首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pretreatment of lignocellulosic biomass has been taken up as a global challenge as it comprises a large renewable source of fermentable sugars. In this study, effect of electron beam irradiation (EBI) on a hybrid grass variety investigated as a biomass pretreatment method. Dry biomass samples after characterization were exposed to EBI doses of 0, 75, 150 and 250kGy. The pretreated biomass samples were enzymatically hydrolyzed using Trichoderma reesei ATCC 26921 cellulase for 144h. The enzyme loadings were 15 and 30FPU/g of biomass. The structural changes and degree of crystallinity of the pretreated biomass were studied by FTIR, XRD and SEM analyses. The lignocellulosic biomass sample showed 12.0% extractives, 36.9% cellulose, 28.4% hemicellulose, 11.9% lignin and 8.6% ash. Significant improvements in the reducing sugar and glucose yields were observed in the hydrolysate of EBI pretreated biomass compared to the control. In 250kGy exposed samples 79% of the final reducing sugar yield was released within 48h of hydrolysis at an enzyme loading rate of 30FPU/g of biomass. The IR crystallinity index calculated from the FTIR data and degree of crystallinity (XRD) decreased in the EBI treated samples. A significant negative correlation was observed between degree of crystallinity and the glucose yield from enzymatic hydrolysis.  相似文献   

2.
Bak JS  Ko JK  Han YH  Lee BC  Choi IG  Kim KH 《Bioresource technology》2009,100(3):1285-1290
Rice straw was irradiated using an electron beam at currents and then hydrolyzed with cellulase and beta-glucosidase to produce glucose. The pretreatment by electron beam irradiation (EBI) was found to significantly increase the enzyme digestibility of rice straw. Specifically, when rice straw that was pretreated by EBI at 80 kGy at 0.12 mA and 1 MeV was hydrolyzed with 60 FPU of cellulase and 30 CBU of beta-glucosidase, the glucose yield after 132 h of hydrolysis was 52.1% of theoretical maximum. This value was significantly higher than the 22.6% that was obtained when untreated rice straw was used. In addition, SEM analysis of pretreated rice straw revealed that EBI caused apparent damage to the surface of the rice straw. Furthermore, EBI pretreatment was found to increase the crystalline portion of the rice straw. Finally, the crystallinity and enzyme digestibility were found to be strongly correlated between rice straw samples that were pretreated by EBI under different conditions.  相似文献   

3.
Qing Q  Wyman CE 《Bioresource technology》2011,102(2):1359-1366
Commercial cellulase complexes produced by cellulolytic fungi contain enzyme activities that are capable of hydrolyzing non-cellulosic polysaccharides in biomass, primarily hemicellulose and pectins, in addition to cellulose. However, xylanase activities detected in most commercial enzyme preparations have been shown to be insufficient to completely hydrolyze xylan, resulting in high xylooligomer concentrations remaining in the hydrolysis broth. Our recent research showed that these xylooligomers are stronger inhibitors of cellulase activity than others have previously established for glucose and cellobiose, making their removal of great importance. In this study, a HPLC system that can measure xylooligomers with degrees of polymerization (DP) up to 30 was applied to assess how Spezyme CP cellulase, Novozyme 188 β-glucosidase, Multifect xylanase, and non-commercial β-xylosidase enzymes hydrolyze different chain length xylooligomers derived from birchwood xylan. Spezyme CP cellulase and Multifect xylanase partially hydrolyzed high DP xylooligomers to lower DP species and monomeric xylose, while β-xylosidase showed the strongest ability to degrade both high and low DP xylooligomers. However, about 10-30% of the higher DP xylooligomers were difficult to be breakdown by cellulase or xylanase and about 5% of low DP xylooligomers (mainly xylobiose) proved resistant to hydrolysis by cellulase or β-glucosidase, possibly due to low β-xylosidase activity in these enzymes and/or the precipitation of high DP xylooligomers.  相似文献   

4.
The substrate specificities of three cellulases and a beta-glucosidase purified from Thermoascus aurantiacus were examined. All three cellulases partially degraded native cellulose. Cellulase I, but not cellulase II and cellulase III, readily hydrolyzed the mixed beta-1,3; beta-1,6-polysaccharides such as carboxymethyl-pachyman, yeast glucan and laminarin. Both cellulase I and the beta-glucosidase degraded xylan, and it is proposed that the xylanase activity is an inherent feature of these two enzymes. Lichenin (beta-1,4; beta-1,3) was degraded by all three cellulases. Cellulase II cannot degrade carboxymethyl-cellulose, and with filter paper as substrate the end product was cellobiose, which indicates that cellulase II is an exo-beta-1,4-glucan cellobiosylhydrolase. Degradation of cellulose (filter paper) can be catalysed independently by each of the three cellulases; there was no synergistic effect between any of the cellulases, and cellobiose was the principal product of degradation. The mode of action of one cellulase (cellulase III) was examined by using reduced cellulodextrins. The central linkages of the cellulodextrins were the preferred points of cleavage, which, with the rapid decrease in viscosity of carboxymethyl-cellulose, confirmed that cellulase III was an endocellulase. The rate of hydrolysis increased with chain length of the reduced cellulodextrins, and these kinetic data indicated that the specificity region of cellulase III was five or six glucose units in length.  相似文献   

5.
Optimization of enzyme complexes for lignocellulose hydrolysis   总被引:2,自引:0,他引:2  
The ability of a commercial Trichoderma reesei cellulase preparation (Celluclast 1.5L), to hydrolyze the cellulose and xylan components of pretreated corn stover (PCS) was significantly improved by supplementation with three types of crude commercial enzyme preparations nominally enriched in xylanase, pectinase, and beta-glucosidase activity. Although the well-documented relief of product inhibition by beta-glucosidase contributed to the observed improvement in cellulase performance, significant benefits could also be attributed to enzymes components that hydrolyze non-cellulosic polysaccharides. It is suggested that so-called "accessory" enzymes such as xylanase and pectinase stimulate cellulose hydrolysis by removing non-cellulosic polysaccharides that coat cellulose fibers. A high-throughput microassay, in combination with response surface methodology, enabled production of an optimally supplemented enzyme mixture. This mixture allowed for a approximately twofold reduction in the total protein required to reach glucan to glucose and xylan to xylose hydrolysis targets (99% and 88% conversion, respectively), thereby validating this approach towards enzyme improvement and process cost reduction for lignocellulose hydrolysis.  相似文献   

6.
Solids resulting from pretreatment of corn stover by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid, lime, and sulfur dioxide (SO2) technologies were hydrolyzed by enzyme cocktails based on cellulase supplemented with β-glucosidase at an activity ratio of 1:2, respectively, and augmented with up to 11.0 g xylanase protein/g cellulase protein for combined cellulase and β-glucosidase mass loadings of 14.5 and 29.0 mg protein (about 7.5 and 15 FPU, respectively)/g of original potential glucose. It was found that glucose release increased nearly linearly with residual xylose removal by enzymes for all pretreatments despite substantial differences in their relative yields. The ratio of the fraction of glucan removed by enzymes to that for xylose was defined as leverage and correlated statistically at two combined cellulase and β-glucosidase mass loadings with pretreatment type. However, no direct relationship was found between leverage and solid features following different pretreatments such as residual xylan or acetyl content. However, acetyl content not only affected how xylanase impacted cellulase action but also enhanced accessibility of cellulose and/or cellulase effectiveness, as determined by hydrolysis with purified CBHI (Cel7A). Statistical modeling showed that cellulose crystallinity, among the main substrate features, played a vital role in cellulase–xylanase interactions, and a mechanism is suggested to explain the incremental increase in glucose release with xylanase supplementation.  相似文献   

7.
Pretreatment of bagasse by autohydrolysis at 200 degrees C for 4 min and explosive defibration resulted in the solubilization of 90% of the hemicellulose (a heteroxylan) and in the production of a pulp that was highly susceptible to hydrolysis by cellulases from Trichoderma reesei C-30 and QM 9414, and by a comercial preparation, Meicelase. Saccharification yields of 50% resulted after 24 h at 50 degrees C (pH 5.0) in enzymic digests containing 10% (w/v) bagasse pulps and 20 filter paper cellulase units (FPU). Saccharifications could be increased to more than 80% at 24 h by the addition of exogenous beta-glucosidase from Aspergillus niger. The crystallinity of cellulose in bagasse remained unchanged following autohydrolysis-explosion and did not appear to hinder the rate or extent of hydrolysis of cellulose. Autohydrolysis-exploded pulps extracted with alkali or ethanol to remove lignin resulted in lowere conversions of cellulose (28-36% after 25 h) than unextracted pulps. Alkali extracted pulps arising from autohydrolysis times of more than 10 min at 200 degrees C were less susceptible to enzymic hydrolysis than unextracted pulps and alkali-extracted pulps arising from short autohydrolysis times (e.g., 2 min at 200 degrees C). Autohydrolysis-explosion was as effective a pretreatment method as 0.25M NaOH (70 degrees C/2 h) both yielded pulps that resulted in high cellulose conversions with T. reesei cellulase preparations and Meicelase. Supplementation of T. reesei C-30 cellulose preparations with A. niger beta-glucosidases was effective in promoting the conversion of cellulose into glucose. A ration of FPU to beta-glucosidase of 1:1.25 was the minimum requirement to achieve more than 80% conversion of cellulose into glucose within 24 h. Other factors which influenced the extent of saccharification of autohydrolysis-exploded bagasse pulps were the enzyme-substrate ratio, the substrate concentration, and the saccharification mode.  相似文献   

8.
Sophorose has two regulatory roles in the production of cellulase enzymes in Trichoderma reesei: beta-glucosidase repression and cellulase induction. Sophorose also is hydrolyzed by the mycelial-associated beta-glucosidase. Repression of beta-glucosidase reduces sophorose hydrolysis and thus may increase cellulase induction.  相似文献   

9.
Individual monosaccharides present in bagasse hemicellulose were determined using HPLC and other chromatographic procedures. The presence of higher oligomers of the monosaccharides could also be determined. No single procedure can separate and identify all the naturally occurring monosaccharides. The pentosan fraction of bagasse wa successfully hydrolyzed and extracted with 5% (m/v)HCl, and the rate of release of individual monosaccharides was determined. Xylose was the main component in the hydrolyzates, while glucose, arabinose, and galactose present in the side chains of the pentosans were initially released at a fast rate. This treatment resulted in obtaining 229 mg/g xylose (85% of theoretical maximum) and 44 mg/g glucose from bagasse. Only arabinose (2.8 mg/g) and galactose (0.75 mg/g) was also present in detectable quantities. A total of 309 mg monosaccharides were obtained from 1 g of bagasse by this treatment. The results indicated that hydrolysis conditions for specific plant materials depend on the composition of the specific material being utilized. A part of the pentosan fraction (77.1%) was hydrolyzed at a high rate, while 22.9% was more stable and hydrolyzed more slowly. Although 39.8% dry bagasse could be obtained in solution by treatment with dilute alkali, only about 72% of the available hemicelluloses could be extracted in this way if the bagasse was not delignified beforehand. Amino acids and peptides or proteins were also extracted to very much the same with the alkali.  相似文献   

10.
The conversion of lignocellulosic biomass to fuel ethanol typically involves a disruptive pretreatment process followed by enzyme-catalyzed hydrolysis of the cellulose and hemicellulose components to fermentable sugars. Attempts to improve process economics include protein engineering of cellulases, xylanases and related hydrolases to improve their specific activity or stability. However, it is recognized that enzyme performance is reduced during lignocellulose hydrolysis by interaction with lignin or lignin-carbohydrate complex (LCC), so the selection or engineering of enzymes with reduced lignin interaction offers an alternative means of enzyme improvement. This study examines the inhibition of seven cellulase preparations, three xylanase preparations and a beta-glucosidase preparation by two purified, particulate lignin preparations derived from softwood using an organosolv pretreatment process followed by enzymatic hydrolysis. The two lignin preparations had similar particle sizes and surface areas but differed significantly in other physical properties and in their chemical compositions determined by a 2D correlation HSQC NMR technique and quantitative 13C NMR spectroscopy. The various cellulases differed by up to 3.5-fold in their inhibition by lignin, while the xylanases showed less variability (< or = 1.7-fold). Of all the enzymes tested, beta-glucosidase was least affected by lignin.  相似文献   

11.
固定化纤维二糖酶的研究   总被引:5,自引:0,他引:5  
黑曲霉 (AspergillusnigerLORRE 0 12 )的孢子中富含纤维二糖酶 ,将这些孢子用海藻酸钙凝胶包埋后 ,可以方便有效地固定纤维二糖酶。固定化后的纤维二糖酶性能稳定 ,半衰期为 38d ,耐热性和适宜的pH范围均比固定化前有所增加 ,其Km 和Vmax值分别为 6 .0 1mmol L和 7.0 6mmol (min·L)。利用固定化纤维二糖酶重复分批酶解10g L的纤维二糖 ,连续 10批的酶解得率均可保持在 97%以上 ;采用连续酶解工艺 ,当稀释率为 0 .4h- 1 ,酶解得率可达 98.5 %。玉米芯经稀酸预处理后 ,其纤维残渣用里氏木霉 (Trichodermareesei)纤维素酶降解 ,酶解得率为6 9.5 % ;通过固定化纤维二糖酶的进一步作用 ,上述水解液中因纤维二糖积累所造成的反馈抑制作用得以消除 ,酶解得率提高到 84.2 % ,还原糖中葡萄糖的比例由 5 3 .6 %升至 89.5 % ,该研究结果在纤维原料酶水解工艺中具有良好的应用前景。  相似文献   

12.
Rice hulls, a complex lignocellulosic material with high lignin (15.38 +/- 0.2%) and ash (18.71 +/- 0.01%) content, contain 35.62 +/- 0.12% cellulose and 11.96 +/- 0.73% hemicellulose and has the potential to serve as a low-cost feedstock for production of ethanol. Dilute H2SO4 pretreatments at varied temperature (120-190 degrees C) and enzymatic saccharification (45 degrees C, pH 5.0) were evaluated for conversion of rice hull cellulose and hemicellulose to monomeric sugars. The maximum yield of monomeric sugars from rice hulls (15%, w/v) by dilute H2SO4 (1.0%, v/v) pretreatment and enzymatic saccharification (45 degrees C, pH 5.0, 72 h) using cellulase, beta-glucosidase, xylanase, esterase, and Tween 20 was 287 +/- 3 mg/g (60% yield based on total carbohydrate content). Under this condition, no furfural and hydroxymethyl furfural were produced. The yield of ethanol per L by the mixed sugar utilizing recombinant Escherichia colistrain FBR 5 from rice hull hydrolyzate containing 43.6 +/- 3.0 g fermentable sugars (glucose, 18.2 +/- 1.4 g; xylose, 21.4 +/- 1.1 g; arabinose, 2.4 +/- 0.3 g; galactose, 1.6 +/- 0.2 g) was 18.7 +/- 0.6 g (0.43 +/- 0.02 g/g sugars obtained; 0.13 +/- 0.01 g/g rice hulls) at pH 6.5 and 35 degrees C. Detoxification of the acid- and enzyme-treated rice hull hydrolyzate by overliming (pH 10.5, 90 degrees C, 30 min) reduced the time required for maximum ethanol production (17 +/- 0.2 g from 42.0 +/- 0.7 g sugars per L) by the E. coli strain from 64 to 39 h in the case of separate hydrolysis and fermentation and increased the maximum ethanol yield (per L) from 7.1 +/- 2.3 g in 140 h to 9.1 +/- 0.7 g in 112 h in the case of simultaneous saccharification and fermentation.  相似文献   

13.
Approximately 1 million metric tons of grapefruit were processed in the 2003/04 season resulting in 500,000 metric tons of peel waste. Grapefruit peel waste is usually dried, pelletized, and sold as a low-value cattle feed. This study tested different loadings of commercial cellulase and pectinase enzymes and pH levels to hydrolyze grapefruit peel waste to produce sugars. Pectinase and cellulase loadings of 0, 1, 2, 5, and 10mgprotein/g peel dry matter were tested at 45 degrees C. Hydrolyses were supplemented with 2.1mg beta-glucosidase protein/g peel dry matter. Five mg pectinase/g peel dry matter and 2mgcellulase/g peel dry matter were the lowest loadings to yield the most glucose. Optimum pH was 4.8. Cellulose, pectin, and hemicellulose in grapefruit peel waste can be hydrolyzed by pectinase and cellulase enzymes to monomer sugars, which can then be used by microorganisms to produce ethanol and other fermentation products.  相似文献   

14.
Dilute sulfuric acid (DA), sulfur dioxide (SO(2)), liquid hot water (LHW), soaking in aqueous ammonia (SAA), ammonia fiber expansion (AFEX), and lime pretreatments were applied to Alamo, Dacotah, and Shawnee switchgrass. Application of the same analytical methods and material balance approaches facilitated meaningful comparisons of glucose and xylose yields from combined pretreatment and enzymatic hydrolysis. Use of a common supply of cellulase, beta-glucosidase, and xylanase also eased comparisons. All pretreatments enhanced sugar recovery from pretreatment and subsequent enzymatic hydrolysis substantially compared to untreated switchgrass. Adding beta-glucosidase was effective early in enzymatic hydrolysis while cellobiose levels were high but had limited effect on longer term yields at the enzyme loadings applied. Adding xylanase improved yields most for higher pH pretreatments where more xylan was left in the solids. Harvest time had more impact on performance than switchgrass variety, and microscopy showed changes in different features could impact performance by different pretreatments.  相似文献   

15.
Microcrystalline cellulose (Avicel) was subjected to three different pretreatments (acid, alkaline, and organosolv) before exposure to a mixture of cellulases (Celluclast). Addition of beta-glucosidase, to avoid the well-known inhibition of cellulase by cellobiose, markedly accelerated cellulose hydrolysis up to a ratio of activity units (beta-glucosidase/cellulase) of 20. All pretreatment protocols of Avicel were found to slightly increase its degree of crystallinity in comparison with the untreated control. Adsorption of both cellulase and beta-glucosidase on cellulose is significant and also strongly depends on the wall material of the reactor. The conversion-time behavior of all four states of Avicel was found to be very similar. Jamming of adjacent cellulase enzymes when adsorbed on microcrystalline cellulose surface is evident at higher concentrations of enzyme, beyond 400 U/L cellulase/8 kU/L beta-glucosidase. Jamming explains the observed and well-known dramatically slowing rate of cellulose hydrolysis at high degrees of conversion. In contrast to the enzyme concentration, neither the method of pretreatment nor the presence or absence of presumed fractal kinetics has an effect on the calculated jamming parameter for cellulose hydrolysis.  相似文献   

16.
An enzyme preparation has been produced on the basis of Penicillium canescens strains with the activity of cellibiohydrolase I, II; endo-1,4-beta-gluconase of Penicillium verruculosum; and beta-glucosidase of Aspergillus niger. It was shown that for the most effective hydrolysis of aspen wood pulp the optimal ratio of cellobiohydrolase and endo- 1,4-3-gluconase in enzyme preparations was 8 : 2 (by protein). It was also established that the homologous xylanase secreted by the Penicillium canescens fungus is a required component for the enzyme complex for hydrolysis of the hemicellulose matrix of aspen wood.  相似文献   

17.
Coastal Bermuda grass (GBG) was pretreated using an autohydrolysis process with different temperatures and times, and the pretreated materials were enzymatically hydrolyzed using a mixture of cellulase, xylanase and β-glucosidase with different enzyme loadings to evaluate sugar yields. Compared with untreated CBG, autohydrolysis pretreatments at all elevated temperatures and residence times tested enhanced enzymatic digestibility of both cellulose and hemicellulose. Increasing the temperature and residence time also helps to solubilize hemicelluloses, with 83.3% of the hemicelluloses solubilized at 170 °C for 60 min treatment. However, higher temperatures and longer times resulted in an overall lower sugar recovery when considering monosaccharides in the prehydrolyzate combined with the enzyme hydrolyzate. Autohydrolysis at 150 °C for 60 min provided the highest overall sugar yield for the entire process. A total of 43.3 g of sugars, 70% of the theoretical sugar yield, can be generated from 100 g CBG, 15.0 g of monosaccharide in the prehydrolyzate and 28.3 g in the enzyme hydrolyzate. The conversion efficiency could be further improved by optimizing enzyme dosages and xylanases:cellulases ratio and pretreatment conditions to minimize sugar degradation.  相似文献   

18.
Chemical and physical treatments of cotton cellulose have been studied in order to elucidate the relationship between the degree of crystallinity of cellulose and the susceptibility of cellulose to cellulase. Cotton cellulose powder was treated with the following solvents: 60% H2SO4, Cadoxen, and DMSO-p -formaldehyde. The dissolved celluloses were recovered at high yield of over 97% by addition of nine volumes of cold acetone. X-ray diffraction for measurements of relative crystallinity showed that the crystalline structure of cellulose declined in quantity and perfection by the dissolving treatment and changed to an amorphous form that is highly susceptible to enzymatic hydrolysis. These reprecipitated celluloses were hydrolyzed almost completely within 48 hr by Aspergillus niger cellulase containing mainly 1,4-β-glucan glucanohydrolase (EC 3.2.1.4), without action of 1,4-β-glucan cellobiohydrolase (EC 3.2.1. 91). On the other hand, cryo-milled cellulose (below 250 mesh) still had a crystalline structure, was resistant to cellulase, and gave a low percentage of saccharification. These results indicate that in pure cellulose there are good correlations between x-ray diffractograms and susceptibility to microbial cellulase.  相似文献   

19.
Culture filtrates of Mucor pusillus NRRL 2543 contained hydrolytic enzymes that attacked native cellulose, acid-swollen cellulose, carboxymethylcellulose, and cellobiose. The distribution profiles of cellulolytic and beta-glucosidase activities after gel filtration on Sephadex G-75 showed the presence of several active peaks. Glucose was the only product of hydrolysis when native cellulose was used as the substrate. Acid-swollen cellulose, when treated with cellulase free of beta-glucosidase activity, gave rise to glucose, cellobiose, and at least two higher molecular weight components which were also hydrolyzed in turn to cellobiose and glucose. The presence of a multiple cellulolytic enzyme system was indicated, the components of which may have specific roles in the degradation of cellulose.  相似文献   

20.
Moderate loadings of cellulase enzyme supplemented with beta-glucosidase were applied to solids produced by ammonia fiber expansion (AFEX), ammonia recycle (ARP), controlled pH, dilute sulfuric acid, lime, and sulfur dioxide pretreatments to better understand factors that control glucose and xylose release following 24, 48, and 72 h of hydrolysis and define promising routes to reducing enzyme demands. Glucose removal was higher from all pretreatments than from Avicel cellulose at lower enzyme loadings, but sugar release was a bit lower for solids prepared by dilute sulfuric acid in the Sunds system and by controlled pH pretreatment than from Avicel at higher protein loadings. Inhibition by cellobiose was observed to depend on the type of substrate and pretreatment and hydrolysis times, with a corresponding impact of beta-glucosidase supplementation. Furthermore, for the first time, xylobiose and higher xylooligomers were shown to inhibit enzymatic hydrolysis of pure glucan, pure xylan, and pretreated corn stover, and xylose, xylobiose, and xylotriose were shown to have progressively greater effects on hydrolysis rates. Consistent with this, addition of xylanase and beta-xylosidase improved performance significantly. For a combined mass loading of cellulase and beta-glucosidase of 16.1 mg/g original glucan (about 7.5 FPU/g), glucose release from pretreated solids ranged from 50% to75% of the theoretical maximum and was greater for all pretreatments at all protein loadings compared to pure Avicel cellulose except for solids from controlled pH pretreatment and from dilute acid pretreatment by the Sunds pilot unit. The fraction of xylose released from pretreated solids was always less than for glucose, with the upper limit being about 60% of the maximum for ARP and the Sunds dilute acid pretreatments at a very high protein mass loading of 116 mg/g glucan (about 60 FPU).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号