首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Carcinogenic DNA viruses such as high-risk human papillomaviruses (HPV) and Epstein-Barr-Virus (EBV) replicate during persistent infections as low-copy-number plasmids. EBV DNA replication is restricted by host cell replication licensing mechanisms. In contrast, copy number control of HPV genomes is not under cellular control but involves the viral sequence-specific DNA-binding E2 activator and E8-E2C repressor proteins. Analysis of HPV31 mutant genomes revealed that residues outside of the DNA-binding/dimerization domain of E8-E2C limit viral DNA replication, indicating that binding site competition or heterodimerization among E2 and E8-E2C proteins does not contribute to copy number control. Domain swap experiments demonstrated that the amino-terminal 21 amino acids of E8-E2C represent a novel, transferable DNA replication repressor domain, whose activity requires conserved lysine and tryptophan residues. Furthermore, E8-E2C (1-21)-GAL4 fusion proteins inhibited the replication of the plasmid origin of replication of EBV, suggesting that E8-E2C functions as a general replication repressor of extrachromosomal origins. This finding could be important for the development of novel therapies against persistent DNA tumor virus infections.  相似文献   

2.
Human papillomavirus (HPV) DNA replication is initiated by recruitment of the E1 helicase by the E2 protein to the viral origin. Screening of our corporate compound collection with an assay measuring the cooperative binding of E1 and E2 to the origin identified a class of small molecule inhibitors of the protein interaction between E1 and E2. Isothermal titration calorimetry and changes in protein fluorescence showed that the inhibitors bind to the transactivation domain of E2, the region that interacts with E1. These compounds inhibit E2 of the low risk HPV types 6 and 11 but not those of high risk HPV types or of cottontail rabbit papillomavirus. Functional evidence that the transactivation domain is the target of inhibition was obtained by swapping this domain between a sensitive (HPV11) and a resistant (cottontail rabbit papillomavirus) E2 type and by identifying an amino acid substitution, E100A, that increases inhibition by approximately 10-fold. This class of inhibitors was found to antagonize specifically the E1-E2 interaction in vivo and to inhibit HPV DNA replication in transiently transfected cells. These results highlight the potential of the E1-E2 interaction as a small molecule antiviral target.  相似文献   

3.
4.
5.
6.
Loo YM  Melendy T 《Journal of virology》2004,78(4):1605-1615
With the exception of viral proteins E1 and E2, papillomaviruses depend heavily on host replication machinery for replication of their viral genome. E1 and E2 are known to recruit many of the necessary cellular replication factors to the viral origin of replication. Previously, we reported a physical interaction between E1 and the major human single-stranded DNA (ssDNA)-binding protein, replication protein A (RPA). E1 was determined to bind to the 70-kDa subunit of RPA, RPA70. In this study, using E1-affinity coprecipitation and enzyme-linked immunosorbent assay-based interaction assays, we show that E1 interacts with the major ssDNA-binding domain of RPA. Consistent with our previous report, no measurable interaction between E1 and the two smaller subunits of RPA was detected. The interaction of E1 with RPA was substantially inhibited by ssDNA. The extent of this inhibition was dependent on the length of the DNA. A 31-nucleotide (nt) oligonucleotide strongly inhibited the E1-RPA interaction, while a 16-nt oligonucleotide showed an intermediate level of inhibition. In contrast, a 10-nt oligonucleotide showed no observable effect on the E1-RPA interaction. This inhibition was not dependent on the sequence of the DNA. Furthermore, ssDNA also inhibited the interaction of RPA with papillomavirus E2, simian virus 40 T antigen, human polymerase alpha-primase, and p53. Taken together, our results suggest a potential role for ssDNA in modulating RPA-protein interactions, in particular, the RPA-E1 interactions during papillomavirus DNA replication. A model for recruitment of RPA by E1 during papillomavirus DNA replication is proposed.  相似文献   

7.
E1 and T-antigen of the tumour viruses bovine papillomavirus (BPV-1) and Simian virus 40 (SV40) are the initiator proteins that recognize and melt their respective origins of replication in the initial phase of DNA replication. These proteins then assemble into processive hexameric helicases upon the single-stranded DNA that they create. In T-antigen, a characteristic loop and hairpin structure (the pre-sensor 1β hairpin, PS1βH) project into a central cavity generated by protein hexamerization. This channel undergoes large ATP-dependent conformational changes, and the loop/PS1βH is proposed to form a DNA binding site critical for helicase activity. Here, we show that conserved residues in BPV E1 that probably form a similar loop/hairpin structure are required for helicase activity and also origin (ori) DNA melting. We propose that DNA melting requires the cooperation of the E1 helicase domain (E1HD) and the origin binding domain (OBD) tethered to DNA. One possible mechanism is that with the DNA locked in the loop/PS1βH DNA binding site, ATP-dependent conformational changes draw the DNA inwards in a twisting motion to promote unwinding.  相似文献   

8.
9.
Human papillomavirus (HPV) E2 gene disruption is one of the key features of HPV-induced cervical malignant transformation. Though it is thought to prevent progression of carcinogenesis, the pro-apoptotic function of E2 protein remains poorly understood. This study shows that expression of HPV16 E2 induces apoptosis both in HPV-positive and -negative cervical cancer cell lines and leads to hyperactivation of caspase-8 and caspase-3. Activation of these signaling factors is responsible for the observed sensitivity to apoptosis upon treatment with anti-Fas antibody or TNF-α. In addition, immunoprecipitation experiments clearly show an interaction between HPV16 E2 and c-FLIP, a key regulator of apoptotic cell death mediated by death receptor signaling. Moreover, c-FLIP and a caspase-8 inhibitor protect cells from HPV16 E2-mediated apoptosis. Overexpression of c-FLIP rescues cervical cancer cells from apoptosis induced by HPV16 E2 protein expression. The data suggest that HPV16 E2 abrogates the apoptosis-inhibitory function of c-FLIP and renders the cell hypersensitive to the Fas/FasL apoptotic signal even below threshold concentration. This suggests a novel mechanism for deregulation of cervical epithelial cell growth upon HPV-induced transformation, which is of great significance in developing therapeutic strategies for intervention of cervical carcinogenesis.  相似文献   

10.
11.
12.
13.
14.
Ubiquitin-like proteins (UBLs) such as NEDD8 are transferred to their targets by distinct, parallel, multienzyme cascades that involve the sequential action of E1, E2 and E3 enzymes. How do enzymes within a particular UBL conjugation cascade interact with each other? We report here that the unique N-terminal sequence of NEDD8's E2, Ubc12, selectively recruits NEDD8's E1 to promote thioester formation between Ubc12 and NEDD8. A peptide corresponding to Ubc12's N terminus (Ubc12N26) specifically binds and inhibits NEDD8's E1, the heterodimeric APPBP1-UBA3 complex. The structure of APPBP1-UBA3- Ubc12N26 reveals conserved Ubc12 residues docking in a groove generated by loops conserved in UBA3s but not other E1s. These data explain why the Ubc12-UBA3 interaction is unique to the NEDD8 pathway. These studies define a novel mechanism for E1-E2 interaction and show how enzymes within a particular UBL conjugation cascade can be tethered together by unique protein-protein interactions emanating from their common structural scaffolds.  相似文献   

15.
16.
Replicative DNA damage bypass, mediated by the ubiquitylation of the sliding clamp protein PCNA, facilitates the survival of a cell in the presence of genotoxic agents, but it can also promote genomic instability by damage-induced mutagenesis. We show here that PCNA ubiquitylation in budding yeast is activated independently of the replication-dependent S phase checkpoint but by similar conditions involving the accumulation of single-stranded DNA at stalled replication intermediates. The ssDNA-binding replication protein A (RPA), an essential complex involved in most DNA transactions, is required for damage-induced PCNA ubiquitylation. We found that RPA directly interacts with the ubiquitin ligase responsible for the modification of PCNA, Rad18, both in yeast and in mammalian cells. Association of the ligase with chromatin is detected where RPA is most abundant, and purified RPA can recruit Rad18 to ssDNA in vitro. Our results therefore implicate the RPA complex in the activation of DNA damage tolerance.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号