首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wagenaar TR  Moss B 《Journal of virology》2007,81(12):6286-6293
The proteins encoded by the A56R and K2L genes of vaccinia virus form a heterodimer (A56/K2) and have a fusion regulatory role as deletion or mutation of either causes infected cells to form large syncytia spontaneously. Here, we showed that syncytia formation is dependent on proteins of the recently described entry fusion complex (EFC), which are also required for virus-cell fusion and low-pH-triggered cell-cell fusion. This finding led us to consider that A56/K2 might prevent fusion by direct or indirect interaction with the EFC. To test this hypothesis, we made a panel of recombinant vaccinia viruses that have a tandem affinity purification tag attached to A56, K2, or the A28 EFC protein. Interaction between A56/K2 and the EFC was demonstrated by their copurification from detergent-treated lysates of infected cells and identification by mass spectrometry or Western blotting. In addition, a purified soluble transmembrane-deleted form of A56/K2 was shown to interact with the EFC. Tagged A56 did not interact with the EFC in the absence of K2, nor did tagged K2 interact with the EFC in the absence of A56. The finding that both A56 and K2 are required for efficient binding to the EFC fits well with prior experiments showing that mutation of either A56 or K2 results in spontaneous fusion of infected cells. Because A56 and K2 are located on the surface of infected cells, they are in position to interact with the EFC of released progeny virions and prevent back-fusion and syncytia formation.  相似文献   

2.
Vaccinia virus l1 protein is required for cell entry and membrane fusion   总被引:1,自引:1,他引:0  
Genetic and biochemical studies have provided evidence for an entry/fusion complex (EFC) comprised of at least eight viral proteins (A16, A21, A28, G3, G9, H2, J5, and L5) that together with an associated protein (F9) participates in entry of vaccinia virus (VACV) into cells. The genes encoding these proteins are conserved in all poxviruses, are expressed late in infection, and are components of the mature virion membrane but are not required for viral morphogenesis. In addition, all but one component has intramolecular disulfides that are formed by the poxvirus cytoplasmic redox system. The L1 protein has each of the characteristics enumerated above except that it has been reported to be essential for virus assembly. To further investigate the role of L1, we constructed a recombinant VACV (vL1Ri) that inducibly expresses L1. In the absence of inducer, L1 synthesis was repressed and vL1Ri was unable to form plaques or produce infectious progeny. Unexpectedly, assembly and morphogenesis appeared normal and the noninfectious virus particles were indistinguishable from wild-type VACV as determined by transmission electron microscopy and analysis of the component polypeptides. Notably, the L1-deficient virions were able to attach to cells but the cores failed to penetrate into the cytoplasm. In addition, cells infected with vL1Ri in the absence of inducer did not form syncytia following brief low-pH treatment even though extracellular virus was produced. Coimmunoprecipitation experiments demonstrated that L1 interacted with the EFC and indirectly with F9, suggesting that L1 is an additional component of the viral entry apparatus.  相似文献   

3.
Many animal viruses induce cells to fuse and form syncytia. For vaccinia virus, this phenomenon is associated with mutations affecting the A56 and K2 proteins, which form a multimer (A56/K2) on the surface of infected cells. Recent evidence that A56/K2 interacts with the entry/fusion complex (EFC) and that the EFC is necessary for syncytium formation furnishes a strong connection between virus entry and cell fusion. Among the important remaining questions are whether A56/K2 can prevent virus entry as well as cell-cell fusion and whether these two viral proteins are sufficient as well as necessary for this. To answer these questions, we transiently and stably expressed A56 and K2 in uninfected cells. Uninfected cells expressing A56 and K2 exhibited resistance to fusing with A56 mutant virus-infected cells, whereas expression of A56 or K2 alone induced little or no resistance, which fits with the need for both proteins to bind the EFC. Furthermore, transient or stable expression of A56/K2 interfered with virus entry and replication as determined by inhibition of early expression of a luciferase reporter gene, virus production, and plaque formation. The specificity of this effect was demonstrated by restoring entry after enzymatically removing a chimeric glycophosphatidylinositol-anchored A56/K2 or by binding a monoclonal antibody to A56. Importantly, the antibody disrupted the interaction between A56/K2 and the EFC without disrupting the A56-K2 interaction itself. Thus, we have shown that A56/K2 is sufficient to prevent virus entry and fusion as well as formation of syncytia through interaction with the EFC.  相似文献   

4.
Vaccinia mature virus enters cells through either endocytosis or plasma membrane fusion, depending on virus strain and cell type. Our previous results showed that vaccinia virus mature virions containing viral A26 protein enter HeLa cells preferentially through endocytosis, whereas mature virions lacking A26 protein enter through plasma membrane fusion, leading us to propose that A26 acts as an acid-sensitive fusion suppressor for mature virus (S. J. Chang, Y. X. Chang, R. Izmailyan R, Y. L. Tang, and W. Chang, J. Virol. 84:8422-8432, 2010). In the present study, we investigated the fusion suppression mechanism of A26 protein. We found that A26 protein was coimmunoprecipitated with multiple components of the viral entry-fusion complex (EFC) in infected HeLa cells. Transient expression of viral EFC components in HeLa cells revealed that vaccinia virus A26 protein interacted directly with A16 and G9 but not with G3, L5 and H2 proteins of the EFC components. Consistently, a glutathione S-transferase (GST)-A26 fusion protein, but not GST, pulled down A16 and G9 proteins individually in vitro. Together, our results supported the idea that A26 protein binds to A16 and G9 protein at neutral pH contributing to suppression of vaccinia virus-triggered membrane fusion from without. Since vaccinia virus extracellular envelope proteins A56/K2 were recently shown to bind to the A16/G9 subcomplex to suppress virus-induced fusion from within, our results also highlight an evolutionary convergence in which vaccinia viral fusion suppressor proteins regulate membrane fusion by targeting the A16 and G9 components of the viral EFC complex. Finally, we provide evidence that acid (pH 4.7) treatment induced A26 protein and A26-A27 protein complexes of 70 kDa and 90 kDa to dissociate from mature virions, suggesting that the structure of A26 protein is acid sensitive.  相似文献   

5.
The original annotation of the vaccinia virus (VACV) genome was limited to open reading frames (ORFs) of at least 65 amino acids. Here, we characterized a 35-amino-acid ORF (O3L) located between ORFs O2L and I1L. ORFs similar in length to O3L were found at the same genetic locus in all vertebrate poxviruses. Although amino acid identities were low, the presence of a characteristic N-terminal hydrophobic domain strongly suggested that the other poxvirus genes were orthologs. Further studies demonstrated that the O3 protein was expressed at late times after infection and incorporated into the membrane of the mature virion. An O3L deletion mutant was barely viable, producing tiny plaques and a 3-log reduction in infectious progeny. A mutant VACV with a regulated O3L gene had a similar phenotype in the absence of inducer. There was no apparent defect in virus morphogenesis, though O3-deficient virus had low infectivity. The impairment was shown to be at the stage of virus entry, as cores were not detected in the cytoplasm after virus adsorption. Furthermore, O3-deficient virus did not induce fusion of infected cells when triggered by low pH. These characteristics are hallmarks of a group of proteins that form the entry/fusion complex (EFC). Affinity purification experiments demonstrated an association of O3 with EFC proteins. In addition, the assembly or stability of the EFC was impaired when expression of O3 was repressed. Thus, O3 is the newest recognized component of the EFC and the smallest VACV protein shown to have a function.Vaccinia virus (VACV), the best-studied member of the poxvirus family of cytoplasmic DNA viruses, encodes ∼200 genes, some of which are still uncharacterized (27). The focus of the present study is VACV O3L, a short 35-amino-acid open reading frame (ORF) that was recognized by homology to a 41-amino-acid ORF in molluscum contagiosum virus (37) but not previously investigated. Here, we show that O3L is conserved in all chordopoxviruses, expressed late in infection, and involved in cell entry.Considerable information regarding VACV entry has been obtained during the past several years (28). There are two related infectious forms of VACV: the mature virion (MV) and the enveloped virions (EV). The MV is comprised of a lipoprotein membrane enclosing a nucleoprotein core, whereas the EV has an additional outer membrane that must be disrupted before fusion can occur (24). The MV can enter cells either by fusion at the plasma membrane (7) or by a low-pH-mediated endosomal route involving macropinocytosis (20, 26, 44). Regardless of which route is used, the ability of VACV to enter cells depends on a large number of proteins in the MV membrane that form or are associated with the entry/fusion complex (EFC) (39). Using genetic and biochemical methods, 11 entry/fusion proteins have been identified: A16 (33), A21 (43), A28 (40), F9 (4), G3 (21), G9 (32), H2 (38), I2 (31), J5 (39), L1 (3), and L5 (42). Eight of these proteins (A16, A21, A28, G3, G9, H2, J5, and L5) comprise the EFC, which depends on multiple interactions for assembly or stability. Although the structure of the EFC remains to be elucidated, there is evidence for direct interactions between A28 and H2 (30) and between A16 and G9 (50). An additional role for A16 and G9 involves an interaction with the A56/K2 heterodimer, which is present on the surface of infected cells, to prevent spontaneous cell-cell fusion and superinfection by progeny virus (45, 46, 48-50). Binding of L1 to an unidentified cell receptor has been suggested (16). Roles in membrane fusion have also been considered for A17 and A27 (23).Here we provide physical and functional evidence that O3 (VACWR069.5) is an integral component of the EFC and participates in virus entry and membrane fusion. With just 35 amino acids, O3 is the smallest VACV protein with a defined function.  相似文献   

6.
The recently described vaccinia virus entry/fusion complex (EFC) comprises at least eight polypeptides that are conserved in all poxviruses. Neither the structure of the complex nor the roles of individual subunits are known. Here we provide evidence for an interaction between the H2 and A28 subunits in the context of a virus infection as well as in uninfected cells transfected with plasmids expressing the corresponding genes. We focused on a highly conserved 21-amino acid-segment in H2 that is flanked by cysteine residues. The effect of amino acid substitutions within the 21-amino-acid segment was determined by an infectivity complementation assay using a conditional H2-null mutant of vaccinia virus. Mutations that had no, moderate, or large negative effects on complementation were found. The latter group included glutamic acid substitutions of leucine and individual glycines and alanine substitution of both glycines within a LGYSG sequence. Mutations with the most pronounced effect on infectivity disrupted the interaction of H2 with A28 to the greatest extent in both infected and uninfected cells. These data indicate that the LGYSG sequence is important for the interaction of H2 with A28 and suggest that this sequence is buried within the EFC complex.  相似文献   

7.
Composed of 35 amino acids, O3 is the smallest characterized protein encoded by vaccinia virus (VACV) and is an integral component of the entry-fusion complex (EFC). O3 is conserved with 100% identity in all orthopoxviruses except for monkeypox viruses, whose O3 homologs have 2 to 3 amino acid substitutions. Since O3 is part of the EFC, high conservation could suggest an immutable requirement for interaction with multiple proteins. Chordopoxviruses of other genera also encode small proteins with a characteristic predicted N-terminal α-helical hydrophobic domain followed by basic amino acids and proline in the same relative genome location as that of VACV O3. However, the statistical significance of their similarity to VACV O3 is low due to the large contribution of the transmembrane domain, their small size, and their sequence diversity. Nevertheless, trans-complementation experiments demonstrated the ability of a representative O3-like protein from each chordopoxvirus genus to rescue the infectivity of a VACV mutant that was unable to express endogenous O3. Moreover, recombinant viruses expressing O3 homologs in place of O3 replicated and formed plaques as well or nearly as well as wild-type VACV. The O3 homologs expressed by the recombinant VACVs were incorporated into the membranes of mature virions and, with one exception, remained stably associated with the detergent-extracted and affinity-purified EFC. The ability of the sequence-divergent O3 homologs to coordinate function with VACV entry proteins suggests the conservation of structural motifs. Analysis of chimeras formed by swapping domains of O3 with those of other proteins indicated that the N-terminal transmembrane segment was responsible for EFC interactions and for the complementation of infectivity.  相似文献   

8.
Cell fusion induced by infection with mouse hepatitis virus strain A59 (MHV-A59) varied markedly in extent and time course in four different murine cell lines. When inoculated at a multiplicity of 3 to 5 PFU per cell, the Sac-, L2, and DBT cell lines began to fuse by 7 h, were fused into confluent syncytia by 9 to 12 h, and peeled from the substrate by 10 to 14 h. These virulent virus-cell interactions were in striking contrast to the moderate interaction of MHV-A59 with the 17 Cl 1 cell line, in which only small syncytia were observed 18 h postinoculation, and greater than 50% of the cells remained unfused by 24 h. The yield of infectious virus produced by 17 Cl 1 cells was 10-fold higher than the yields from the other three cell lines. The processing of the nucleocapsid protein, the membrane glycoprotein E1, and the peplomeric glycoprotein E2 were found to differ significantly in the four cell lines. Since the E2 glycoprotein is responsible for virus-induced cell fusion, we attempted to correlate differences in cellular processing of E2 with differences in fusion of infected cells. The predominant intracellular form of E2 in all cell lines was the 180K species. Pulse-chase experiments showed that a small portion of the 17 Cl 1 cell-associated 180K E2 was cleaved by 1 h after synthesis to yield 90K E2, shown in the preceding paper to consist of two different glycoproteins called 90A and 90B (L. S. Sturman, C. S. Ricard, and K. V. Holmes, J. Virol. 56:904-911, 1985). This cleavage occurred shortly before the release of virions from cells, as shown by pulse-chase experiments. After budding at intracellular membranes, virions released into the medium by the four cell lines contained different ratios of 180K to 90K E2. Virions from Sac- cells, which contained 100% 90K E2, fused L2 cells rapidly without requiring virus replication, whereas virions from 17 Cl 1 cells, which had 50% 90K E2, required trypsin activation to induce rapid fusion (Sturman et al., J. Virol. 56:904-911, 1985). The addition of protease inhibitors to the medium markedly delayed L2 cell fusion induced by MHV infection. The extent of coronavirus-induced cell fusion does not depend solely upon the percent cleavage of the E2 glycoprotein by cellular proteases, since extensive fusion was induced by infection of L2 and DBT cells but not 17 Cl 1 cells, although all three cell lines cleaved E2 to the same extent.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Cell fusion activities of Hantaan virus envelope glycoproteins   总被引:6,自引:0,他引:6       下载免费PDF全文
Hantaan virus (HTNV)-infected Vero E6 cells undergo cell fusion with both infected and uninfected cells under low-pH conditions. Flow cytometry and fluorescence microscopy of HTNV-infected Vero E6 cells showed that envelope glycoproteins (GPs) were located both on the cell surface and in the cytoplasm. Neutralizing monoclonal antibodies (MAbs) against the G1 and G2 envelope GPs inhibited cell fusion, whereas nonneutralizing MAbs against G1 or G2 and MAbs against the nucleocapsid protein (NP) did not. Transfected Vero E6 cells that expressed GPs but not those that expressed NP fused and formed syncytia. These results indicate that HTNV GPs act as fusogens at the cell surface. No fusion activity was observed either in infected Vero cells that were passaged more than 150 times or in BHK-21 cells, although GPs appeared to localize to the cell surface. This variability in fusion induction suggests the involvement of host cell factors in the process of cell membrane fusion.  相似文献   

10.
The vaccinia virus (VACV) complement control protein (VCP) is the major protein secreted from VACV-infected cells. It has been reported that VCP binds to the surfaces of uninfected cells by interacting with heparan sulfate proteoglycans (HSPGs). In this study, we show that VCP is also expressed on the surfaces of infected cells and demonstrate that surface localization occurs independently of HSPGs. Since VCP does not contain a transmembrane domain, we hypothesized that VCP interacts with a membrane protein that localizes to the infected-cell surface. We show that the VACV A56 membrane protein is necessary for the cell surface expression of VCP and demonstrate that VCP and A56 interact in VACV-infected cells. Since the surface expression of VCP was abrogated by reducing agents, we examined the contribution of an unpaired cysteine residue on VCP to VCP surface expression and VCP's interaction with A56. To do this, we mutated the unpaired cysteine in VCP and generated a recombinant virus expressing the altered form of VCP. Following the infection of cells with the mutant virus, VCP was neither expressed on the cell surface nor able to interact with A56. Importantly, the cell surface expression of VCP was found to protect infected cells from complement-mediated lysis. Our findings suggest a new function for VCP that may be important for poxvirus pathogenesis and impact immune responses to VACV-based vaccines.  相似文献   

11.
The enveloped baculovirus insect cell system has been used extensively for expression of recombinant proteins, including viral fusion proteins. We tested wild-type baculovirus for endogenous fusion protein activity. Syncytia formation, dye transfer, and capacitance changes were observed after incubating infected Spodoptera frugiperda cells in acidic media, consistent with fusion protein activity. Only a short acidic pulse of 10 s is needed to trigger syncytia formation. Identical results were obtained with recombinant baculovirus. This new system is convenient for studying pH activated cell-cell fusion. However, using this enveloped virus to study the mechanism of recombinant fusion proteins requires caution.  相似文献   

12.
For many viruses, one or two proteins allow cell attachment and entry, which occurs through the plasma membrane or following endocytosis at low pH. In contrast, vaccinia virus (VACV) enters cells by both neutral and low pH routes; four proteins mediate cell attachment and twelve that are associated in a membrane complex and conserved in all poxviruses are dedicated to entry. The aim of the present study was to determine the roles of cellular and viral proteins in initial stages of entry, specifically fusion of the membranes of the mature virion and cell. For analysis of the role of cellular components, we used well characterized inhibitors and measured binding of a recombinant VACV virion containing Gaussia luciferase fused to a core protein; viral and cellular membrane lipid mixing with a self-quenching fluorescent probe in the virion membrane; and core entry with a recombinant VACV expressing firefly luciferase and electron microscopy. We determined that inhibitors of tyrosine protein kinases, dynamin GTPase and actin dynamics had little effect on binding of virions to cells but impaired membrane fusion, whereas partial cholesterol depletion and inhibitors of endosomal acidification and membrane blebbing had a severe effect at the later stage of core entry. To determine the role of viral proteins, virions lacking individual membrane components were purified from cells infected with members of a panel of ten conditional-lethal inducible mutants. Each of the entry protein-deficient virions had severely reduced infectivity and except for A28, L1 and L5 greatly impaired membrane fusion. In addition, a potent neutralizing L1 monoclonal antibody blocked entry at a post-membrane lipid-mixing step. Taken together, these results suggested a 2-step entry model and implicated an unprecedented number of viral proteins and cellular components involved in signaling and actin rearrangement for initiation of virus-cell membrane fusion during poxvirus entry.  相似文献   

13.
Calcium ions are required for fusion of a wide variety of artificial and biological membranes. To examine the role of calcium ions for cell fusion mediated by interactions between CD4 and the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (gp120-gp41), we used two experimental systems: (i) cells expressing gp120-gp41 and its receptor CD4, both encoded by recombinant vaccinia viruses, and (ii) chronically infected cells producing low levels of HIV-1. Fusion was measured by counting the number of syncytia and by monitoring the redistribution of fluorescence dyes by video microscopy. Syncytia did not form in solutions without calcium ions. Addition of calcium ions partially restored the formation of syncytia. EDTA and EGTA [ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid] blocked syncytium formation in culture media containing calcium ions. Membrane fusion as monitored by fluorescence dye redistribution also required calcium ions. Cell fusion increased with an increase in calcium ion concentration from 100 microM to 10 mM but was not affected by magnesium ions in the concentration range from 0 to 30 mM. Fibrinogen and fibronectin did not promote fusion in the absence or presence of Ca2+. Binding of soluble CD4 to gp120-gp41-expressing cells was not affected by Ca2+ and Mg2+. We conclude that Ca2+ is involved in postbinding steps in cell fusion mediated by the CD4-HIV-1 envelope glycoprotein interaction.  相似文献   

14.
The vaccinia virus H2R gene (VACWR 100) is conserved in all sequenced members of the poxvirus family and encodes a protein with a predicted transmembrane domain and four invariant cysteines. A recombinant vaccinia virus, in which expression of the H2 protein is stringently regulated, was unable to replicate without inducer. However, under nonpermissive conditions, all stages of virus morphogenesis appeared normal and extracellular virions were detected at the tips of actin tails. Nevertheless, virus did not spread to neighboring cells nor did syncytia form after low-pH treatment. Purified -H2 and +H2 virions from cells infected in the absence or presence of inducer, respectively, were indistinguishable in microscopic appearance and contained the same complement of major proteins, though only +H2 virions were infectious. The -H2 virions bound to cells, but their cores did not penetrate into the cytoplasm. In addition, exogenously added -H2 virions were unable to mediate the formation of syncytia after low-pH treatment. In contrast, virions lacking the A27 (p14) protein, which was previously considered to have an essential role in fusion, penetrated cells and induced extensive syncytia. The properties of H2, however, are very similar to those recently reported for the A28 protein. Moreover, coimmunoprecipitation experiments indicated an interaction between H2 and A28. Therefore, H2 and A28 are the only proteins presently known to be specifically required for vaccinia virus entry and are likely components of a fusion complex.  相似文献   

15.
The use of endocytic pathways by viral glycoproteins is thought to play various functions during viral infection. We previously showed in transfection assays that herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) is transported from the cell surface back to the trans-Golgi network (TGN) and that two motifs of gB cytoplasmic tail, YTQV and LL, function distinctly in this process. To investigate the role of each of these gB trafficking signals in HSV-1 infection, we constructed recombinant viruses in which each motif was rendered nonfunctional by alanine mutagenesis. In infected cells, wild-type gB was internalized from the cell surface and concentrated in the TGN. Disruption of YTQV abolished internalization of gB during infection, whereas disruption of LL induced accumulation of internalized gB in early recycling endosomes and impaired its return to the TGN. The growth of both recombinants was moderately diminished. Moreover, the fusion phenotype of cells infected with the gB recombinants differed from that of cells infected with the wild-type virus. Cells infected with the YTQV-mutated virus displayed reduced cell-cell fusion, whereas giant syncytia were observed in cells infected with the LL-mutated virus. Furthermore, blocking gB internalization or impairing gB recycling to the cell surface, using drugs or a transdominant negative form of Rab11, significantly reduced cell-cell fusion. These results favor a role for endocytosis in virus replication and suggest that gB intracellular trafficking is involved in the regulation of cell-cell fusion.  相似文献   

16.
Vesicular stomatitis virus (VSV), a prototype of the Rhabdoviridae family, contains a single surface glycoprotein (G) that is responsible for attachment to cells and mediates membrane fusion. Working with the Indiana serotype of VSV, we employed a reverse genetic approach to produce fully authentic recombinant viral particles bearing lethal mutations in the G gene. By altering the hydrophobicity of the two fusion loops within G, we produced a panel of mutants, W72A, Y73A, Y116A, and A117F, that were nonfusogenic. Propagation of viruses bearing those lethal mutations in G completely depended on complementation by expression of the glycoprotein from the heterologous New Jersey serotype of VSV. The nonfusogenic G proteins oligomerize and are transported normally to the cell surface but fail to mediate acid pH-triggered membrane fusion. The nonfusogenic G proteins also interfered with the ability of wild-type G to mediate fusion, either by formation of mixed trimers or by inhibition of trimer function during fusion. Passage of one recombinant virus, A117F, identified a second site suppressor of the fusion block, E76K. When analyzed in the absence of the A117F substitution, E76K rendered G more sensitive to acid pH-triggered fusion, suggesting that this compensatory mutation is destabilizing. Our work provides a set of authentic recombinant VSV particles bearing lethal mutations in G, confirms that the hydrophobic fusion loops of VSV G protein are critical for membrane fusion, and underscores the importance of the sequence elements surrounding the hydrophobic tips of the fusion loops in driving fusion. This study has implications for understanding dominant targets for inhibition of G-mediated fusion. Moreover, the recombinant viral particles generated here will likely be useful in dissecting the mechanism of G-catalyzed fusion as well as study steps of viral assembly.  相似文献   

17.
PCR fragments containing the fusion protein genes 129L of the ectromelia virus (EV) and A30L of the variola virus (VARV) were cloned in pQE32. The expression products, recombinant prA30L and pr129L, were isolated from Escherichia coli cell lysates by metal-chelate affinity chromatography. The recombinant proteins retained the capability of oligomerization, characteristic of their natural analogs. ELISA and immunoblotting were used to test 22 monoclonal antibodies (mAbs) to orthopoxviruses (19 mAbs to EV, 2 mAbs to the vaccinia virus (VACV), and 1 mAb to the cowpox virus (CPXV)) for interaction with prA30L, pr129L, and orthopoxviruses. Twelve species-specific epitopes were found in the EV fusion protein 129L and its recombinant analog. Ten cross-reacting epitopes were found in the EV, CPXV, and VACV fusion proteins. Of these, nine epitopes were present both in prA30L and in the VARV fusion protein. Five mAbs interacting with cross-reacting epitopes were capable of efficient neutralization of VACV; two of these mAbs neutralized VARV. It was demonstrated that there are species-specific epitopes in EV 129L and cross-reacting epitopes in the EV, VARV, CPXV, and VACV fusion proteins, including epitopes that induced synthesis of virus-neutralizing antibodies against VACV and VARV.  相似文献   

18.
Cell entry by paramyxoviruses requires fusion between viral and cellular membranes. Paramyxovirus infection also gives rise to the formation of multinuclear, fused cells (syncytia). Both types of fusion are mediated by the viral fusion (F) protein, which requires proteolytic processing at a basic cleavage site in order to be active for fusion. In common with most paramyxoviruses, fusion mediated by Sendai virus F protein (F(SeV)) requires coexpression of the homologous attachment (hemagglutinin-neuraminidase [HN]) protein, which binds to cell surface sialic acid receptors. In contrast, respiratory syncytial virus fusion protein (F(RSV)) is capable of fusing membranes in the absence of the viral attachment (G) protein. Moreover, F(RSV) is unique among paramyxovirus fusion proteins since F(RSV) possesses two multibasic cleavage sites, which are separated by an intervening region of 27 amino acids. We have previously shown that insertion of both F(RSV) cleavage sites in F(SeV) decreases dependency on the HN attachment protein for syncytium formation in transfected cells. We now describe recombinant Sendai viruses (rSeV) that express mutant F proteins containing one or both F(RSV) cleavage sites. All cleavage-site mutant viruses displayed reduced thermostability, with double-cleavage-site mutants exhibiting a hyperfusogenic phenotype in infected cells. Furthermore, insertion of both F(RSV) cleavage sites in F(SeV) reduced dependency on the interaction of HN with sialic acid for infection, thus mimicking the unique ability of RSV to fuse and infect cells in the absence of a separate attachment protein.  相似文献   

19.
Vaccinia virus (VACV) L1 is a myristoylated envelope protein which is required for cell entry and the fusion of infected cells. L1 associates with members of the entry-fusion complex (EFC), but its specific role in entry has not been delineated. We recently demonstrated (Foo CH, et al., Virology 385:368-382, 2009) that soluble L1 binds to cells and blocks entry, suggesting that L1 serves as the receptor-binding protein for entry. Our goal is to identify the structural domains of L1 which are essential for its functions in VACV entry. We hypothesized that the myristate and the conserved residues at the N terminus of L1 are critical for entry. To test our hypothesis, we generated mutants in the N terminus of L1 and used a complementation assay to evaluate their ability to rescue infectivity. We also assessed the myristoylation efficiency of the mutants and their ability to interact with the EFC. We found that the N terminus of L1 constitutes a region that is critical for the infectivity of VACV and for myristoylation. At the same time, the nonmyristoylated mutants were incorporated into mature virions, suggesting that the myristate is not required for the association of L1 with the viral membrane. Although some of the mutants exhibited altered structural conformations, two mutants with impaired infectivity were similar in conformation to wild-type L1. Importantly, these two mutants, with changes at A4 and A5, undergo myristoylation. Overall, our results imply dual differential roles for myristate and the amino acids at the N terminus of L1. We propose a myristoyl switch model to describe how L1 functions.  相似文献   

20.
Human immunodeficiency virus type-1 (HIV-1) and human T-cell leukemia virus type-I (HTLV-I) have a similar tropism for target cell types, especially for CD4+ T cells. In this study, we provide evidence that receptors of these two viruses exist independently on the target cell. We established an HTLV-I-producing CD8+ T cell line (ILT-8M2) with a remarkable cell fusion capacity. When cocultured with MOLT-4 cells, ILT-8M2 cells induced giant syncytia more efficiently than any other tested HTLV-I-producer cell lines. In contrast to other HTLV-I-producers, ILT-8M2 cells were minimally susceptible to cytopathic effects of HIV-1 due to very low expression of CD4, although they were able to be persistently infected by HIV-1. The indicator MOLT-4 cells are known to respond well to HIV-1-induced cell fusion, but they lose this ability if they become persistently infected with HIV-1 because of the reduction of CD4 receptor expression. ILT-8M2 was, however, still capable of inducing syncytia with the MOLT-4 cells persistently infected by HIV-1 (MOLT-4/IIIB). This syncytium formation was dependent on the HTLV-I-envelope, as it was inhibited by HTLV-I-positive human sera or a monoclonal antibody to HTLV-I gp46 but not by monoclonal antibodies to HIV-1 gp120 or CD4. Moreover, ILT-8M2 cells persistently infected by HIV-1 (ILT-8M2/IIIB) induced both HTLV-I- and HIV-1-mediated syncytia with uninfected MOLT-4 cells. These results suggest that HTLV-I induces cell fusion utilizing receptors on the target cells independent of HIV-1-receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号