首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glycosylphosphatidylinositol (GPI)-anchored proteins are subjected to lipid remodeling during their biosynthesis. In the yeast Saccharomyces cerevisiae, the mature GPI-anchored proteins contain mainly ceramide or diacylglycerol with a saturated long-fatty acid, whereas conventional phosphatidylinositol (PI) used for GPI biosynthesis contains an unsaturated fatty acid. Here, we report that S. cerevisiae Cwh43p, whose N-terminal region contains a sequence homologous to mammalian PGAP2, is involved in the remodeling of the lipid moiety of GPI anchors to ceramides. In cwh43 disruptant cells, the PI moiety of the GPI-anchored protein contains a saturated long fatty acid and lyso-PI but not inositolphosphorylceramides, which are the main lipid moieties of GPI-anchored proteins from wild-type cells. Moreover, the C-terminal region of Cwh43p (Cwh43-C), which is not present in PGAP2, is essential for the ability to remodel GPI lipids to ceramides. The N-terminal region of Cwh43p (Cwh43-N) is associated with Cwh43-C, and it enhanced the lipid remodeling to ceramides by Cwh43-C. Our results also indicate that mouse FRAG1 and C130090K23, which are homologous to Cwh43-N and -C, respectively, share these activities.  相似文献   

2.
Many cell surface proteins in mammalian cells are anchored to the plasma membrane via glycosylphosphatidylinositol (GPI). The predominant form of mammalian GPI contains 1-alkyl-2-acyl phosphatidylinositol (PI), which is generated by lipid remodeling from diacyl PI. The conversion of diacyl PI to 1-alkyl-2-acyl PI occurs in the ER at the third intermediate in the GPI biosynthetic pathway. This lipid remodeling requires the alkyl-phospholipid biosynthetic pathway in peroxisome. Indeed, cells defective in dihydroxyacetone phosphate acyltransferase (DHAP-AT) or alkyl-DHAP synthase express only the diacyl form of GPI-anchored proteins. A defect in the alkyl-phospholipid biosynthetic pathway causes a peroxisomal disorder, rhizomelic chondrodysplasia punctata (RCDP), and defective biogenesis of peroxisomes causes Zellweger syndrome, both of which are lethal genetic diseases with multiple clinical phenotypes such as psychomotor defects, mental retardation, and skeletal abnormalities. Here, we report that GPI lipid remodeling is defective in cells from patients with Zellweger syndrome having mutations in the peroxisomal biogenesis factors PEX5, PEX16, and PEX19 and in cells from patients with RCDP types 1, 2, and 3 caused by mutations in PEX7, DHAP-AT, and alkyl-DHAP synthase, respectively. Absence of the 1-alkyl-2-acyl form of GPI-anchored proteins might account for some of the complex phenotypes of these two major peroxisomal disorders.  相似文献   

3.
The activities of many mammalian membrane proteins including G-protein coupled receptors are cholesterol-dependent. Unlike higher eukaryotes, yeast do not make cholesterol. Rather they make a related molecule called ergosterol. As cholesterol and ergosterol are biologically non-equivalent, the potential of yeast as hosts for overproducing mammalian membrane proteins has never been fully realised. To address this problem, we are trying to engineer a novel strain of Saccharomyces cerevisiae in which the cholesterol biosynthetic pathway of mammalian cells has been fully reconstituted. Thus far, we have created a modified strain that makes cholesterol-like sterols which has an increased capacity to make G-protein coupled receptors compared to control yeast.  相似文献   

4.
Many proteins are attached to the cell surface via a conserved post-translational modification, the glycosylphosphatidylinositol (GPI) anchor. GPI-anchored proteins are functionally diverse, but one of their most striking features is their association with lipid microdomains, which consist mainly of sphingolipids and sterols. GPI-anchored proteins modulate various biological functions when they are incorporated into these specialized domains. The biosynthesis of GPI and its attachment to proteins occurs in the endoplasmic reticulum. The lipid moieties of GPI-anchored proteins are further modified during their transport to the cell surface, and these remodeling processes are essential for the association of proteins with lipid microdomains. Recently, several genes required for GPI lipid remodeling have been identified in yeast and mammalian cells. In this review, we describe the pathways for lipid remodeling of GPI-anchored proteins in yeast and mammalian cells, and discuss how lipid remodeling affects the association of GPI-anchored proteins with microdomains in cellular events.  相似文献   

5.
The polyamine biosynthetic enzyme ornithine decarboxylase (ODC) is degraded by the 26 S proteasome via a ubiquitin-independent pathway in mammalian cells. Its degradation is greatly accelerated by association with the polyamine-induced regulatory protein antizyme 1 (AZ1). Mouse ODC (mODC) that is expressed in the yeast Saccharomyces cerevisiae is also rapidly degraded by the proteasome of that organism. We have now carried out in vivo and in vitro studies to determine whether S. cerevisiae proteasomes recognize mODC degradation signals. Mutations of mODC that stabilized the protein in animal cells also did so in the fungus. Moreover, the mODC degradation signal was able to destabilize a GFP or Ura3 reporter in GFP-mODC and Ura3-mODC fusion proteins. Co-expression of AZ1 accelerated mODC degradation 2-3-fold in yeast cells. The degradation of both mODC and the endogenous yeast ODC (yODC) was unaffected in S. cerevisiae mutants with various defects in ubiquitin metabolism, and ubiquitinylated forms of mODC were not detected in yeast cells. In addition, recombinant mODC was degraded in an ATP-dependent manner by affinity-purified yeast 26 S proteasomes in the absence of ubiquitin. Degradation by purified yeast proteasomes was sensitive to mutations that stabilized mODC in vivo, but was not accelerated by recombinant AZ1. These studies demonstrate that cell constituents required for mODC degradation are conserved between animals and fungi, and that both mammalian and fungal ODC are subject to proteasome-mediated proteolysis by ubiquitin-independent mechanisms.  相似文献   

6.
The yeast Saccharomyces cerevisiae is a useful host for the production of heterologous proteins through the secretory pathway. However, because of the potential antigenicity of mannan-type sugar chains in humans, yeast cannot be used as a host for the production of glycoprotein therapeutics. To overcome this problem, we are trying to breed a yeast which can produce hybrid- or complex-type carbohydrates. UDP- N- acetylglucosamine:alpha-3-d-mannoside beta-1, 2- N- acetylglucosaminyltransferase I (GnT-I) is essential for the conversion of high mannose-type N- glycans to hybrid- and complex-type ones. As yeast lacks this enzyme, we have introduced the rat GnT-I cDNA into yeast cells. The transformed yeast cells expressed GnT-I activity in vitro. The expressed GnT-I was localized in all organella, including the endoplasmic reticulum (ER), Golgi apparatus, and vacuole, suggesting that the mammalian Golgi retention signal of GnT-I did not function in yeast cells. Analysis of the GnT-I gene product with a c- Myc epitope tag at the C-terminus elucidates that the N - terminal region of GnT-I, including the mammalian Golgi retention signal, should be removed in the yeast ER.   相似文献   

7.
Previous studies have shown that yeast glycosylphosphatidylinositol‐anchored proteins (GPI‐APs) and other secretory proteins are preferentially incorporated into distinct coat protein II (COPII) vesicle populations for their transport from the endoplasmic reticulum (ER) to the Golgi apparatus, and that incorporation of yeast GPI‐APs into COPII vesicles requires specific lipid interactions. We compared the ER exit mechanism and segregation of GPI‐APs from other secretory proteins in mammalian and yeast cells. We find that, unlike yeast, ER‐to‐Golgi transport of GPI‐APs in mammalian cells does not depend on sphingolipid synthesis. Whereas ER exit of GPI‐APs is tightly dependent on Sar1 in mammalian cells, it is much less so in yeast. Furthermore, in mammalian cells, GPI‐APs and other secretory proteins are not segregated upon COPII vesicle formation, in contrast to the remarkable segregation seen in yeast. These findings suggest that GPI‐APs use different mechanisms to concentrate in COPII vesicles in the two organisms, and the difference might explain their propensity to segregate from other secretory proteins upon ER exit.  相似文献   

8.
Numerous cell surface glycoproteins from eukaryotic organisms including African trypanosomes and budding yeast (Saccharomyces cerevisiae), are anchored to the lipid bilayer by a glycophospholipid, glycosylphosphatidylinositol, covalently linked to the carboxyl terminus of the protein via a phosphoethanolamine bridge. In this paper we describe metabolic labeling experiments aimed at identifying the biosynthetic origin of the ethanolamine residue in the phosphoethanolamine bridge. Using yeast mutants generated by disruption of the ethanolaminephosphotransferase (EPT1) and cholinephosphotransferase (CPT1) genes, we report data consistent with the proposal that the ethanolamine residue is derived from phosphatidylethanolamine.  相似文献   

9.
Dolichyl monophosphate (Dol-P) is a polyisoprenoid glycosyl carrier lipid essential for the assembly of a variety of glycoconjugates in the endoplasmic reticulum of eukaryotic cells. In yeast, dolichols with chain lengths of 14--17 isoprene units are predominant, whereas in mammalian cells they contain 19--22 isoprene units. In this biosynthetic pathway, t,t-farnesyl pyrophosphate is elongated to the appropriate long chain polyprenyl pyrophosphate by the sequential addition of cis-isoprene units donated by isopentenyl pyrophosphate with t,t,c-geranylgeranyl pyrophosphate being the initial intermediate formed. The condensation steps are catalyzed by cis-isoprenyltransferase (cis-IPTase). Genes encoding cis-IPTase activity have been identified in Micrococcus luteus, Escherichia coli, Arabidopsis thaliana, and Saccharomyces cerevisiae (RER2). Yeast cells deleted for the RER2 locus display a severe growth defect, but are still viable, possibly due to the activity of an homologous locus, SRT1. The dolichol and Dol-P content of exponentially growing revertants of RER2 deleted cells (Delta rer2) and of cells overexpressing SRT1 have been determined by HPLC analysis. Dolichols and Dol-Ps with 19--22 isoprene units, unusually long for yeast, were found, and shown to be utilized for the biosynthesis of lipid intermediates involved in protein N-glycosylation. In addition, cis-IPTase activity in microsomes from Delta rer2 cells overexpressing SRT1 was 7- to 17-fold higher than in microsomes from Delta rer2 cells. These results establish that yeast contains at least two cis-IPTases, and indicate that the chain length of dolichols is determined primarily by the enzyme catalyzing the chain elongation stage of the biosynthetic process.  相似文献   

10.
Many cell surface proteins are anchored to the membrane via a glycosylphosphatidylinositol (GPI) moiety, which is attached to the C terminus of the proteins. The core of the GPI anchor is conserved in all eukaryotes but is modified by various side chains. We cloned a mouse phosphatidylinositol glycan-class N (Pig-n) gene that encodes a 931amino acid protein expressed in the endoplasmic reticulum, which is homologous to yeast Mcd4p. We disrupted the gene in F9 embryonal carcinoma cells. In the Pig-n knockout cells, the first mannose in the GPI precursors was not modified by phosphoethanolamine. Nevertheless, further biosynthetic steps continued with the addition of the third mannose and the terminal phosphoethanolamine. The surface expression of Thy-1 was only partially affected, indicating that modification of the first mannose by phosphoethanolamine is not essential for attachment of GPI anchors in mammalian cells. An inhibitor of GPI biosynthesis, YW3548/BE49385A, inhibited transfer of phosphoethanolamine to the first mannose in mammalian cells but only slightly affected the surface expression of GPI-anchored proteins. Biosynthesis of GPI in the Pig-n knockout cells was not affected by YW3548/BE49385A, and yeast overexpressing MCD4 was highly resistant to YW3548/BE49385A, suggesting that Pig-n and Mcd4p are targets of this drug.  相似文献   

11.
Bcl-2 family proteins play an evolutionarily conserved role in regulating the life and death of the cell. Certain proapoptotic members of the Bcl-2 family, Bax and Bak, have intrinsic cytotoxic activities in that they not only induce or sensitize mammalian cells to undergo apoptosis but also display a lethal phenotype when ectopically expressed in two yeast species Saccharomyces cerevisiae and Schizosaccharomyces pombe. Furthermore, the antiapoptotic Bcl-2 and Bcl-XL proteins can protect yeast against Bax-mediated lethality, suggesting that the death-regulatory functions of these Bcl-2 family proteins are well preserved in yeast. These observations provide the opportunity to study the function of Bcl-2 family proteins in genetically tractable yeast and to apply classical yeast genetics and functional cloning approaches to the dissection of programmed cell death pathway regulated by Bcl-2 family proteins. We describe here methods used in our laboratory to express and to study the functions of Bcl-2 family proteins in both the budding yeast S. cerevisiae and the fission yeast S. pombe.  相似文献   

12.
Many eukaryotic cell surface proteins are anchored in the lipid bilayer through glycosylphosphatidylinositol (GPI). GPI anchors are covalently attached in the endoplasmic reticulum (ER). The modified proteins are then transported through the secretory pathway to the cell surface. We have identified two genes in Saccharomyces cerevisiae, LAG1 and a novel gene termed DGT1 (for "delayed GPI-anchored protein transport"), encoding structurally related proteins with multiple membrane-spanning domains. Both proteins are localized to the ER, as demonstrated by immunofluorescence microscopy. Deletion of either gene caused no detectable phenotype, whereas lag1Delta dgt1Delta cells displayed growth defects and a significant delay in ER-to-Golgi transport of GPI-anchored proteins, suggesting that LAG1 and DGT1 encode functionally redundant or overlapping proteins. The rate of GPI anchor attachment was not affected, nor was the transport rate of several non-GPI-anchored proteins. Consistent with a role of Lag1p and Dgt1p in GPI-anchored protein transport, lag1Delta dgt1Delta cells deposit abnormal, multilayered cell walls. Both proteins have significant sequence similarity to TRAM, a mammalian membrane protein thought to be involved in protein translocation across the ER membrane. In vivo translocation studies, however, did not detect any defects in protein translocation in lag1Delta dgt1Delta cells, suggesting that neither yeast gene plays a role in this process. Instead, we propose that Lag1p and Dgt1p facilitate efficient ER-to-Golgi transport of GPI-anchored proteins.  相似文献   

13.
Many cell surface proteins are anchored to a membrane via a glycosylphosphatidylinositol (GPI), which is attached to the C termini in the endoplasmic reticulum. The inositol ring of phosphatidylinositol is acylated during biosynthesis of GPI. In mammalian cells, the acyl chain is added to glucosaminyl phosphatidylinositol at the third step in the GPI biosynthetic pathway and then is usually removed soon after the attachment of GPIs to proteins. The mechanisms and roles of the inositol acylation and deacylation have not been well clarified. Herein, we report derivation of human and Chinese hamster mutant cells defective in inositol acylation and the gene responsible, PIG-W. The surface expressions of GPI-anchored proteins on these mutant cells were greatly diminished, indicating the critical role of inositol acylation. PIG-W encodes a 504-amino acid protein expressed in the endoplasmic reticulum. PIG-W is most likely inositol acyltransferase itself because the tagged PIG-W affinity purified from transfected human cells had inositol acyltransferase activity and because both mutant cells were complemented with PIG-W homologs of Saccharomyces cerevisiae and Schizosaccharomyces pombe. The inositol acylation is not essential for the subsequent mannosylation, indicating that glucosaminyl phosphatidylinositol can flip from the cytoplasmic side to the luminal side of the endoplasmic reticulum.  相似文献   

14.
The organelle specific reactions that constitute the biosynthetic pathway for aminoglycerophospholipid synthesis provide an important means for examining the biochemistry and genetics of intracellular lipid transport. Biochemical studies with intact and permeabilized cells, and isolated organelles have defined some of the essential features of lipid transport between the endoplasmic reticulum and mitochondria and Golgi/vacuole. Genetic screens have now also identified mutations and genes that are involved in aminoglycerophospholipid traffic between different membranes in mammalian cells, yeast and bacteria. Increasingly, studies focused upon intermembrane lipid movement are revealing important new information about this essential aspect of membrane biogenesis.  相似文献   

15.
Our perception of intracellular organelles and cellular architecture was initially based on striking light and electron micrographs of animal and plant cells. The high degree of compartmental organization within specalized mammalian secretory cells aided early efforts to track the movement of proteins through the organelles of the secretory pathway. In contrast, the morphological detail of the yeast Saccharomyces cerevisiae appeared superficially simple, even primitive, by comparison with the higher eukaryotic cells. However, the combination of genetic tools and the development of assays reconstituting vesicular traffic in yeast have facilitated the identification and characterization of individual proteins that function in the secretory pathway. Analogies between the function of yeast and mammalian proteins in vesicular traffic are being drawn with increasing frequency. In this review, the combination of genetic, biochemical, molecular and cell biological approaches used to study compartmental organization in the yeast secretory pathway will be discussed. The rapid progress in our understanding of yeast membrane traffic has revealed the beauty of working with this organism.  相似文献   

16.
Many eukaryotic proteins are anchored to the cell surface via glycosylphosphatidylinositol (GPI), which is posttranslationally attached to the carboxyl-terminus by GPI transamidase. The mammalian GPI transamidase is a complex of at least four subunits, GPI8, GAA1, PIG-S, and PIG-T. Here, we report Chinese hamster ovary cells representing a new complementation group of GPI-anchored protein-deficient mutants, class U. The class U cells accumulated mature and immature GPI and did not have in vitro GPI transamidase activity. We cloned the gene responsible, termed PIG-U, that encoded a 435-amino-acid hydrophobic protein. The GPI transamidase complex affinity-purified from cells expressing epitope-tagged-GPI8 contained PIG-U and four other known components. Cells lacking PIG-U formed complexes of the four other components normally but had no ability to cleave the GPI attachment signal peptide. Saccharomyces cerevisiae Cdc91p, with 28% amino acid identity to PIG-U, partially restored GPI-anchored proteins on the surface of class U cells. PIG-U and Cdc91p have a functionally important short region with similarity to a region conserved in long-chain fatty acid elongases. Taken together, PIG-U and the yeast orthologue Cdc91p are the fifth component of GPI transamidase that may be involved in the recognition of either the GPI attachment signal or the lipid portion of GPI.  相似文献   

17.
Many cystic fibrosis disease-associated mutations cause a defect in the biosynthetic processing and trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Yeast mutants, defective at various steps of the secretory pathway, have been used to dissect the mechanisms of biosynthetic processing and intracellular transport of several proteins. To exploit these yeast mutants, we have employed an expression system in which the CFTR gene is driven by the promoter of a structurally related yeast ABC protein, Pdr5p. Pulse-chase experiments revealed a turnover rate similar to that of nascent CFTR in mammalian cells. Immunofluorescence microscopy showed that most CFTR colocalized with the endoplasmic reticulum (ER) marker protein Kar2p and not with a vacuolar marker. Degradation was not influenced by the vacuolar protease mutants Pep4p and Prb1p but was sensitive to the proteasome inhibitor lactacystin beta-lactone. Blocking ER-to-Golgi transit with the sec18-1 mutant had little influence on turnover indicating that it occurred primarily in the ER compartment. Degradation was slowed in cells deficient in the ER degradation protein Der3p as well as the ubiquitin-conjugating enzymes Ubc6p and Ubc7p. Finally a mutation (sec61-2) in the translocon protein Sec61p that prevents retrotranslocation across the ER membrane also blocked degradation. These results indicate that whereas approximately 75% of nascent wild-type CFTR is degraded at the ER of mammalian cells virtually all of the protein meets this fate on heterologous expression in Saccharomyces cerevisiae.  相似文献   

18.
Li F  Palecek SP 《Eukaryotic cell》2003,2(6):1266-1273
  相似文献   

19.
In the yeast Saccharomyces cerevisiae, three enzymes of the sterol biosynthetic pathway, namely Erg1p, Erg6p and Erg7p, are located in lipid particles. Whereas Erg1p (squalene epoxidase) is also present in the endoplasmic reticulum (ER) to a significant amount, only traces of Erg6p (sterol C-24 methyltransferase) and Erg7p (lanosterol synthase) are found in the ER. We have chosen these three Erg-proteins as typical representatives of lipid particle proteins to study targeting to their destination. Lipid particle proteins do not contain obvious targeting motifs, but the only common structural feature is the presence of one or two hydrophobic domains near the C-termini. We constructed truncated versions of Erg1p, Erg6p and Erg7p to test the role of these hydrophobic domains in subcellular distribution. Our results demonstrate that lack of the hydrophobic domains prevents at least in part the association of the proteins with lipid particles and causes their retention to the ER. This result strongly supports the view that ER and lipid particles are related organelles.  相似文献   

20.
The plasma membrane of Saccharomyces cerevisiae was studied using the probes trans-parinaric acid and diphenylhexatriene. Diphenylhexatriene anisotropy is a good reporter of global membrane order. The fluorescence lifetimes of trans-parinaric acid are particularly sensitive to the presence and nature of ordered domains, but thus far they have not been measured in yeast cells. A long lifetime typical of the gel phase (>30 ns) was found in wild-type (WT) cells from two different genetic backgrounds, at 24 and 30 °C, providing the first direct evidence for the presence of gel domains in living cells. To understand their nature and location, the study of WT cells was extended to spheroplasts, the isolated plasma membrane, and liposomes from total lipid and plasma membrane lipid extracts (with or without ergosterol extraction by cyclodextrin). It is concluded that the plasma membrane is mostly constituted by ordered domains and that the gel domains found in living cells are predominantly at the plasma membrane and are formed by lipids. To understand their composition, strains with mutations in sphingolipid and ergosterol metabolism and in the glycosylphosphatidylinositol anchor remodeling pathway were also studied. The results strongly indicate that the gel domains are not ergosterol-enriched lipid rafts; they are mainly composed of sphingolipids, possibly inositol phosphorylceramide, and contain glycosylphosphatidylinositol-anchored proteins, suggesting an important role in membrane traffic and signaling, and interactions with the cell wall. The abundance of the sphingolipid-enriched gel domains was inversely related to the cellular membrane system global order, suggesting their involvement in the regulation of membrane properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号