首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
? Premise of the study: Leaf venation is linked to physiological performance, playing a critical role in ecosystem function. Despite the importance of leaf venation, associated bundle sheath extensions (BSEs) remain largely unstudied. Here, we quantify plasticity in the spacing of BSEs over irradiance and precipitation gradients. Because physiological function(s) of BSEs remain uncertain, we additionally explored a link between BSEs and water use efficiency (WUE). ? Methods: We sampled leaves of heterobaric trees along intracrown irradiance gradients in natural environments and growth chambers and correlated BSE spacing to incident irradiance. Additionally, we sampled leaves along a precipitation gradient and correlated BSE spacing to precipitation and bulk δ(13)C, a proxy for intrinsic WUE. BSE spacing was quantified using a novel semiautomatic method on fresh leaf tissue. ? Key results: With increased irradiance or decreased precipitation, Liquidambar styraciflua decreased BSE spacing, while Acer saccharum showed little variation in BSE spacing. Two additional species, Quercus robur and Platanus occidentalis, decreased BSE spacing with increased irradiance in growth chambers. BSE spacing correlated with bulk δ(13)C, a proxy for WUE in L. styraciflua, Q. robur, and P. occidentalis leaves but not in leaves of A. saccharum. ? Conclusions: We demonstrated that BSE spacing is plastic with respect to irradiance or precipitation and independent from veins, indicating BSE involvement in leaf adaptation to a microenvironment. Plasticity in BSE spacing was correlated with WUE only in some species, not supporting a function in water relations. We discuss a possible link between BSE plasticity and life history, particularly canopy position.  相似文献   

4.
Leaves are asymmetric, with different functions for adaxial and abaxial tissue. The bundle sheath (BS) of C3 barley (Hordeum vulgare) is dorsoventrally differentiated into three types of cells: adaxial structural, lateral S-type, and abaxial L-type BS cells. Based on plasmodesmatal connections between S-type cells and mestome sheath (parenchymatous cell layer below bundle sheath), S-type cells likely transfer assimilates toward the phloem. Here, we used single-cell RNA sequencing to investigate BS differentiation in C4 maize (Zea mays L.) plants. Abaxial BS (abBS) cells of rank-2 intermediate veins specifically expressed three SWEET sucrose uniporters (SWEET13a, b, and c) and UmamiT amino acid efflux transporters. SWEET13a, b, c mRNAs were also detected in the phloem parenchyma (PP). We show that maize has acquired a mechanism for phloem loading in which abBS cells provide the main route for apoplasmic sucrose transfer toward the phloem. This putative route predominates in veins responsible for phloem loading (rank-2 intermediate), whereas rank-1 intermediate and major veins export sucrose from the PP adjacent to the sieve element companion cell complex, as in Arabidopsis thaliana. We surmise that abBS identity is subject to dorsoventral patterning and has components of PP identity. These observations provide insights into the unique transport-specific properties of abBS cells and support a modification to the canonical phloem loading pathway in maize.  相似文献   

5.
Both malate and aspartate were decarboxylated at the 4-carbonposition by isolated bundle sheath strands of C4 plants butto different extents depending upon the species. In Digitariasanguinalis, an NADP-malic enzyme (NADP-ME) species, 100 µMoxalic acid blocked malate decarboxylation through NADP-ME withoutaffecting aspartate decarboxylation which apparently occursthrough NAD-ME. In several phosphoenolpyruvate carboxykinase(PEP-CK) type C4 species, 200 µM 3-mercaptopicolinic acid(3-MPA), an inhibitor of PEP-CK, specifically inhibited themalate decarboxylation and partially inhibited aspartate decarboxylation.The aspartate decarboxylation insensitive to 3-MPA may occurthrough NAD-ME. Neither inhibitor prevented C4 acid decarboxylationin bundle sheath cells of NAD-ME species. The inhibitors thusserved to differentiate between the decarboxylation of C4 acidsin PEP-CK and NADP-ME type C4 species through their major decarboxylasefrom that of their less active decarboxylation through NAD-ME. 1 Present address: Department of Biochemistry and Microbiology,Rutgers University, New Brunswick, NJ 08903, U. S. A. (Received January 28, 1977; )  相似文献   

6.
Mitochondria from bundle sheath cells of the phosphoenolpyruvate carboxykinase-type C4 species Urochloa panicoides were shown to have metabolic properties consistent with a role in C4 photosynthesis predicted from earlier studies. The rate of O2 uptake in response to added malate plus ADP was at least five times the activity observed with NADH, glycine, or succinate. With malate plus ADP the O2 uptake rate averaged about 150 nmol O2 min-1 mg-1 protein, equivalent to about 0.6 mumol min-1 mg-1 of extracted chlorophyll. About half of this activity was apparently phosphorylation-linked with ADP/O2 ratios of about 4. Studies with electron transport inhibitors suggested that about 65% of this malate oxidation is cytochrome oxidase-terminated with a minor component mediated via the alternative oxidase. These mitochondria supported rapid rates of pyruvate production from malate and this activity was also stimulated by ADP but blocked by inhibitors of electron transport. Adding oxaloacetate increased pyruvate production but inhibited O2 uptake. The results were consistent with the notion that in this subgroup of C4 species mitochondrial-located NAD malic enzyme contributes substantially to total C4 acid decarboxylation. This enzyme is apparently also the primary source of NADH necessary to generate the ATP required for phosphoenolpyruvate carboxykinase-mediated oxaloacetate decarboxylation.  相似文献   

7.
Bundle sheath (BS) anatomy is found in most C4 lineages, associated with low inter‐veinal distances (IVD) and high BS:mesophyll ratio (BS:MC). The origins, function and selective advantages of the BS in C3 lineages are relevant for understanding the environmental, molecular and phylogenetic determinants of C4 evolution. Suggested functions for BS have included structural support, hydraulic isolation, storage for water, ions, and carbohydrates, and photorespiratory carbon metabolism; we propose a central role for cavitation repair, consistent with the BS as a control centre on regulating stem and leaf hydraulic continuity. An analysis of BS traits in the phylogenetic lineages giving rise to C4 grasses (the ‘PACMAD’ clade) shows an initial enhancement in BS:MC ratio in C3 lineages, although IVD is similar to the Pooideae sister group. Using a global database, a well‐developed BS in the C3 PACMAD lineages was associated with higher precipitation and temperatures in the habitat of origin on an annual basis, with the C3 to C4 progression defined by the aridity index (AI). Maintaining leaf hydraulic conductance and cavitation repair are consistent with increased evaporative demand and more seasonal precipitation as drivers, first for the C3 BS, and then C4 diversification, under declining CO2 concentrations in the Palaeogene and Neogene.  相似文献   

8.
Mature leaves of Cyperus rotundus, Cyperus polystachyos, Digitaria decumbens, and Digitaria sanguinalis were separated, using pectinase and cellulase, into pure preparations of mesophyll cells and bundle sheath strands. Assays on these distinct leaf cell types show a clear compartmentation of phosphoenolpyruvate carboxylase, >98%, into mesophyll cells and of ribulose-1, 5-diphosphate carboxylase and malic enzyme, >98%, into the bundle sheath strands. The results clearly establish that the major CO2 uptake in mesophyll cells is via a β-carboxylation and that both a decarboxylation and a carboxylation reaction occurs in the bundle sheath strands of plants using C4-dicarboxylic acid photosynthesis.  相似文献   

9.
A method has been developed for rapidly preparing bundle sheath cell strands from Urochloa panicoides, a phosphoenolpyruvate (PEP) carboxykinase-type C4 plant. These cells catalyzed both HCO3(-)- and oxaloacetate-dependent oxygen evolution; oxaloacetate-dependent oxygen evolution was stimulated by ATP. For this activity oxaloacetate could be replaced by aspartate plus 2-oxoglutarate. Both oxaloacetate- and aspartate plus 2-oxoglutarate-dependent oxygen evolution were accompanied by PEP production and both were inhibited by 3-mercaptopicolinic acid, an inhibitor of PEP carboxykinase. The ATP requirement for oxaloacetate- and aspartate plus 2-oxoglutarate-dependent oxygen evolution could be replaced by ADP plus malate. The increased oxygen evolution observed when malate plus ADP was added with oxaloacetate was accompanied by pyruvate production. These results are consistent with oxaloacetate being decarboxylated via PEP carboxykinase. We suggest that the ATP required for oxaloacetate decarboxylation via PEP carboxykinase may be derived by phosphorylation coupled to malate oxidation in mitochondria. These bundle sheath cells apparently contain diffusion paths for the rapid transfer of compounds as large as adenine nucleotides.  相似文献   

10.
The mechanism of C4 acid decarboxylation was studied in bundle sheath cell strands from Urochloa panicoides, a phosphoenolpyruvate carboxykinase (PCK)-type C4 plant. Added malate was decarboxylated to give pyruvate and this activity was often increased by adding ADP. Added oxaloacetate or aspartate plus 2-oxoglutarate (which produce oxaloacetate via aspartate aminotransferase) gave little metabolic decarboxylation alone but with added ATP there was a rapid production of PEP. For this activity ADP could replace ATP but only when added in combination with malate. In addition, the inclusion of aspartate plus 2-oxoglutarate with malate plus ADP often increased the rate of pyruvate production from malate by more than twofold. Experiments with respiratory chain inhibitors showed that the malate-dependent stimulation of oxaloacetate decarboxylation (PEP production) was probably due to ATP generated during the oxidation of malate in mitochondria. We could provide no evidence that photophosphorylation could serve as an alternative source of ATP for the PEP carboxykinase reaction. We concluded that both PEP carboxykinase and mitochondrial NAD-malic enzyme contribute to C4 acid decarboxylation in these cells, with the required ATP being derived from oxidation-linked phosphorylation in mitochondria.  相似文献   

11.
In vitro translation of polyA+ mRNAs isolated from purified maize bundle sheath and mesophyll cells results in the production of distinctive, cell-specific polypeptides. Immunoprecipitation experiments show that translatable polyA+ mRNAs for phosphoenolpyruvate carboxylase (PEPC), pyruvate orthophosphate dikinase (PPDK) and NADP-malate dehydrogenase (MDH) are prominent in mesophyll but not bundle sheath cells. On the contrary, those for sedoheptulose-1,7-bisphosphatase (SBP), fructose-1,6-bisphosphatase (FBP), NADP-malic enzyme (ME) and the small subunit of ribulose-1,5-bisphosphate carboxylase (RuBPC SS) are present only in bundle sheath cells. Moreover, polyA+ mRNAs encoding the 33 kD, 23 kD and 16 kD polypeptides of the oxygen-evolving complex (OE33, OE23 and OE16) and the light-harvesting chlorophyll a/b binding protein of photosystem II (LHCP II) are much more abundant in mesophyll than in bundle sheath cells. Northern blot analyses with cDNA clones of PEPC, PPDK, ME, RuBPC SS, OE33, OE23, OE16 and LHCP II are consistent with the conclusion that the cell-specific expression of these genes is regulated at the RNA level. The RNA level differences are especially dramatic in dark-grown maize seedlings after illumination for 24 h.  相似文献   

12.
Uptake of35S-sulphate by bundle sheath strands (BSC) from leaves of maize plants (Zea mays L. ev. Dekalb L 72 A) was higher than that by isolated mesophyll protoplasts (MC) of maize. Ion uptake followed the Michaelis-Menten kinetic satuiation curves. SO2 4-uptake increased after addition of malate, NADPH, malate + NADP+ to BSC suspensions, but not to MC susp: nsions.  相似文献   

13.
Bundle sheath cells were enzymatically isolated from representatives of three groups of C4 plants: Zea mays (NADP malic enzyme type), Panicum miliaceum (NAD malic enzyme type), and Panicum maximum (phosphoenolpyruvate (PEP) carboxykinase type). Cellular organelles from bundle sheath homogenates were partially resolved by differential centrifugation and on isopycnic sucrose density gradients in order to study compartmentation of photosynthetic enzymes. A 48-h-dark pretreatment of the leaves allowed the isolation of relatively intact chloroplasts. Enzymes that decarboxylate C4 acids and furnish CO2 to the Calvin cycle are localized as follows: NADP malic enzyme, chloroplastic in Z. mays; NAD malic enzyme, mitochondrial in all three species; PEP carboxykinase, chloroplastic in P. maximum. The activity of NAD malic enzyme in the three species was in the order of P. miliaceum > P. maximum > Z. mays. There were high levels of aspartate and alanine aminotransferases in bundle sheath extracts of P. miliaceum and P. maximum and substantial activity in Z. mays. In all three species, aspartate aminotransferase was mitochondrial whereas alanine aminotransferase was cytoplasmic. Based on the activity and localization of certain enzymes, the concept for aspartate and malate as transport metabolites from mesophyll to bundle sheath cells in C4 species of the three C4 groups is discussed.  相似文献   

14.
15.
Chloroplast photorelocation movement is extensively studied in C3 but not C4 plants. C4 plants have two types of photosynthetic cells: mesophyll and bundle sheath cells. Mesophyll chloroplasts are randomly distributed along cell walls, whereas bundle sheath chloroplasts are located close to the vascular tissues or mesophyll cells depending on the plant species. The cell-specific C4 chloroplast arrangement is established during cell maturation, and is maintained throughout the life of the cell. However, only mesophyll chloroplasts can change their positions in response to environmental stresses. The migration pattern is unique to C4 plants and differs from that of C3 chloroplasts. in this mini-review, we highlight the cell-specific disposition of chloroplasts in C4 plants and discuss the possible physiological significances.Key words: abscisic acid, aggregative movement, avoidance movement, blue light, bundle sheath cell, C4 plant, chloroplast, cytoskeleton, environmental stress, mesophyll cellChloroplasts can change their intracellular positions to optimize photosynthetic activity and/or reduce photodamage occurring in response to light irradiation. On treating with high-intensity light, the chloroplasts move away from the light to minimize photodamage (avoidance response). Meanwhile, on irradiating with low-intensity light, they move toward the light source to maximize photosynthesis (accumulation response). These chloroplast-photorelocation movements are observed in a wide variety of plant species from green algae to seed plants,13 although little attention has been paid to C4 plants. There is a report stating that monocotyledonous C4 plants showed changes in the light transmission of leaves in response to blue light,4 although the direction of migration of the chloroplasts is not described.C4 plants have two types of photosynthetic cells: mesophyll (M) cells and bundle sheath (BS) cells, which have numerous well-developed chloroplasts. BS cells surround the vascular tissues, while M cells encircle the cylinders of the BS cells (Fig. 1). The C4 dicarboxylate cycle of photosynthetic carbon assimilation is distributed between the two cell types, and acts as a CO2 pump to concentrate CO2 in the BS chloroplasts.5,6 C4 plants are divided into three subtypes on the basis of decarboxylating enzymes: NADP-malic enzyme (ME), NAD-ME and phosphoenolpyruvate carboxykinase. Although the M chloroplasts of all C4 species are randomly distributed along the cell walls, BS chloroplasts are located either in a centripetal (close to the vascular tissue) or in a centrifugal (close to M cells) position, depending on the species (Fig. 1A).7 Thus, C4 M and BS cells have different systems for chloroplast positioning: an M cell-specific system for dispersing chloroplasts and a BS cell-specific system for holding chloroplasts in a centripetal or centrifugal disposition.Open in a separate windowFigure 1The intracellular arrangement of chloroplasts in finger millet (Eleusine coracana), an NAD-ME-type C4 plant. (A) Light micrograph of a transverse section of a leaf blade from a control plant. Bundle sheath (BS) cells surround the vascular tissues, while mesophyll (M) cells encircle the cylinders of the BS cells. BS chloroplasts are well developed, and are located in a centripetal position, whereas M chloroplasts are randomly distributed along the cell walls. B, bundle sheath cell; M, mesophyll cell; V, vascular bundle. (B) Transverse section of a leaf blade from a drought-stressed plant. Most M chloroplasts are aggregatively distributed toward the BS side, while the centripetal arrangement of BS chloroplasts is unchanged. (C and D) Transverse sections of leaf segments irradiated with blue light of intensity 500 µmol m−2 s−1 with or without 30 µM ABA for 8 h (C and D, respectively). The adaxial side of each leaf section (upper side in the photograph) was illuminated. In the absence of ABA, M chloroplasts exhibited avoidance movement on the illuminated side and aggregative movement on the opposite side. In the presence of ABA, aggregative movement was observed on both sides. Scale bars = 50 µm.  相似文献   

16.
The distribution of nitrite reductase (EC 1.7.7.1) and sulfite reductase (EC 1.8.7.1) between mesophyll ceils and bundle sheath cells of maize ( Zea mays L. cv. Seneca 60) leaves was examined. This examination was complicated by the fact that both of these enzymes can reduce both NO-2 and SO2-3 In crude extracts from whole leaves, nitrite reductase activity was 6 to 10 times higher than sulfite reductase activity. Heat treatment (10 min at 55°C) caused a 55% decrease in salfite reductase activity in extracts from bundle sheath cells and mesophyll cells, whereas the loss in nitrite reductase activity was 58 and 82% in bundle sheath cells and mesophyll cell extracts, respectively. This result was explained, together with results from the literature, by the hypothesis that sulfite reductase is present in both bundle sheath cells and mesophyll cells, and that nitrite reductase is restricted to the mesophyll cells. This hypothesis was tested i) by comparing the distribution of nitrite reductase activity and sulfite reductase activity between bundle sheath and mesophyll cells with the presence of the marker enzymes ribulose-l, 5-bisphosphate carboxylase (EC 4.1.1.39) and phosphoe-nolpyruvate carboxylase (EC 4.1.1.32), ii) by examining the effect of cultivation of maize plants in the dark without a nitrogen source on nitrite reductase activity and sulfite reductase activity in the two types of cells, and iii) by studying the action of S2-on the two enzyme activities in extracts from bundle sheath and mesophyll cells. The results from these experiments are consistent with the above hypothesis.  相似文献   

17.
Kanai R  Edwards GE 《Plant physiology》1973,51(6):1133-1137
Mesophyll protoplasts and bundle sheath strands of maize (Zea mays L.) leaves have been isolated by enzymatic digestion with cellulase. Mesophyll protoplasts, enzymatically released from maize leaf segments, were further purified by use of a polyethylene glycol-dextran liquid-liquid two phase system. Bundle sheath strands released from the leaf segments were isolated using filtration techniques. Light and electron microscopy show separation of the mesophyll cell protoplasts from bundle sheath strands. Two varieties of maize isolated mesophyll protoplasts had chlorophyll a/b ratios of 3.1 and 3.3, whereas isolated bundle sheath strands had chlorophyll a/b ratios of 6.2 and 6.6. Based on the chlorophyll a/b ratios in mesophyll protoplasts, bundle sheath cells, and whole leaf extracts, approximately 60% of the chlorophyll in the maize leaves would be in mesophyll cells and 40% in bundle sheath cells. The purity of the preparations was also evident from the exclusive localization of phosphopyruvate carboxylase (EC 4.1.1.31) and NADP-dependent malate dehydrogenase (EC 1.1.1) in mesophyll cells and ribulose 1,5-diphosphate carboxylase (EC 4.1.1.39), phosphoribulokinase (EC 2.7.1.19), and “malic enzyme” (EC 1.1.1.40) in bundle sheath cells. NADP-glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.13) was found in both mesophyll and bundle sheath cells, while ribose 5-phosphate isomerase (EC 5.3.1.6) was primarily found in bundle sheath cells. In comparison to the enzyme activities in the whole leaf extract, there was about 90% recovery of the mesophyll enzymes and 65% recovery of the bundle sheath enzymes in the cellular preparations.  相似文献   

18.
Localization of two isoforms of glutamine synthetase (GS; EC 6.3.1.2) was investigated in different cell types, mesophyll cells and bundle sheath cells, of corn ( Zea mays L. var. W64A × W182E) leaves by using ion exchange chrotnatography. In whole leaf extracts, relative activities of GS1 (cytosolic GS) and GS2 (chloroplastic GS) were almost equal. Purified mesophyll protoplasts and bundle sheath strands also showed similar proportions of GS1 and GS2. Methionine sulfoximine (1 mM ) enhanced the accumulation of ammonia when mesophyll protoplasts were incubated with nitrite or when bundle sheath strands were incubated with glycine. This clearly indicates a spatial separation of metabolism of NH+4 derived from photorespiration and from reduction of NOJ.  相似文献   

19.
Keunecke M  Hansen UP 《Planta》2000,210(5):792-800
The isolation of bundle sheath protoplasts from leaves of Zea mays L. for patch clamp whole-cell experiments presents special problems caused by the suberin layer surrounding these cells. These problems were overcome by the isolation technique described here. Two different types of whole-cell response were found: a small response caused by MB-1 (maize bundle sheath conductance type 1) which was instantaneously activated, and another caused by MB-2 (maize bundle sheath conductance type 2) consisting of an instantaneous response (maize bundle sheath K+ instantaneous current type 2; MB-KI2) similar to but stronger than the current through MB-1 plus a small time-dependent outward rectifying component (maize bundle sheath activated outward rectifying current; MB-AOR) with voltage-dependent delayed activation. The occurrence of MB-AOR was often accompanied by a smaller contribution from an inward rectifying channel at negative potentials. Activation of MB-2 required ATP. It is suggested that MB-1 and MB-2 are related to bundle sheath cells with and without direct contact with the xylem vessels. In mesophyll cells, only one type of response caused by MM-2 (maize mesophyll conductance type 2) was found with an instantaneous (maize mesophyll K+ instantaneous current type 2, MM-KI2) and a voltage-dependent delayed component (maize mesophyll activated outward rectifying current, MM-AOR). The most striking difference between bundle sheath and mesophyll cells was the pH dependence of K+ uptake. At pH 7.2, uptake of K+ by MB-2 was identical to that by MM-2 over the whole voltage range. However, acidification stimulated K+ conductance in bundle sheath cells, whereas a decrease was found for MM-2. At pH 6.15, the bundle sheath channel MB-2 had more than a 10-fold higher K+ uptake at positive and negative potentials than MM-2. The channel MB-1, too, was stimulated by low pH. This seems to indicate a putative role for MB-1 and MB-2 in charge balance during uptake of nutrients via cotransport from the xylem into the symplasm. Received: 23 April 1999 / Accepted: 19 July 1999  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号