首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
A putative low molecular weight protein tyrosine phosphatase (LMW-PTP) was identified in the genome sequence of the bacterial pathogen, Campylobacter jejuni. This novel gene, cj1258, has sequence homology with a distinctive class of phosphatases widely distributed among prokaryotes and eukaryotes. We report here the solution structure of Cj1258 established by high-resolution NMR spectroscopy using NOE-derived distance restraints, hydrogen bond data, and torsion angle restraints. The three-dimensional structure consists of a central four-stranded parallel beta-sheet flanked by five alpha-helices, revealing an overall structural topology similar to those of the eukaryotic LMW-PTPs, such as human HCPTP-A, bovine BPTP, and Saccharomyces cerevisiae LTP1, and to those of the bacterial LMW-PTPs MPtpA from Mycobacterium tuberculosis and YwlE from Bacillus subtilis. The active site of the enzyme is flexible in solution and readily adapts to the binding of ligands, such as the phosphate ion. An NMR-based screen was carried out against a number of potential inhibitors and activators, including phosphonomethylphenylalanine, derivatives of the cinnamic acid, 2-hydroxy-5-nitrobenzaldehyde, cinnamaldehyde, adenine, and hypoxanthine. Despite its bacterial origin, both the three-dimensional structure and ligand-binding properties of Cj1258 suggest that this novel phosphatase may have functional roles close to those of eukaryotic and mammalian tyrosine phosphatases. The three-dimensional structure along with mapping of small-molecule binding will be discussed in the context of developing high-affinity inhibitors of this novel LMW-PTP.  相似文献   

2.
Mycobacterium tuberculosis adopts various measures to escape from the hostile environment of the host cells. A low molecular weight protein tyrosine phosphatase (LMWPTPase) MPtpA was found to be active in virulent mycobacterial forms during the phagocytosis process. To ascertain the importance of conserved residues Cys11, Arg17, and Asp126 in the catalytic mechanism of MPtpA, site-directed mutagenesis was performed, namely C11S, R17A, D126A, and D126N. Kinetic characterization of wild-type and the mutant MPtpAs using para-nitrophenyl phosphate revealed the reaction mechanism followed by this LMWPTPase and it is similar to the other PTPases. All the LMWPTPases have a common signature motif, 'C(X)(5)R(S/T)' and an Asp as the general acid residue and the mechanism followed by MPtpA can be aptly attributed to other LMWPTPases as well, considering the similar three-dimensional conformation. We have shown that the mutations caused major changes in the chemical environment surrounding the mutated residues and resulted in the decrease of catalytic activity significantly. Inhibition kinetics was performed with phosphate analogues: sodium molybdate, sodium orthovanadate, and sodium tungstate.  相似文献   

3.
Low molecular weight protein tyrosine phosphatase (LMWPTP) is a group of phosphotyrosine phosphatase ubiquitously found in a wide range of organisms ranging from bacteria to mammals. Dimerization in the LMWPTP family has been reported earlier which follows a common mechanism involving active site residues leading to an enzymatically inactive species. Here we report a novel form of dimerization in a LMWPTP from Vibrio cholera 0395 (VcLMWPTP-1). Studies in solution reveal the existence of the dimer in solution while kinetic study depicts the active form of the enzyme. This indicates that the mode of dimerization in VcLMWPTP-1 is different from others where active site residues are not involved in the process. A high resolution (1.45 Å) crystal structure of VcLMWPTP-1 confirms a different mode of dimerization where the active site is catalytically accessible as evident by a tightly bound substrate mimicking ligand, MOPS at the active site pocket. Although being a member of a prokaryotic protein family, VcLMWPTP-1 structure resembles very closely to LMWPTP from a eukaryote, Entamoeba histolytica. It also delineates the diverse surface properties around the active site of the enzyme.  相似文献   

4.
The solution structure of the second PDZ domain from human phosphatase hPTP1E in complex with a C-terminal peptide from the guanine nucleotide exchange factor RA-GEF-2 has been determined using 2D and 3D heteronuclear NMR experiments. Compared to previously solved structures, the hPTP1E complex shows an enlarged interaction surface with the C terminus of the bound peptide. Novel contacts were found between the long structured beta2/beta3 loop of the PDZ domain and the sixth amino acid residue from the C terminus of the peptide. This work underlines the importance of the beta2/beta3 loop for ligand selection by PDZ domains.  相似文献   

5.
Protein tyrosine phosphatases (PTPs) form a large family of enzymes involved in the regulation of numerous cellular functions in eukaryotes. Several protein tyrosine phosphatases have been recently identified in trypanosomatides. Here we report the purification and biochemical characterization of TcPTP1, a protein tyrosine phosphatase from Trypanosoma cruzi, the causing agent of Chagas’ disease. The enzyme was cloned and expressed recombinantly in Escherichia coli and purified by Ni-affinity chromatography. Biochemical characterization of recombinant TcPTP1 with the PTP pseudo-substrate pNPP allowed the estimation of a Michaelis–Menten constant Km of 4.5 mM and a kcat of 2.8 s−1. We were able to demonstrate inhibition of the enzyme by the PTP1b inhibitor BZ3, which on its turn was able to accelerate the differentiation of epimastigotes into metacyclic forms of T. cruzi induced by nutritional stress. Additionally, this compound was able to inhibit by 50% the infectivity of T. cruzi trypomastigotes in a separate cellular assay. In conclusion our results indicate that TcPTP1 is of importance for cellular differentiation and invasivity of this parasite and thus is a valid target for the rational drug design of potential antibiotics directed against T. cruzi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号