首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the pathogenesis of infection by neurotropic viruses represents a major challenge and may improve our knowledge of many human neurological diseases for which viruses are thought to play a role. Borna disease virus (BDV) represents an attractive model system to analyze the molecular mechanisms whereby a virus can persist in the central nervous system (CNS) and lead to altered brain function, in the absence of overt cytolysis or inflammation. Recently, we showed that BDV selectively impairs neuronal plasticity through interfering with protein kinase C (PKC)–dependent signaling in neurons. Here, we tested the hypothesis that BDV phosphoprotein (P) may serve as a PKC decoy substrate when expressed in neurons, resulting in an interference with PKC-dependent signaling and impaired neuronal activity. By using a recombinant BDV with mutated PKC phosphorylation site on P, we demonstrate the central role of this protein in BDV pathogenesis. We first showed that the kinetics of dissemination of this recombinant virus was strongly delayed, suggesting that phosphorylation of P by PKC is required for optimal viral spread in neurons. Moreover, neurons infected with this mutant virus exhibited a normal pattern of phosphorylation of the PKC endogenous substrates MARCKS and SNAP-25. Finally, activity-dependent modulation of synaptic activity was restored, as assessed by measuring calcium dynamics in response to depolarization and the electrical properties of neuronal networks grown on microelectrode arrays. Therefore, preventing P phosphorylation by PKC abolishes viral interference with neuronal activity in response to stimulation. Our findings illustrate a novel example of viral interference with a differentiated neuronal function, mainly through competition with the PKC signaling pathway. In addition, we provide the first evidence that a viral protein can specifically interfere with stimulus-induced synaptic plasticity in neurons.  相似文献   

2.
Infection by Borna disease virus (BDV) enables the study of the molecular mechanisms whereby a virus can persist in the central nervous system and lead to altered brain function in the absence of overt cytolysis and inflammation. This neurotropic virus infects a wide variety of vertebrates and causes behavioral diseases. The basis of BDV-induced behavioral impairment remains largely unknown. Here, we investigated whether BDV infection of neurons affected synaptic activity, by studying the rate of synaptic vesicle (SV) recycling, a good indicator of synaptic activity. Vesicular cycling was visualized in cultured hippocampal neurons synapses, using an assay based on the uptake of an antibody directed against the luminal domain of synaptotagmin I. BDV infection did not affect elementary presynaptic functioning, such as spontaneous or depolarization-induced vesicular cycling. In contrast, infection of neurons with BDV specifically blocked the enhancement of SV recycling that is observed in response to stimuli-induced synaptic potentiation, suggesting defects in long-term potentiation. Studies of signaling pathways involved in synaptic potentiation revealed that this blockade was due to a reduction of the phosphorylation by protein kinase C (PKC) of proteins that regulate SV recycling, such as myristoylated alanine-rich C kinase substrate (MARCKS) and Munc18-1/nSec1. Moreover, BDV interference with PKC-dependent phosphorylation was identified downstream of PKC activation. We also provide evidence suggesting that the BDV phosphoprotein interferes with PKC-dependent phosphorylation. Altogether, our results reveal a new mechanism by which a virus can cause synaptic dysfunction and contribute to neurobehavioral disorders.  相似文献   

3.
Synaptic pathology in Borna disease virus persistent infection   总被引:7,自引:0,他引:7       下载免费PDF全文
Borna disease virus (BDV) infection of newborn rats leads to a persistent infection of the brain, which is associated with behavioral and neuroanatonomical abnormalities. These disorders occur in the absence of lymphoid cell infiltrates, and BDV-induced cell damage is restricted to defined brain areas. To investigate if damage to synaptic structures anteceded neuronal loss in BDV neonatally infected rats, we analyzed at different times postinfection the expression levels of growth-associated protein 43 and synaptophysin, two molecules involved in neuroplasticity processes. We found that BDV induced a progressive and marked decrease in the expression of these synaptic markers, which was followed by a significant loss of cortical neurons. Our findings suggest that BDV persistent infection interferes with neuroplasticity processes in specific cell populations. This, in turn, could affect the proper supply of growth factors and other molecules required for survival of selective neuronal populations within the cortex and limbic system structures.  相似文献   

4.
博尔纳病病毒(Borna Disease Virus,BDV)是一种具有高度嗜神经性的病毒。近年,有大量研究证实该病毒感染与人神经精神疾病的发生有关。但其确切机制仍未明了。一些研究认为BDV感染对中枢神经系统神经元可塑性的影响可能是其致病的重要基础。近年许多学者通过对沙鼠、小鼠、大鼠及转基因鼠等各种BDV感染模型的研究,进一步揭示了BDV感染对神经元可塑性影响的分子机制。结果发现BDV感染主要通过对星形胶质细胞功能的影响、干预HMGB 1蛋白以及神经营养因子信号转导等途径干预神经元的可塑性,影响脑内神经元的功能及其存活和发育,从而引起脑功能损害,导致宿主精神、行为异常。今后随着新的BDV转基因模型的成功建立将进一步揭示BDV感染对神经元可塑性影响的分子机制,给临床预防和治疗博尔纳病提供理论基础。  相似文献   

5.
Borna disease virus (BDV), a nonsegmented, negative-stranded (NNS) RNA virus, causes central nervous system (CNS) disease in a broad range of vertebrate species, including felines. Both viral and host factors contribute to very diverse clinical and pathological manifestations associated with BDV infection. BDV persistence in the CNS can cause neurobehavioral and neurodevelopmental abnormalities in the absence of encephalitis. These BDV-induced CNS disturbances are associated with altered cytokine and neurotrophin expression, as well as cell damage that is very restricted to specific brain regions and neuronal subpopulations. BDV also targets astrocytes, resulting in the development of prominent astrocytosis. Astrocytes play essential roles in maintaining CNS homeostasis, and disruption of their normal activities can contribute to altered brain function. Therefore, we have examined the effect of BDV infection on the astrocyte's physiology. We present here evidence that BDV can establish a nonlytic chronic infection in primary cortical feline astrocytes that is associated with a severe impairment in the astrocytes' ability to uptake glutamate. In contrast, the astrocytes' ability to uptake glucose, as well as their protein synthesis, viability, and rate of proliferation, was not affected by BDV infection. These findings suggest that, in vivo, BDV could also affect an important astrocyte function required to prevent neuronal excitotoxicity. This, in turn, might contribute to the neuropathogenesis of BDV.  相似文献   

6.
Persistence of Borna disease virus (BDV) in the central nervous system causes damage to specific neuronal populations. BDV is noncytopathic, and the mechanisms underlying neuronal pathology are not well understood. One hypothesis is that infection affects the response of neurons to factors that are crucial for their proliferation, differentiation, or survival. To test this hypothesis, we analyzed the response of PC12 cells persistently infected with BDV to the neurotrophin nerve growth factor (NGF). PC12 is a neural crest-derived cell line that exhibits features of neuronal differentiation in response to NGF. We report that persistence of BDV led to a progressive change of phenotype of PC12 cells and blocked neurite outgrowth in response to NGF. Infection down-regulated the expression of synaptophysin and growth-associated protein-43, two molecules involved in neuronal plasticity, as well as the expression of the chromaffin-specific gene tyrosine hydroxylase. We showed that the block in response to NGF was due in part to the down-regulation of NGF receptors. Moreover, although BDV caused constitutive activation of the ERK1/2 pathway, activated ERKs were not translocated to the nucleus efficiently. These observations may account for the absence of neuronal differentiation of persistently infected PC12 cells treated with NGF.  相似文献   

7.
Borna disease virus (BDV) is a nonsegmented negative-strand RNA virus with a tropism for neurons. Infection with BDV causes neurological diseases in a wide variety of animal species. Although it is known that the virus spreads from neuron to neuron, assembled viral particles have never been visualized in the brains of infected animals. This has led to the hypothesis that BDV spreads as nonenveloped ribonucleoproteins (RNP) rather than as enveloped viral particles. We assessed whether the viral envelope glycoprotein (GP) is required for neuronal dissemination of BDV by using primary cultures of rat hippocampal neurons. We show that upon in vitro infection, BDV replicated and spread efficiently in this system. Despite rapid virus dissemination, very few infectious viral particles were detectable in the culture. However, neutralizing antibodies directed against BDV-GP inhibited BDV spread. In addition, interference with BDV-GP processing by inhibiting furin-mediated cleavage of the glycoprotein blocked virus spread. Finally, antisense treatment with peptide nucleic acids directed against BDV-GP mRNA inhibited BDV dissemination, marking BDV-GP as an attractive target for antiviral therapy against BDV. Together, our results demonstrate that the expression and correct processing of BDV-GP are necessary for BDV dissemination in primary cultures of rat hippocampal neurons, arguing against the hypothesis that the virus spreads from neuron to neuron in the form of nonenveloped RNP.  相似文献   

8.
Borna disease virus (BDV) is a highly neurotropic RNA virus that causes neurological disorders in many vertebrate species. Although BDV readily establishes lasting persistence, persistently infected cells maintain an apparently normal cell phenotype in terms of morphology, viability, and proliferation. In this study, to understand the regulation of stress responses in BDV infection, we investigated the expression of heat shock proteins (HSPs) in glial cells persistently infected with BDV. Interestingly, we found that BDV persistence did not upregulate HSP70 expression even in cells treated with heat stress. Furthermore, BDV-infected glial cells exhibited rapid rounding and detachment from the culture plate under various stressful conditions. Immunofluorescence analysis demonstrated that heat stress rapidly disrupts the cell cytoskeleton only in persistently infected cells, suggesting a lack of thermotolerance. Intriguingly, we found that although persistently infected glial cells expressed HSP70 mRNA after heat stress, its expression rapidly disappeared during the recovery period. These observations indicated that persistent BDV infection may affect the stability of HSP70 mRNA. Finally, we found that the double-stranded RNA-dependent protein kinase (PKR) is expressed at a constant level in persistently infected cells with or without heat shock. Considering the interrelationship between HSP70 and PKR production, our data suggest that BDV infection disturbs the cellular stress responses to abolish antiviral activities and maintain persistence.  相似文献   

9.
Neonatal rat infection with Borna disease virus (BDV), termed neonatal Borna disease, is an established model for investigating the BDV-associated pathogenesis of neurodevelopmental abnormalities. BDV produces a persistent noncytolytic infection in all culture cell systems assayed to date, while persistent infection in neonatal rats results in a progressive loss of hippocampal granule cells, cerebellar Purkinje cells, and cortical GABA-ergic neurons. Persistent infection also results in behavioral deficits including hyperactivity, cognitive impairment, and abnormal social behavior. However, the molecular mechanisms underlying the neuronal degeneration and behavioral abnormalities remain unclear. Using a metabolomic approach based on gas chromatography coupled with mass spectrometry in conjunction with statistical pattern recognition, the metabolic changes in response to BDV Hu-H1 infection were characterized in the rat hippocampus, cerebellum, and cortex. Metabonomic profiling revealed significant perturbations in nucleotide (e.g., adenosine, uracil, inosine, adenosine-5′-monophosphate, uridine-5′-monophosphate, d-ribose 5-phosphate, and sedoheptulose 7-phosphate), amino acid (e.g., lysine, glycine, phenylalanine, tyrosine, proline, serine, cysteine, aspartic acid, pyroglutamic acid, and γ-aminobutyric acid), lipid (e.g., cholesterol, myristic acid, stearic acid, palmitic acid, 1-monopalmitoylglycerol, and arachidonic acid), and energy (e.g., glucose, lactose, 3-phosphoglyceric acid, and pyruvic acid) metabolites. These metabolites participate in pathways crucial to viral proliferation and neurotransmitter homeostasis. This metabolomic profiling study provides insight into the pathogenic mechanisms of BDV and new directions with which to investigate the in vivo effects of persistent BDV infection.  相似文献   

10.
The nucleoprotein (N) of Borna disease virus (BDV) is the major target of the disease-inducing antiviral CD8 T-cell response in the central nervous system of mice. We established two transgenic mouse lines which express BDV-N in either neurons (Neuro-N) or astrocytes (Astro-N). Despite strong transgene expression, neurological disease or gross behavioral abnormalities were not observed in these animals. When Neuro-N mice were infected as adults, replication of BDV was severely impaired and was restricted to brain areas with a low density of transgene-expressing cells. Notably, the virus failed to replicate in the transgene-expressing granular and pyramidal neurons of the hippocampus (which are usually the preferred host cells of BDV). When Neuro-N mice were infected within the first 5 days of life, replication of BDV was not suppressed in most neurons, presumably because the onset of transgene expression in the brain occurred after these cells became infected with BDV. Astro-N mice remained susceptible to BDV infection, but they were resistant to BDV-induced neurological disorder. Unlike their nontransgenic littermates, Neuro-N mice with persistent BDV infection did not develop neurological disease after immunization with a vaccinia virus vector expressing BDV-N. In contrast to the situation in wild-type mice, this treatment also failed to induce N-specific CD8 T cells in the spleens of both transgenic mouse lines. Thus, while resistance to BDV infection in N-expressing neurons appeared to result from untimely expression of a viral nucleocapsid component, the resistance to BDV-induced neuropathology probably resulted from immunological tolerance.  相似文献   

11.
Neonatal Borna disease virus (BDV) infection of the rat brain is associated with microglial activation and damage to the certain neuronal populations. Since persistent BDV infection of neurons in vitro is noncytolytic and noncytopathic, activated microglia have been suggested to be responsible for neuronal cell death in vivo. However, the mechanisms of activation of microglia in neonatally BDV-infected rat brain have not been investigated. To address these issues, activation of primary rat microglial cells was studied following exposure to purified BDV or to persistently BDV-infected primary cortical neurons or after BDV infection of primary mixed neuron-glial cultures. Neither purified virus nor BDV-infected neurons alone activated primary microglia as assessed by the changes in cell shape or production of the proinflammatory cytokines. In contrast, in the BDV-infected primary mixed cultures, we observed proliferation of microglia cells that acquired the round morphology and expressed major histocompatibility complex molecules of classes I and II. These manifestations of microglia activation were observed in the absence of direct BDV infection of microglia or overt neuronal toxicity. In addition, compared to uninfected mixed cultures, activation of microglia in BDV-infected mixed cultures was associated with a significantly greater lipopolysaccharide-induced release of tumor necrosis factor alpha, interleukin 1beta, and interleukin 10. Taken together, the present data are the first in vitro evidence that persistent BDV infection of neurons and astrocytes rather than direct exposure to the virus or dying neurons is critical for activating microglia.  相似文献   

12.
Borna disease virus infection impairs synaptic plasticity   总被引:2,自引:1,他引:1       下载免费PDF全文
The mechanisms whereby Borna disease virus (BDV) can impair neuronal function and lead to neurobehavioral disease are not well understood. To analyze the electrophysiological properties of neurons infected with BDV, we used cultures of neurons grown on multielectrode arrays, allowing a real-time monitoring of the electrical activity across the network shaped by synaptic transmission. Although infection did not affect spontaneous neuronal activity, it selectively blocked activity-dependent enhancement of neuronal network activity, one form of synaptic plasticity thought to be important for learning and memory. These findings highlight the original mechanism of the neuronal dysfunction caused by noncytolytic infection with BDV.  相似文献   

13.
Borna disease virus (BDV) is a neurotropic RNA virus that establishes non-cytolytic persistent infection in the central nervous system of warm-blooded animals. Depending on the host species and the route of infection, BDV persistence can modulate neuronal plasticity and animal behaviour and/or may provoke a T cell-mediated immunopathological reaction with high mortality. Therefore, BDV functions as a model pathogen to study persistent virus infection in the central nervous system. Here, we review recent evidence showing that BDV interferes with a spectrum of intracellular signalling pathways, which may be involved in viral spread, maintenance of persistence and modulation of neurotransmitter pathways.  相似文献   

14.
Borna disease virus (BDV) infection produces a variety of clinical diseases, from behavioral illnesses to classical fatal encephalitis (i.e., Borna disease [BD]). Since the genomes of most BDV isolates differ by less than 5%, host factors are believed responsible for much of the reported variability in disease expression. The contribution of BDV genomic differences to variation in BD expression is largely unexplored. Here we compared the clinical outcomes of rats infected with one of two related BDV variants, CRP3 or CRNP5. Compared to rats inoculated with CRP3, adult and newborn Lewis rats inoculated with CRNP5 had more severe and rapidly fatal neurological disease, with increased damage to the hippocampal pyramidal neurons and rapid infection of brain stem neurons. To identify possible virus-specific contributions to the observed variability in disease outcome, the genomes of CRP3 and CRNP5 were sequenced. Compared to CRP3, there were four nucleotide changes in the CRNP5 variant, two each in the G protein and in the L polymerase, resulting in four amino acid changes. These results suggest that small numbers of genomic differences between BDV variants in the G protein and/or L polymerase can contribute to the variability in BD outcomes.  相似文献   

15.
Borna disease virus (BDV) infects cells of the nervous system in a wide range of species. Previous work suggests that there are differences in BDV replication in neuronal cells and glial cells. Many neurons are lysed by the immunopathologic response to BDV; lysis of dentate gyrus neurons in the absence of encephalitis is seen in rats inoculated with BDV as neonates. In contrast, persistently BDV-infected astrocytes increase over the course of BDV infection. Therefore, we compared BDV replication in neuronal (SK-N-SH and SK-N-SHEP) and astrocytic (C6) cell lines. While SK-N-SH cells produced more infectious virions per cell, the C6 cells contained more BDV proteins and RNA. BDV sequences in the supernatants of both cell types were identified, despite low titers of infectious virus, suggesting the release of incomplete virions into the medium. C6 cells secreted a factor or factors into the medium that enhanced the production of BDV proteins and RNA in other cell lines. In addition, nerve growth factor treatment produced the same enhancement. Thus, BDV replication in certain neural cells in vitro may be linked to the production of cell-specific factors which affect viral replication.  相似文献   

16.
The neurotropic Borna disease virus (BDV) is unusual in that it can persistently infect neurons of the central nervous system (CNS) without causing general cell death, reflecting its favourable adaptation to the brain. The activity-dependent enhancement of neuronal network activity is however disturbed after BDV infection, possibly by its effect on the protein kinase C signalling pathway. The best model for studying BDV, which has a non-cytolytic replication strategy in primary neurons, is the rat. Infection of adult rats results in a fatal immune-mediated disease, whereas BDV establishes persistent infection of the brain in newborn rats resulting in progressive neuronal cell loss in defined regions of the CNS. Our recently developed system of BDV-infected hippocampal slice cultures has clearly shown that the onset of granule cell loss begins after the formation of the mossy fibre projection. Quantitative analysis has revealed a significant increase in synaptic density on identified remaining granule cell dendrites at 6?weeks after infection, followed by a decline. Granule cells are the major target of entorhinal afferents. However, despite an almost complete loss of dentate granule cells during BDV infection, entorhinal axons persist in their correct layer, both in vivo and in slice cultures, possibly exploiting rewiring capabilities and thereby allowing new synapse formation with available targets. These morphological observations, together with electrophysiological and biochemical data, indicate that BDV is a suitable model virus for studying virus-induced morphological and functional changes of neurons and connectivity patterns.  相似文献   

17.
In situ hybridization and Northern blot analysis were used to examine expression of the immediate-early-response genes (IEGs) egr-1, junB, and c-fos, and the late response gene encoding enkephalin in the brains of rats infected intranasally with Borna disease virus (BDV) or rabies virus. In both Borna disease and rabies virus infections, a dramatic and specific induction of IEGs was detected in particular regions of the hippocampus and the cortex. Increased IEG mRNA expression overlapped with the characteristic expression patterns of BDV RNA and rabies virus RNA, although relative expression levels of viral RNA and IEG mRNA differed, particularly in the hippocampal formation. Furthermore, the temporal relationship between viral RNA synthesis and activation of IEG mRNA expression in BDV infection differed markedly from that in rabies virus infection, suggesting that IEG expression is upregulated by different mechanisms. Expression of proenkephalin (pENK) mRNA was also significantly increased in BDV infection, whereas in rabies virus infection, pENK mRNA levels and also the levels of glyceraldehyde-3-phosphate dehydrogenase mRNA were reduced at terminal stages of the disease, probably reflecting a generalized suppression of cellular protein synthesis due to massive production of rabies virus mRNA. The correlation between activated IEG mRNA expression and the strong increase in viral RNA raises the possibility that IEG products induce some phenotypic changes in neurons that render them more susceptible to viral replication.  相似文献   

18.
Understanding the complex mechanisms by which infectious agents can disrupt behavior represents a major challenge. The Borna disease virus (BDV), a potential human pathogen, provides a unique model to study such mechanisms. Because BDV induces neurodegeneration in brain areas that are still undergoing maturation at the time of infection, we tested the hypothesis that BDV interferes with neurogenesis. We showed that human neural stem/progenitor cells are highly permissive to BDV, although infection does not alter their survival or undifferentiated phenotype. In contrast, upon the induction of differentiation, BDV is capable of severely impairing neurogenesis by interfering with the survival of newly generated neurons. Such impairment was specific to neurogenesis, since astrogliogenesis was unaltered. In conclusion, we demonstrate a new mechanism by which BDV might impair neural function and brain plasticity in infected individuals. These results may contribute to a better understanding of behavioral disorders associated with BDV infection.  相似文献   

19.
20.
An expression cassette for green fluorescent protein was successfully inserted at a site near the 5' end of the genome of Borna disease virus (BDV). When introduced into a mutant virus with highly active polymerase, the foreign gene was strongly expressed in neurons of infected rats. Since BDV can establish long-term persistence in the central nervous system of rodents, it may be used to engineer efficient vectors for specific delivery of foreign genes into highly differentiated neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号