首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Abstract To explore the possibility that an arbitrary sequence can evolve towards acquiring functional role when fused with other pre-existing protein modules, we replaced the D2 domain of the fd-tet phage genome with the soluble random polypeptide RP3-42. The replacement yielded an fd-RP defective phage that is six-order magnitude lower infectivity than the wild-type fd-tet phage. The evolvability of RP3-42 was investigated through iterative mutation and selection. Each generation consists of a maximum of ten arbitrarily chosen clones, whereby the clone with highest infectivity was selected to be the parent clone of the generation that followed. The experimental evolution attested that, from an initial single random sequence, there will be selectable variation in a property of interest and that the property in question was able to improve over several generations. fd-7, the clone with highest infectivity at the end of the experimental evolution, showed a 240-fold increase in infectivity as compared to its origin, fd-RP. Analysis by phage ELISA using anti-M13 antibody and anti-T7 antibody revealed that about 37-fold increase in the infectivity of fd-7 was attributed to the changes in the molecular property of the single polypeptide that replaced the D2 domain of the g3p protein. This study therefore exemplifies the process of a random polypeptide generating a functional role in rejuvenating the infectivity of a defective bacteriophage when fused to some preexisting protein modules, indicating that an arbitrary sequence can evolve toward acquiring a functional role. Overall, this study could herald the conception of new perspective regarding primordial polypeptides in the field of molecular evolution.  相似文献   

2.
Avian feathers are a complex evolutionary novelty characterized by structural diversity and hierarchical development. Here, I propose a functionally neutral model of the origin and evolutionary diversification of bird feathers based on the hierarchical details of feather development. I propose that feathers originated with the evolution of the first feather follicle-a cylindrical epidermal invagination around the base of a dermal papilla. A transition series of follicle and feather morphologies is hypothesized to have evolved through a series of stages of increasing complexity in follicle structure and follicular developmental mechanisms. Follicular evolution proceeded with the origin of the undifferentiated collar (stage I), barb ridges (stage II), helical displacement of barb ridges, barbule plates, and the new barb locus (stage III), differentiation of pennulae of distal and proximal barbules (stage IV), and diversification of barbule structure and the new barb locus position (stage V). The model predicts that the first feather was an undifferentiated cylinder (stage I), which was followed by a tuft of unbranched barbs (stage II). Subsequently, with the origin of the rachis and barbules, the bipinnate feather evolved (stage III), followed then by the pennaceous feather with a closed vane (stage IV) and other structural diversity (stages Va-f). The model is used to evaluate the developmental plausibility of proposed functional theories of the origin of feathers. Early feathers (stages I, II) could have functioned in communication, defense, thermal insulation, or water repellency. Feathers could not have had an aerodynamic function until after bipinnate, closed pennaceous feathers (stage IV) had evolved. The morphology of the integumental structures of the coelurisaurian theropod dinosaurs Sinosauropteryx and Beipiaosaurus are congruent with the model's predictions of the form of early feathers (stage I or II). Additional research is required to examine whether these fossil integumental structures developed from follicles and are homologous with avian feathers. J. Exp. Zool. (Mol. Dev. Evol.) 285:291-306, 1999.Copyright 1999 Wiley-Liss, Inc.  相似文献   

3.
E W Ronish  S Krimm 《Biopolymers》1974,13(8):1635-1651
The circular dichroism (CD) spectrum of polyproline II (PPII) has heretofore been moderately well calculated from exciton theory only at the expense of assuming unreasonable chain conformations and accepting a conservative spectrum in the 180–250-nm region (which is not observed). We have incorporated far uv transitions in the polarizability approximation and, together with the π2π* transition, have calculated the resulting correction to the exciton model. This has been accompanied by a modified assignment of the ππ* transition in PPII, and a simultaneous calculation of the absorption and CD spectra of the α-helix, β structure, PPI, and PPII. We obtain good agreement with the observed CD spectrum of PPII in the 180–250-nm region for acceptable chain conformations. In addition, we predict a negative CD into the far uv, in agreement with recent experimental observations. Our calculations also reproduce features of the far uv CD spectrum of the α-helix, and are in agreement with the CD spectra of the β chain and PPI. The calculated CD of the unordered polypeptide chain is not significantly influenced by far uv contributions, indicating that our previous calculation is valid for such a system. These results demonstrate the importance of incorporating far uv transitions in order to achieve an adequate theoretical explanation of the CD spectra of polypeptides.  相似文献   

4.
5.
Two polypeptides with antiproteolytic activities have been isolated from alfalfa leaves. Polypeptide I resembles the previously described plant protease inhibitors in both structural and functional features; it has a molecular weight of 15,000, a random coil secondary structure, and inhibits exogenous protease as well as alfalfa leaf protease. Polypeptide II is a novel type of plant inhibitor with a molecular weight of 6300 and a highly organized structure with a high (40-50%) alpha-helix content. It only inhibits endogenous protease with a molar stoichiometry polypeptide/enzyme protein of 1.  相似文献   

6.
Elastin, the protein responsible for tissue elasticity, is contained in arterial walls, lungs, and skin. Given the cassette like organization of the human tropoelastin gene, giving rise to alternating exons encoding for crosslink domains and elastomeric domains, it is tempting to suggest that polypeptides encoded by different exons could adopt structures independent of the other exons. The results obtained with the polypeptide sequences encoded by exons 3, 7, and 30 of human tropoelastin are described. It is shown that these hydrophobic exons may partly assume the polyproline II (PPII) structure, as found by circular dichroism studies in aqueous solution. Classical Raman spectroscopy evidences a specific sharp band at 1314 cm(-1), which is assigned to the PPII structure adopted by these exons in the solid state. As these sequences are among those putatively responsible for elastomeric properties, these findings are of particular interest in relation to the current models of the elasticity of elastin.  相似文献   

7.
Mirkin NG  Krimm S 《Biopolymers》2012,97(10):789-794
Although subsequent studies have provided extensive support for the 1968 Tiffany and Krimm proposal (Biopolymers 6, 1379) that the polyproline II (PPII) conformation is a significant component of the structure of unordered polypeptide chains, two issues are still not fully resolved: the PPII persistence length in a chain and the source of its relative stability with respect to the β-conformation. We examine the latter question by studying the B97-D/6-31++G(**) energy, in the absence and presence of a reaction field, of the alanine dipeptide hydrated by various amounts of explicit waters and resolving this into its three components: the energies of the individual solvated peptides and water structures plus the interaction energy involving them. We find that the relative stability of the PPII conformation is determined mainly by the difference in the interaction energies of the water structures in the near-peptide layers.  相似文献   

8.
Phage SP RNA-dependent RNA polymerase (SP replicase) was purified from Escherichia coli infected with RNA phage SP. The enzyme was found to be composed of four non-identical polypeptides, i.e. subunits I, II, III, and IV and molecular weights of 74,000, 69,000, 47,000, and 36,000 daltons, respectively. As in the case of phage Qbeta replicase, the largest polypeptide is identical with the ribosomal protein S1, and subunits III and IV with polypeptide chain elongation factors EF-Tu and EF-ts, respectively.. This is based on the behaviour of the subunits on SDS-polyacrylamide gel electrophoresis, isoelectric focusing and immunological cross-reaction. Subunits I, III, and IV of SP replicase are derived from the host cell, while subunit II is coded by phage RNA genome. The striking coincidence of the composition and entity of the structural components of SP replicase with those of Qbeta replicase may indicate the structural and functional requirements of host-derived polypeptides in RNA replicase. The binding activity of S1 (in 70S ribosome comples) to poly (U) is retained in SP replicase complex. In contrast, the GDP binding activity of EF-Tu is masked in SP replicase. It is concluded that S1 is required functionally whereas EF-Tu.EF-Ts are required structurally in RNA replicase.  相似文献   

9.
Left-handed polyproline II helices (PPII) are contiguous elements of protein secondary structure in which the phi and psi angles of constituent residues are restricted to around -75 degrees and 145 degrees, respectively. They are important in structural proteins, in unfolded states and as ligands for signaling proteins. Here, we present a survey of 274 nonhomologous polypeptide chains from proteins of known structure for regions that form these structures. Such regions are rare, but the majority of proteins contain at least one PPII helix. Most PPII helices are shorter than five residues, although the longest found contained 12 amino acids. Proline predominates in PPII, but Gln and positively charged residues are also favored. The basis of Gln's prevalence is its ability to form an i, i + 1 side-chain to main-chain hydrogen bond with the backbone carbonyl oxygen of the proceeding residue; this helps to fix the psi angle of the Gln and the phi and psi of the proceeding residue in PPII conformations and explains why Gln is favored at the first position in a PPII helix. PPII helices are highly solvent exposed, which explains why apolar amino acids are disfavored despite preferring this region of phi/psi space when in isolation. PPII helices have perfect threefold rotational symmetry and within these structures we find significant correlation between the hydrophobicity of residues at i and i + 3; thus, PPII helices in globular proteins can be considered to be amphipathic.  相似文献   

10.
The understanding of how primordial proteins emerged has been a fundamental and longstanding issue in biology and biochemistry. For a better understanding of primordial protein evolution, we synthesized an artificial protein on the basis of an evolutionary hypothesis, segment-based elongation starting from an autonomously foldable short peptide. A 10-residue protein, chignolin, the smallest foldable polypeptide ever reported, was used as a structural support to facilitate higher structural organization and gain-of-function in the development of an artificial protein. Repetitive cycles of segment elongation and subsequent phage display selection successfully produced a 25-residue protein, termed AF.2A1, with nanomolar affinity against the Fc region of immunoglobulin G. AF.2A1 shows exquisite molecular recognition ability such that it can distinguish conformational differences of the same molecule. The structure determined by NMR measurements demonstrated that AF.2A1 forms a globular protein-like conformation with the chignolin-derived β-hairpin and a tryptophan-mediated hydrophobic core. Using sequence analysis and a mutation study, we discovered that the structural organization and gain-of-function emerged from the vicinity of the chignolin segment, revealing that the structural support served as the core in both structural and functional development. Here, we propose an evolutionary model for primordial proteins in which a foldable segment serves as the evolving core to facilitate structural and functional evolution. This study provides insights into primordial protein evolution and also presents a novel methodology for designing small sized proteins useful for industrial and pharmaceutical applications.  相似文献   

11.
We have investigated the evolvability of an insoluble random polypeptide, RP3-34, to a soluble form through iterative mutation and selection with the aid of the green fluorescent protein (GFP) folding reporter. To assess the solubility of the polypeptides in the selected clones of each generation, the polypeptide genes were detached from the GFP fusions and expressed with a His6 tag. The solubility of the variant random polypeptides increased in each generation within the scope of the evolutionary process, and the polypeptides assumed a soluble form from the fourth generation. Analysis of the synonymous and nonsynonymous mutations found in the deduced amino acid sequence of the selected polypeptides revealed that selection had accelerated the evolutionary rate. The solubility and hydrophobicity of the polypeptides and the 25 arbitrarily chosen random polypeptides found in a previously prepared library were determined, analyzed, and interpreted from the landscape on the protein sequence space. This study showed the evolvability of an insoluble arbitrary sequence toward a soluble one, hence, it provides a new perspective on the field of artificial evolution.  相似文献   

12.
The structural consequences of the reversal of polypeptide backbone direction (retro modification) remain insufficiently explored. Here, we describe the behavior of an engineered, backbone-reversed form of the 97 residues-long GroES co-chaperonin of Escherichia coli. FTIR and far-UV CD spectroscopy suggest that retro-GroES adopts a mixed polyproline type II (PPII)-beta-strand structure with a beta(II) type CD spectrum similar to that of GroES. Gel-filtration chromatography reveals that the protein adopts trimeric and/or pentameric quaternary structures, with solubility retained up to concentrations of 5.0-5.5 mg/ml in aqueous solutions. Mutations inserting a single tryptophan residue as a spectroscopic probe at three different sites cause no perturbation in the protein's CD spectral characteristics, or in its quaternary structural status. The protein is cooperatively dissociated, and non-cooperatively unfolded, by both guanidine hydrochloride and urea. Intriguingly, unlike with GroES, retro-GroES is not unfolded by heat. Instead, there is a reversible structural transition involving conversion of PPII structure to beta sheet structure, upon heating, with no attendant aggregation even at 90 degrees C. Retro-GroES does not bind GroEL. In summary, some structure-forming characteristics of GroES appear to be conserved through the backbone reversal process, although the differential conformational behavior upon heating also indicates differences.  相似文献   

13.
A model for a parallel evolution of the genetic code and protein synthesis is presented. The main tenet of this model is that the genetic code, that is, a correspondence between nucleotide and aminoacid coding units, originated from sequence-specific interaction between abiotically synthesized polynucleotides and polypeptides. A sequence-specific binding between oligonucleotides and oligopeptides is supported by experimental findings. Moreover, it is parsimonious enough to be consistent with the relatively simple chemistry of a primordial environment. Proximity between peptides and RNA increased the rate of formation of ester bonds between them. This lead to the accumulation of sequence-specific polypeptide-polynucleotide pairs, that is, of primordial-loaded tRNA. Condensation of short polypeptides into longer products could be catalyzed by a sequence-specific juxtaposition of loaded tRNA over complementary RNA, originating the core of protein synthesis. The accumulation of useful encoded products, for example, catalysts for tRNA loading (primordial aminoacyl-tRNA synthetases) or stabilizers of tRNA-mRNA interactions (primordial ribosomes), permitted the subsequent evolution of protein synthesis and of the genetic code to their mature form. This occurred via a parallel reduction in length of the interacting polynucleotides and polypeptides. Thus, it maintained the correct reading frame of mRNA from the preceding stages of evolution. Received: 27 September 1996 / Accepted: 17 May 1997  相似文献   

14.
Treatment of intact thylakoid membranes with Triton X-100 at pH 6 produces a preparation of the PS II complex capable of high rates of O2 evolution. The preparation contains four managanese, one cytochrome b-559, one Signal IIf and one Signal IIs per 250 chlorophylls. By selective manipulation of the preparation polypeptides of approximate molecular weights of 33, 23 and 17 kDa can be removed from the complex. Release of 23 and 17 kDa polypeptides does not release functional manganese. Under these conditions Z+ is not readily and directly accessible to an added donor (benzidine) and it appears as if at least some of the S-state transitions occur. Evidence is presented which indicates that benzidine does have increased access to the oxygen-evolving complex in these polypeptide depleted preparations. Conditions which release the 33 kDa species along with Mn and the 23 and 17 kDa polypeptides generate an alteration in the structure of the oxidizing side of PS II, which becomes freely accessible to benzidine. These findings are examined in relationship to alterations of normal S-state behavior (induced by polypeptide release) and a model is proposed for the organization of functional manganese and polypeptides involved in the oxygen-evolving reaction.  相似文献   

15.
Brenner C 《Biochemistry》2002,41(29):9003-9014
HIT (histidine triad) proteins, named for a motif related to the sequence HphiHphiHphiphi (phi, a hydrophobic amino acid), are a superfamily of nucleotide hydrolases and transferases, which act on the alpha-phosphate of ribonucleotides, and contain a approximately 30 kDa domain that is typically either a homodimer of approximately 15 kDa polypeptides with two active-sites or an internally, imperfectly repeated polypeptide that retains a single HIT active site. On the basis of sequence, substrate specificity, structure, evolution, and mechanism, HIT proteins can be classified into the Hint branch, which consists of adenosine 5'-monophosphoramide hydrolases, the Fhit branch, which consists of diadenosine polyphosphate hydrolases, and the GalT branch, which consists of specific nucleoside monophosphate transferases, including galactose-1-phosphate uridylyltransferase, diadenosine tetraphosphate phosphorylase, and adenylyl sulfate:phosphate adenylytransferase. At least one human representative of each branch is lost in human diseases. Aprataxin, a Hint branch hydrolase, is mutated in ataxia-oculomotor apraxia syndrome. Fhit is lost early in the development of many epithelially derived tumors. GalT is deficient in galactosemia. Additionally, ASW is an avian Hint family member that has evolved to have unusual gene expression properties and the complete loss of its nucleotide binding site. The potential roles of ASW and Hint in avian sexual development are discussed elsewhere. Here we review what is known about biological activities of HIT proteins, the structural and biochemical bases for their functions, and propose a new enzyme mechanism for Hint and Fhit that may account for the differences between HIT hydrolases and transferases.  相似文献   

16.
Photosystem II is a photochemical reaction center that catalyzes the light‐driven oxidation of water to molecular oxygen. Water oxidation is the distinctive photochemical reaction that permitted the evolution of oxygenic photosynthesis and the eventual rise of eukaryotes. At what point during the history of life an ancestral photosystem evolved the capacity to oxidize water still remains unknown. Here, we study the evolution of the core reaction center proteins of Photosystem II using sequence and structural comparisons in combination with Bayesian relaxed molecular clocks. Our results indicate that a homodimeric photosystem with sufficient oxidizing power to split water had already appeared in the early Archean about a billion years before the most recent common ancestor of all described Cyanobacteria capable of oxygenic photosynthesis, and well before the diversification of some of the known groups of anoxygenic photosynthetic bacteria. Based on a structural and functional rationale, we hypothesize that this early Archean photosystem was capable of water oxidation to oxygen and had already evolved protection mechanisms against the formation of reactive oxygen species. This would place primordial forms of oxygenic photosynthesis at a very early stage in the evolutionary history of life.  相似文献   

17.
In this, Part III of a general theory, the large-scale features of evolution of structure, order, and complexity are considered as characteristic features of the biological state of matter. This starts with a rigorous formal definition of structure, classes of structural order, complexity, measures of complexity, and how these arise through evolution by a cumulative process of storing information in memory systems. Three such memory systems have evolved: the genetic memory, the immune memory, and the memories of the nervous system. The evolution, characteristic parameters and the limitations of these memory systems are explored. From these considerations emerge the large-scale features of the evolutionary pathways of biological structure, function, and complexity.  相似文献   

18.
The ilvB locus of Escherichia coli K-12 encloses two open reading frames defining polypeptides of 60,000 and 11,200 molecular weight. The entire locus, about 2.3 kb, is co-transcribed as an operon. The molecular weights and amino acid compositions of the presumptive operon polypeptides agree with those of the large and small subunit polypeptides of acetohydroxyacid synthase (AHAS) I, for which ilvB is the structural locus. We reserve the designation ilvB for the promoter proximal (longer) cistron and designate the promoter distal cistron ilvN. The molecular weight and amino acid sequence of the ilvB polypeptide are strikingly similar to those of the I1vI (larger subunit of AHAS III) and I1vG (larger subunit of AHAS II) polypeptides. There is less size uniformity among the I1vN, I1vH (smaller subunit of AHAS III), and I1vM (smaller subunit of AHAS II) polypeptides. Nevertheless, there is significant amino acid sequence homology among the three small subunit polypeptides. Thus, all three AHAS isozymes of E. coli K-12 probably have a common evolutionary origin.  相似文献   

19.
Chloroplast membranes contain a light-harvesting pigment-protein complex (LHC) which binds chlorophylls a and b. A mild trypsin digestion of intact thylakoid membranes has been utilized to specifically alter the apparent molecular weights of polypeptides of this complex. The modified membrane preparations were analyzed for altered functional and structural properties. Cation-induced changes in room temperature fluorescence intensity and low temperature chlorophyll fluorescence emission spectra, and cation regulation of the quantum yield of photosystem I and II partial reactions at limiting light were lost following the trypsin-induced alteration of the LHC. Electron microscopy revealed that cations can neither maintain nor promote grana stacking in membranes which have been subjected to mild trypsin treatment. Freeze-fracture analysis of these membranes showed no significant differences in particle density or average particle size of membrane subunits on the EF fracture face; structural features of the modified lamellae were comparable to membranes which had been unstacked in a “low salt” buffer. Digitonin digestion of trypsin-treated membranes in the presence of cations followed by differential centrifugation resulted in a subchloroplast fractionation pattern similar to that observed when control chloroplasts were detergent treated in cation-free medium. We conclude that: (a) the initial action of trypsin at the thylakoid membrane surface of pea chloroplasts was the specific alteration of the LHC polypeptides, (b) the segment of the LHC polypeptides which was altered by trypsin is necessary for cation-mediated grana stacking and cation regulation of membrane subunit distribution, and (c) cation regulation of excitation energy distribution between photosystem I and II involves the participation of polypeptide segments of the LHC which are exposed at the membrane surface.  相似文献   

20.
The driving force for molecular evolution of translation   总被引:4,自引:0,他引:4  
Noller HF 《RNA (New York, N.Y.)》2004,10(12):1833-1837
It is widely argued that protein synthesis evolved out of an RNA world, in which catalytic and other biological functions now carried out by proteins were performed by RNAs. However, it is not clear what selective advantage would have provided the driving force for evolution of a primitive translation apparatus, because of the unlikelihood that rudimentary polypeptides would have contributed sufficiently useful biological functions. Here, I suggest that the availability of even simple peptides could have significantly enlarged the otherwise limited structure space of RNA. In other words, translation initially evolved not to create a protein world, but to extend the structural, and therefore the functional, capabilities of the RNA world. Observed examples of substantial structural rearrangements in RNA that are induced by binding of peptides and other small molecules support this possibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号