice are misfolded but unable to self-replicate. They accumulate in different compartments of the neuronal secretory pathway, impairing the membrane delivery of ion channels essential for neuronal function. Our results indicate that conversion of mutant PrP into an infectious isoform is not required for pathogenesis, and suggest that the phenotypic variability may be due to different effects of mutant PrP on intracellular transport.  相似文献   

8.
Cystathionine β-synthase (CBS) is a pyridoxal 5′-phosphate (PLP)-dependent enzyme that catalyzes the condensation of homocysteine with serine to generate cystathionine. Homocystinuria is an autosomal recessive disorder commonly caused by a deficiency of CBS activity. Here, we characterized a novel CBS mutation (c.260C > A (p.T87N)) and a previously reported variant (c.700G > A (p.D234N)) found in Venezuelan homocystinuric patients, one nonresponsive and one responsive to vitamin B6. Both mutant proteins were expressed in vitro in prokaryotic and eukaryotic cells, finding lower soluble expression in HEK-293 cells (19% T87N and 23% D234N) compared to wild-type CBS. Residual activities obtained for the mutant proteins were 3.5% T87N and 43% D234N. Gel exclusion chromatography demonstrated a tendency of the T87N mutant to aggregate while the distribution of the D234N mutant was similar to wild-type enzyme. Using immunofluorescence microscopy, an unexpected difference in intracellular localization was observed between the wild-type and mutant proteins. While the T87N mutant exhibited a punctate appearance, the wild-type protein was homogeneously distributed inside the cell. Interestingly, the D234N protein showed both distributions. This study demonstrates that the pathogenic CBS mutations generate unstable proteins that are unable (T87N) or partially unable (D234N) to assemble into a functional enzyme, implying that these mutations might be responsible for the homocystinuria phenotype.  相似文献   

9.
Retinol-binding protein 4 (RBP4) is elevated in patients with chronic kidney disease (CKD) and has been discussed as marker of kidney function. In addition to an elevated concentration, the existence of truncated RBP4 species, RBP4-L (truncated at last C-terminal leucine) and RBP4-LL (truncated at both C-terminal leucines), has been reported in serum of hemodialysis patients. Since little is known about the occurrence of RBP4 species during the progression of CKD it was the aim of this study to analyse this possible association. The presence of RBP4, RBP4-L, RBP4-LL and transthyretin (TTR) was assessed in serum of 45 healthy controls and 52 patients with stage 2-5 of CKD using ELISA and RBP4 immunoprecipitation with subsequent MALDI-TOF-MS analysis. A reduction of glomerular filtration rate was accompanied by a gradual elevation of RBP4 serum levels and relative amounts of RBP4-LL. Correlation analysis revealed a strong association of the RBP4-TTR ratio with parameters of lipid metabolism and with diabetes-related factors. In conclusion, RBP4 serum concentration and the appearance of RBP4-LL seem to be influenced by kidney function. Furthermore, the RBP4-TTR ratio may provide diagnostic potential with regard to metabolic complications in CKD patients.  相似文献   

10.
11.

Background

The deposition of self-assembled amyloidogenic proteins is associated with multiple diseases, including Alzheimer's disease, Parkinson's disease and type 2 diabetes mellitus. The toxic misfolding and self-assembling of amyloidogenic proteins are believed to underlie protein misfolding diseases. Novel drug candidates targeting self-assembled amyloidogenic proteins represent a potential therapeutic approach for protein misfolding diseases.

Scope of review

In this perspective review, we provide an overview of the recent progress in identifying inhibitors that block the aggregation of amyloidogenic proteins and the clinical applications thereof.

Major conclusions

Compounds such as polyphenols, certain short peptides, and monomer- or oligomer-specific antibodies, can interfere with the self-assembly of amyloidogenic proteins, prevent the formation of oligomers, amyloid fibrils and the consequent cytotoxicity.

General significance

Some inhibitors have been tested in clinical trials for treating protein misfolding diseases. Inhibitors that target the aggregation of amyloidogenic proteins bring new hope to therapy for protein misfolding diseases.  相似文献   

12.
Cholangiocytes are epithelial cells that line the intra- and extrahepatic biliary tree. They serve predominantly to mediate the content of luminal biliary fluid, which is controlled via numerous signaling pathways influenced by endogenous (e.g., bile acids, nucleotides, hormones, neurotransmitters) and exogenous (e.g., microbes/microbial products, drugs etc.) molecules. When injured, cholangiocytes undergo apoptosis/lysis, repair and proliferation. They also become senescent, a form of cell cycle arrest, which may prevent propagation of injury and/or malignant transformation. Senescent cholangiocytes can undergo further transformation to a senescence-associated secretory phenotype (SASP), where they begin secreting pro-inflammatory and pro-fibrotic signals that may contribute to disease initiation and progression. These and other concepts related to cholangiocyte pathobiology will be reviewed herein. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.  相似文献   

13.
The presence and progression of numerous diseases have been linked to deficiencies in antioxidant systems. The relationships between single nucleotide polymorphisms (SNPs) arising from specific antioxidant enzymes and diseases associated with elevated oxidative stress have been studied with the rationale that they may be useful in screening for diseases. The purpose of this narrative review is to analyse evidence from these studies. The antioxidant enzyme SNPs selected for analysis are based on those most frequently investigated in relation to diseases in humans: superoxide dismutase (SOD2) Ala16Val (80 studies), glutathione peroxidise (GPx1) Pro197Leu (24 studies) and catalase C-262T (22 studies). Although the majority of evidence supports associations between the SOD2 Ala16Val SNP and diseases such as breast, prostate and lung cancers, diabetes and cardiovascular disease, the presence of the SOD2 Ala16Val SNP confers only a small, clinically insignificant reduction (if any) in the risk of these diseases. Other diseases such as bladder cancer, liver disease, nervous system pathologies and asthma have not been consistently related to this SOD SNP genotype. The GPx1 Pro197Leu and catalase C-262T SNP genotypes have been associated with breast cancer, but only in a small number of studies. Thus, currently available evidence suggests antioxidant enzyme SNP genotypes are not useful for screening for diseases in humans.  相似文献   

14.
Coronary artery disease remains the leading cause of mortality in adult diabetic population with however, a high predominance also in non-diabetic subjects. In search of common molecular mechanisms and metabolic by-products with potential pathogenic role, increased advanced glycation end products (AGEs) present a critical biomarker for CAD development in both cases. Interaction of AGEs with their transmembrane cell receptor, RAGE in endothelial and smooth muscle cells as well as in platelets, activates intracellular signaling that leads to endothelial injury, modulation of vascular smooth muscle cell function and altered platelet activity. Furthermore, tissue accumulation of AGEs affects current treatment approaches being involved in stent restenosis. The present review provides an update of AGE-induced molecular mechanisms involved in CAD pathophysiology while it discusses emerging therapeutic interventions targeting AGE reduction and AGE-RAGE signaling with beneficial clinical outcome.  相似文献   

15.
With the world-wide increase of patients with renal failure, the development of functional renal replacement therapies have gained significant interest and novel technologies are rapidly evolving. Currently used renal replacement therapies insufficiently remove accumulating waste products, resulting in the uremic syndrome. A more preferred treatment option is kidney transplantation, but the shortage of donor organs and the increasing number of patients waiting for a transplant warrant the development of novel technologies. The bioartificial kidney (BAK) is such promising biotechnological approach to replace essential renal functions together with the active secretion of waste products. The development of the BAK requires a multidisciplinary approach and evolves at the intersection of regenerative medicine and renal replacement therapy. Here we provide a concise review embracing a compact historical overview of bioartificial kidney development and highlighting the current state-of-the-art, including implementation of living-membranes and the relevance of extracellular matrices. We focus further on the choice of relevant renal epithelial cell lines versus the use of stem cells and co-cultures that need to be implemented in a suitable device. Moreover, the future of the BAK in regenerative nephrology is discussed.  相似文献   

16.
Syndromes associated with LCAT deficiency, a rare autosomal recessive condition, include fish-eye disease (FED) and familial LCAT deficiency (FLD). FLD is more severe and characterized by early and progressive chronic kidney disease (CKD). No treatment is currently available for FLD, but novel therapeutics are under development. Furthermore, although biomarkers of LCAT deficiency have been identified, their suitability to monitor disease progression and therapeutic efficacy is unclear, as little data exist on the rate of progression of renal disease. Here, we systematically review observational studies of FLD, FED, and heterozygous subjects, which summarize available evidence on the natural history and biomarkers of LCAT deficiency, in order to guide the development of novel therapeutics. We identified 146 FLD and 53 FED patients from 219 publications, showing that both syndromes are characterized by early corneal opacity and markedly reduced HDL-C levels. Proteinuria/hematuria were the first signs of renal impairment in FLD, followed by rapid decline of renal function. Furthermore, LCAT activity toward endogenous substrates and the percentage of circulating esterified cholesterol (EC%) were the best discriminators between these two syndromes. In FLD, higher levels of total, non-HDL, and unesterified cholesterol were associated with severe CKD. We reveal a nonlinear association between LCAT activity and EC% levels, in which subnormal levels of LCAT activity were associated with normal EC%. This review provides the first step toward the identification of disease biomarkers to be used in clinical trials and suggests that restoring LCAT activity to subnormal levels may be sufficient to prevent renal disease progression.  相似文献   

17.
ObjectiveThe prevalence of chronic kidney disease (CKD) in the United States is 13% of the general population. Among those with CKD, diabetic nephropathy is the leading cause of end-stage renal disease. This is a retrospective study examining the effect of long-term use of dipeptidyl peptidase-4 (DPP-4) inhibitors on all-cause mortality and progression of renal disease in the veteran population.MethodsData was extracted using the Veterans Administration Informatics and Computing Infrastructure. A large cohort of veterans diagnosed with type 2 diabetes mellitus were used to identify patients on DPP-4 inhibitors and without DPP-4 inhibitors. Groups were compared to determine the effect of DPP-4 inhibitors on the progression of CKD and all-cause mortality. Data were analyzed using SAS.ResultsSubjects in the treatment group (n = 40 558) had baseline variables (age, body mass index, race) similar to the control group (n = 40 558). Diabetes control improved in the treatment group (HgbA1c, 8.3% [67 mmol/mol] to 7.8% [62 mmol/mol]; P < .001) but not in the control group (HgbA1c, 7.4% [57 mmol/mol] to 7.3% [56 mmol/mol]). New diagnoses of heart failure and coronary artery bypass grafts were clinically significant (odds ratios = 0.66 and 0.52). No change in progression of CKD was seen in either group. All-cause mortality was reduced by 59%.ConclusionWe conclude that DPP-4 inhibitors are associated with a significant reduction in all-cause mortality independent of glucose control, albeit with no clear cause, including obtainable cardiovascular outcomes. Our data is consistent with prior trials in that DPP-4 inhibitors did not show a significant change in serum creatinine or microalbuminuria.  相似文献   

18.
Cisplatin is a commonly used chemotherapeutic for the treatment of many solid organ cancers; however, its effectiveness is limited by the development of acute kidney injury (AKI) in 30% of patients. AKI is driven by proximal tubule cell death, leading to rapid decline in renal function. It has previously been shown that sphingolipid metabolism plays a role in regulating many of the biological processes involved in cisplatin-induced AKI. For example, neutral ceramidase (nCDase) is an enzyme responsible for converting ceramide into sphingosine, which is then phosphorylated to become sphingosine-1-phosphate, and our lab previously demonstrated that nCDase knockout (nCDase?/?) in mouse embryonic fibroblasts led to resistance to nutrient and energy deprivation–induced cell death via upregulation of autophagic flux. In this study, we further characterized the role of nCDase in AKI by demonstrating that nCDase?/? mice are resistant to cisplatin-induced AKI. nCDase?/? mice display improved kidney function, reduced injury and structural damage, lower rates of apoptosis, and less ER stress compared to wild-type mice following cisplatin treatment. Although the mechanism of protection is still unknown, we propose that it could be mediated by increased autophagy, as chloroquine treatment resensitized nCDase?/? mice to AKI development. Taken together, we conclude that nCDase may represent a novel target to prevent cisplatin-induced nephrotoxicity.  相似文献   

19.
Energy metabolism alterations are found in a large number of rare and common diseases of genetic or environmental origin. The number of patients that could benefit from bioenergetic modulation therapy (BIOMET) is therefore very important and includes individuals with pathologies as diverse as mitochondrial diseases, acute coronary syndrome, chronic kidney disease, asthma or even cancer. Although, the alteration of energy metabolism is disease specific and sometimes patient specific, the strategies for BIOMET could be common and target a series of bioenergetic regulatory mechanisms discussed in this article. An excellent training of scientists in the field of energy metabolism, related human diseases and drug discovery is also crucial to form a young generation of MDs, PHDs and Pharma or CRO-group leaders who will discover novel personalized bioenergetic medicines, through pharmacology, genetics, nutrition or adapted exercise training. The Mitochondrial European Educational Training (MEET) consortium was created to pursue this goal, and we dedicated here a special issue of Organelle in Focus (OiF) to highlight their objectives. A total of 10 OiFs articles constitute this Directed Issue on Mitochondrial Medicine. As part of this editorial article, we asked timely questions to the PR. Jan W. Smeitink, professor of Mitochondrial Medicine and CEO of Khondrion, a mitochondrial medicine company. He shared with us his objectives and strategies for the study of mitochondrial diseases and the identification of future treatments.This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号