首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While administration of granulocyte-macrophage colony-stimulating factor (GM-CSF) can induce the local recruitment of activated antigen-presenting cells at the site of vaccine inoculation, this cellular recruitment is associated with a paradoxical decrease in local vaccine antigen expression and vaccine-elicited CD8+ T-cell responses. To clarify why this cytokine administration does not potentiate immunization, we examined the recruited cells and expressed inflammatory mediators in muscles following intramuscular administration of plasmid GM-CSF in mice. While large numbers of dendritic cells and macrophages were attracted to the site of plasmid GM-CSF inoculation, high concentrations of type I interferons were also detected in the muscles. As type I interferons have been reported to damp foreign gene expression in vivo, we examined the possibility that these local innate mediators might decrease plasmid DNA expression and therefore the immunogenicity of plasmid DNA vaccines. In fact, we found that coadministration of an anti-beta interferon monoclonal antibody with the plasmid DNA immunogen and plasmid GM-CSF restored both the local antigen expression and the CD8+ T-cell immunogenicity of the vaccine. These data demonstrate that local innate immune responses can change the ability of vaccines to generate robust adaptive immunity.  相似文献   

2.
ABSTRACT: BACKGROUND: The use of optimized delivery devices has been shown to enhance the potency of DNA vaccines. However, further optimization of DNA vaccine delivery is needed for this vaccine modality to ultimately be efficacious in humans. METHODS: Herein we evaluated antigen expression and immunogenicity after intradermal delivery of different doses of DNA vaccines by needle or by the Biojector jet-injection device, with or without the addition of electroporation (EP). RESULTS: Neither needle injection augmented by EP nor Biojector alone could induce higher magnitudes of immune responses after immunizations with a high dose of a DNA vaccine as compared to immunizations with a considerably lower dose. Biojector delivery followed by EP, however, overcame this observed dose restriction and induced significantly higher cellular and humoral immune responses after immunization with a high dose of DNA. Furthermore, a close correlation between in vivo antigen expression and cell-mediated immune responses was observed. CONCLUSIONS: These results show that two optimized DNA vaccine delivery devices can act together to overcome dose restrictions of plasmid DNA vaccines.  相似文献   

3.
DNA vaccines offer advantage over conventional vaccines, as they are safer to use, easier to produce, and able to induce humoral as well cellular immune responses. Unfortunately, no DNA vaccines have been licensed for human use for the difficulties in developing an efficient and safe in vivo gene delivery system. In vivo electroporation (EP)-based DNA delivery has attracted great attention for its potency to enhance cellular uptake of DNA vaccines and function as an adjuvant. Minicircle DNA (a new form of DNA containing only a gene expression cassette and lacking a backbone of bacterial plasmid DNA) is a powerful candidate of gene delivery in terms of improving the levels and the duration of transgene expression in vivo. In this study, as a novel vaccine delivery system, we combined in vivo EP and the minicircle DNA carrying a codon-optimized HIV-1 gag gene (minicircle-gag) to evaluate the immunogenicity of this system. We found that minicircle-gag conferred persistent and high levels of gag expression in vitro and in vivo. The use of EP delivery further increased minicircle-based gene expression. Moreover, when delivered by EP, minicircle-gag vaccination elicited a 2- to 3-fold increase in cellular immune response and a 1.5- to 3-fold augmentation of humoral immune responses compared with those elicited by a pVAX1-gag positive control. Increased immunogenicity of EP-assisted minicircle-gag may benefit from increasing local antigen expression, upregulating inflammatory genes, and recruiting immune cells. Collectively, in vivo EP of minicircle DNA functions as a novel vaccine platform that can enhance efficacy and immunogenicity of DNA vaccines.  相似文献   

4.
The development of therapeutic vaccines for chronic hepatitis B virus (HBV) infection has been hampered by host immune tolerance and the generally low magnitude and inconsistent immune responses to conventional vaccines and proposed new delivery methods. Electroporation (EP) for plasmid DNA (pDNA) vaccine delivery has demonstrated the enhanced immunogenicity of HBV antigens in various animal models. In the present study, the efficiency of the EP-based delivery of pDNA expressing various reporter genes first was evaluated in normal woodchucks, and then the immunogenicity of an analog woodchuck hepatitis virus (WHV) surface antigen (WHsAg) pDNA vaccine was studied in this model. The expression of reporter genes was greatly increased when the cellular uptake of pDNA was facilitated by EP. The EP of WHsAg-pDNA resulted in enhanced, dose-dependent antibody and T-cell responses to WHsAg compared to those of the conventional hypodermic needle injection of WHsAg-pDNA. Although subunit WHsAg protein vaccine elicited higher antibody titers than the DNA vaccine delivered with EP, T-cell response rates were comparable. However, in WHsAg-stimulated mononuclear cell cultures, the mRNA expression of CD4 and CD8 leukocyte surface markers and Th1 cytokines was more frequent and was skewed following DNA vaccination compared to that of protein immunization. Thus, the EP-based vaccination of normal woodchucks with pDNA-WHsAg induced a skew in the Th1/Th2 balance toward Th1 immune responses, which may be considered more appropriate for approaches involving therapeutic vaccines to treat chronic HBV infection.  相似文献   

5.
DNA vaccines offer considerable promise for improvement over conventional vaccines. For the crucial step of delivering DNA vaccines intracellularly, electroporation (EP) has proven to be highly effective. This method has yielded powerful humoral and cellular responses in various species, including nonhuman primates. In an attempt to further improve DNA vaccination we used micron-size gold particles (which do not bind or adsorb DNA) as a particulate adjuvant which was coinjected with DNA intramuscularly into mice, followed by EP of the target site. The presence of gold particles accelerated the antibody response significantly. Maximum titers against hepatitis B surface antigen (HBsAg) were reached after one boost in 6 weeks, whereas 8 weeks were required without particles. These immunizations were effective in protecting mice against tumor challenge with cancer cells expressing HBsAg as a surrogate cancer antigen. Computer modeling of electric fields and gene expression studies indicate that gold particles do not stimulate EP and subsequent antigen expression. The particles may act as an attractant for immune cells, especially antigen presenting cells. We conclude that particulate adjuvants combined with DNA vaccine delivery by EP reduces the immune response time and may increase vaccine efficacy. This method may become valuable for developing prophylactic as well as therapeutic vaccines. The rapid response may be of particular interest in countering bio-terrorism.  相似文献   

6.
Vaccination with naked DNA holds great promise but immunogenicity needs to be improved. DNA constructs encoding bivalent proteins that bind antigen-presenting cells (APC) for delivery of antigen have been shown to enhance T and B cell responses and protection in tumour challenge experiments. However, the mechanism for the increased potency remains to be determined. Here we have constructed DNA vaccines that express the fluorescent protein mCherry, a strategy which allowed tracking of vaccine proteins. Transfected muscle fibres in mice were visualized, and their relationship to infiltrating mononuclear cells could be determined. Interestingly, muscle fibers that produced MHC class II-specific dimeric vaccine proteins with mCherry were for weeks surrounded by a localized intense cellular infiltrate composed of CD45+, MHC class II+ and CD11b+ cells. Increasing numbers of eosinophils were observed among the infiltrating cells from day 7 after immunization. The local infiltrate surrounding mCherry+ muscle fibers was dependent on the MHC II-specificity of the vaccine proteins since the control, a non-targeted vaccine protein, failed to induce similar infiltrates. Chemokines measured on day 3 in immunized muscle indicate both a DNA effect and an electroporation effect. No influence of targeting was observed. These results contribute to our understanding for why targeted DNA vaccines have an improved immunogenicity.  相似文献   

7.
Ag85A and ESAT-6 proteins of Mycobacterium tuberculosis (M.TB) are important protective antigens. The 32-kDa Ag85A is a strong immunogen in both small and large animals. However, the 6-kDa ESAT-6 has relatively low inherent immunogenicity, especially in large animals. To improve the immunogenicity of ESAT-6 in animals, we made chimeric DNA vaccines, HG856K and HG856A, by inserting the esat-6 gene into the Kpn I or Acc I endonuclease restriction site of the ag85a gene, respectively. BALB/c mice were injected intramuscularly three times with the 10-microg singular DNA vaccine (HG85 encoding for Ag85A or HG6 encoding for ESAT-6) or chimeric DNA vaccine (HG856K or HG856A) followed by electroporation (EP). Ten days after the last DNA vaccination, mice received a booster immunization intraperitoneally with 50-microg pure recombinant protein Ag85A or ESAT-6 without adjuvant. Additional groups of mice immunized with chimeric DNA vaccines were boosted with two mixed proteins (Ag85A/ESAT-6) at the same time. The results showed that the immunogenicity of M.TB ESAT-6 antigen was not improved by priming with the HG6 DNA vaccine. However, the humoral immunity against the ESAT-6 antigen was significantly increased in the mice primed with chimeric DNA vaccines, HG856K or HG856A, followed by boosting with ESAT-6 or ESAT-6/Ag85A mixed proteins.  相似文献   

8.
Particularly potent cellular or humoral immune responses are needed to confer protection in animal models against such pathogens as HIV/SIV, Mycobacterium tuberculosis, and malarial parasites. Persistent, high-level vaccine Ag expression may be required for eliciting such potent and durable immune responses. Although plasmid DNA immunogens are being explored as potential vaccines for protection against these pathogens, little is known about host factors that restrict long-term plasmid DNA vaccine Ag expression in vivo. We observed rapid damping of transgene expression from a plasmid DNA immunogen in wild-type, but not in T cell-deficient mice. This damping of Ag expression was temporally associated with the emergence of Ag-specific cellular immune responses. A requirement for Fas and the appearance of apoptotic nuclei at the site of vaccine inoculation suggest that T cells induce Fas-mediated apoptosis of plasmid DNA vaccine Ag-expressing cells. These studies demonstrate that high levels of in vivo Ag expression are associated with high-frequency cellular immune responses that in turn rapidly down-regulate vaccine Ag expression in vivo. These findings argue that it may not be possible to maintain persistent, high-level production of vaccine Ag in vivo to drive persistent immune responses as long as vaccine Ag production can be limited by host immune responses.  相似文献   

9.
The mechanisms by which in vivo electroporation (EP) improves the potency of i.m. DNA vaccination were characterized by using the hepatitis C virus nonstructural (NS) 3/4A gene. Following a standard i.m. injection of DNA with or without in vivo EP, plasmid levels peaked immediately at the site of injection and decreased by 4 logs the first week. In vivo EP did not promote plasmid persistence and, depending on the dose, the plasmid was cleared or almost cleared after 60 days. In vivo imaging and immunohistochemistry revealed that protein expression was restricted to the injection site despite the detection of significant levels of plasmid in adjacent muscle groups. In vivo EP increased and prolonged NS3/4A protein expression levels as well as an increased infiltration of CD3+ T cells at the injection site. These factors most likely additively contributed to the enhanced and broadened priming of NS3/4A-specific Abs, CD4+ T cells, CD8+ T cells, and gamma-IFN production. The primed CD8+ responses were functional in vivo, resulting in elimination of hepatitis C virus NS3/4A-expressing liver cells in transiently transgenic mice. Collectively, the enhanced protein expression and inflammation at the injection site following in vivo EP contributed to the priming of in vivo functional immune responses. These localized effects most likely help to insure that the strength and duration of the responses are maintained when the vaccine is tested in larger animals, including rabbits and humans. Thus, the combined effects mediated by in vivo EP serves as a potent adjuvant for the NS3/4A-based DNA vaccine.  相似文献   

10.
Geng S  Zhong Y  Wang S  Liu H  Zou Q  Xie X  Li C  Yu Q  He Z  Wang B 《PloS one》2012,7(3):e33015
The induction of relatively weak immunity by DNA vaccines in humans can be largely attributed to the low efficiency of transduction of somatic cells. Although formulation with liposomes has been shown to enhance DNA transduction of cultured cells, little, if any, effect is observed on the transduction of somatic tissues and cells. To improve the rate of transduction, DNA vaccine delivery by gene gun and the recently developed electroporation techniques have been employed. We report here that to circumvent requirement for such equipment, amiloride, a drug that is prescribed for hypertension treatment, can accelerate plasmid entry into antigen presenting cells (APCs) both in vitro and in vivo. The combination induced APCs more dramatically in both maturation and cytokine secretion. Amiloride enhanced development of full CD8 cytolytic function including induction of high levels of antigen specific CTL and expression of IFN-γ+perforin+granzymeB+ in CD8+ T cells. Thus, amiloride is a facilitator for DNA transduction into host cells which in turn enhances the efficiency of the immune responses.  相似文献   

11.
Genetic immunization of neonates   总被引:2,自引:0,他引:2  
The vaccination of neonates is generally difficult due to immaturity of the immune system, higher susceptibility to tolerance and potential negative interference of maternal antibodies. Studies carried out in rodents and non-human primates showed that plasmid vaccines expressing microbial antigens, rather than inducing tolerance, triggered significant humoral and cellular immunity with a Th1 component. The ability of bacterial CpG motifs to activate immature antigen-presenting cells is critical for the neonatal immunogenicity of DNA vaccines. In addition, the endogenous production of antigen subsequent to transfection of antigen-presenting cells may explain the lack of inhibition by maternal antibodies of cellular responses. Together, these features make the plasmid vaccines an appealing strategy to prime immune responses against foreign pathogens, during early life. In combination with subsequent boosting using conventional vaccines, DNA vaccine-based regimens may provide a qualitatively superior immunity against microbes. Thorough understanding of immunomodulatory properties of plasmid-vectors may extend their use for early prophylaxis of inflammatory disorders.  相似文献   

12.
Investigation into the mechanism of action of vaccine adjuvants provides opportunities to define basic immune principles underlying the induction of strong immune responses and insights useful for the rational development of subunit vaccines. A novel HIV vaccine composed of plasmid DNA-encoding p55 gag formulated with poly-lactide-co-glycolide microparticles (PLG) and cetyl trimethyl ammonium bromide (CTAB) elicits both serum antibody titers and cytotoxic lymphocyte activity in mice at doses two orders of magnitude lower than those required for comparable response to plasmid DNA in saline. Using this model, we demonstrated the increase in potency requires the DNA to be complexed to the PLG-CTAB microparticles. Furthermore, the PLG-CTAB-DNA formulation increased the persistence of DNA at the injection site, recruited mononuclear phagocytes to the site of injection, and activated a population of antigen presenting cells. Intramuscular immunization with the PLG-CTAB-DNA complex induced antigen expression at both the injection site and the draining lymph node. These findings demonstrate that the PLG-CTAB-DNA formulation exhibits multiple mechanisms of immunopotentiation.  相似文献   

13.
Intramuscular injection of DNA vaccines elicits potent humoral and cellular immune responses in mice. However, DNA vaccines are less efficient in larger animal models and humans. To gain a better understanding of the factors limiting the efficacy of DNA vaccines, we used fluorescence-labeled plasmid DNA in mice to 1) define the macroscopic and microscopic distribution of DNA after injection into the tibialis anterior muscle, 2) characterize cellular uptake and expression of DNA in muscle and draining lymph nodes, and 3) determine the effect of modifying DNA distribution and cellular uptake by volume changes or electroporation on the magnitude of the immune response. Injection of a standard 50-microl dose resulted in the rapid dispersion of labeled DNA throughout the muscle. DNA was internalized within 5 min by muscle cells near the injection site and over several hours by cells that were located along muscle fibers and in the draining lymph nodes. Histochemical staining and analysis of mRNA expression in isolated cells by RT-PCR showed that the transgene was detectably expressed only by muscle cells, despite substantial DNA uptake by non-muscle cells. Reduction of the injection volume to 5 microl resulted in substantially less uptake and expression of DNA by muscle cells, and correspondingly lower immune responses against the transgene product. However, expression and immunogenicity were restored when the 5-microl injection was followed by electroporation in vivo. These findings indicate that distribution and cellular uptake significantly affect the immunogenicity of DNA vaccines.  相似文献   

14.
What happens to the DNA vaccine in fish? A review of current knowledge   总被引:1,自引:0,他引:1  
The primary function of DNA vaccines, a bacterial plasmid DNA containing a construct for a given protective antigen, is to establish specific and long-lasting protective immunity against diseases where conventional vaccines fail to induce protection. It is acknowledged that less effort has been made to study the fate, in terms of cellular uptake, persistence and degradation, of DNA vaccines after in vivo administration. However, during the last year some papers have given new insights into the fate of DNA vaccines in fish. By comparing the newly acquired information in fish with similar knowledge from studies in mammals, similarities with regard to transport, blood clearance, cellular uptake and degradation of DNA vaccines have been found. But the amount of DNA vaccine redistributed from the administration site after intramuscular administration seems to differ between fish and mammals. This review presents up-to-date and in-depth knowledge concerning the fate of DNA vaccines with emphasis on tissue distribution, cellular uptake and uptake mechanism(s) before finally describing the intracellular hurdles that DNA vaccines need to overcome in order to produce their gene product.  相似文献   

15.
16.
The human immunodeficiency virus type 1 (HIV-1) Gag protein is a major target antigen for cytotoxic-T-lymphocyte-based vaccine strategies because of its high level of conservation. The murine model has been used extensively to evaluate potential HIV-1 vaccines. However, the biology of HIV-1 Gag is somewhat different in human and murine tissues. The ability of HIV-1 Gag to form virus-like particles (VLPs) in human cells is severely curtailed in murine cells. Hence, it is not known whether immunizing mice with expression vectors encoding HIV-1 Gag provides an accurate assessment of the immunogenicity of these candidate vaccines in primates. In this report, we made use of a chimeric Moloney murine leukemia virus (MMLV)-HIV-1 Gag in which the p17 matrix domain of HIV-1 was replaced with the p15 matrix and p12 domains from MMLV. Murine cells expressing this construct released significant amounts of VLPs. The construct preserved H-2d-restricted antigenic determinants in the remaining portion of HIV-1 Gag, allowing immunogenicity studies to be performed with mice. We demonstrated that immunizing mice with plasmid DNA or adenoviral vectors encoding this chimeric Gag did not significantly increase the HIV-1 Gag-specific cellular or humoral immune response when compared to immunization with a myristoylation-incompetent version of the construct. Thus, the release of VLPs formed in vivo may not play a major role in the immunogenicity of vectors expressing HIV-1 Gag constructs.  相似文献   

17.
DNA vaccines are known to be lacking in immunogenicity in humans. Presently, electroporation (EP) is thought to overcome this limitation. Here, we investigate whether human papillomavirus 16 E7 DNA vaccines delivered by EP might elicit potent antitumor activity in animal cervical cancer models, with a focus on the underlying mechanism(s). Intramuscular (IM)-EP delivery of E7 DNA vaccines induced more potent antitumor therapeutic and antimetastatic activity compared with IM delivery. Moreover, the tumor-controlled animals by IM-EP possessed long-term memory responses to parental tumor cells. This improved antitumor effect was concomitant with augmented Ag-specific CTL activities. IM-EP also induced IgG and Th-cell responses higher than IM delivery. Finally, IM-EP resulted in more antigen production in and more attraction of immune cells into the site of DNA injection, suggesting that these biological and immunological changes made by IM-EP might be responsible for enhanced CTL activities and antitumor resistance. Thus, this study shows that IM-EP can induce more potent antitumor activity by augmenting CTL responses possibly through more antigen production in and more attraction of immune cells into the muscle sites. This study also suggests that IM-EP of E7 DNA vaccines might be a potential approach toward treating patients with cervical cancer.  相似文献   

18.
Survivin is an intracellular tumor-associated antigen that is broadly expressed in a large variety of tumors and also in tumor associated endothelial cells but mostly absent in differentiated tissues. Naked DNA vaccines targeting survivin have been shown to induce T cell as well as humoral immune responses in mice. However, the lack of epitope-specific CD8+ T cell detection and modest tumor protection observed highlight the need for further improvements to develop effective survivin DNA vaccination approaches. Here, the efficacy of a human survivin DNA vaccine delivered by intradermal electroporation (EP) was tested. The CD8+ T cell epitope surv20–28 restricted to H-2 Db was identified based on in-silico epitope prediction algorithms and binding to MHC class I molecules. Intradermal DNA EP of mice with a human survivin encoding plasmid generated CD8+ cytotoxic T lymphocyte (CTL) responses cross-reactive with the mouse epitope surv20–28, as determined by intracellular IFN-γ staining, suggesting that self-tolerance has been broken. Survivin-specific CTLs displayed an activated effector phenotype as determined by CD44 and CD107 up-regulation. Vaccinated mice displayed specific cytotoxic activity against B16 and peptide-pulsed RMA-S cells in vitro as well as against surv20–28 peptide-pulsed target cells in vivo. Importantly, intradermal EP with a survivin DNA vaccine suppressed angiogenesis in vivo and elicited protection against highly aggressive syngeneic B16 melanoma tumor challenge. We conclude that intradermal EP is an attractive method for delivering a survivin DNA vaccine that should be explored also in clinical studies.  相似文献   

19.
In vivo priming by DNA injection occurs predominantly by antigen transfer.   总被引:5,自引:0,他引:5  
DNA vaccines can stimulate both humoral and cytolytic immune responses. Although bone marrow-derived elements present the expressed Ag, the mechanisms for acquiring immunogenic peptides have yet to be fully elucidated. APCs may become directly transfected by plasmid DNA or process extracellular proteins produced by other transfected cells. Using a transactivating plasmid system and bone marrow chimeras, we show that both mechanisms appear to be involved; however, the bulk of the immune response is dependent on expression of Ag by nonlymphoid tissues and transfer to APCs. These in vivo studies are the first to define the role of transfected nonlymphoid cells in generating Ag for presentation by bone marrow-derived APCs after needle injection with plasmid DNA.  相似文献   

20.
An intercellular spreading strategy using herpes simplex virus type 1 (HSV-1) VP22 protein is employed to enhance DNA vaccine potency of Leishmania major amastin antigen in BALB/c mice model. We evaluated the immunogenicity and protective efficacy of plasmid DNA vaccines encoding amastin-enhanced green fluorescent protein (EGFP) and VP22-amastin-EGFP. Optimal cell-mediated immune responses were observed in BALB/c mice immunized with VP22-amastin-EGFP as assessed by cytokine gene expression analysis using real time RT-PCR. Vaccination with the VP22-amastin-EGFP fusion construct elicited significantly higher IFN-gamma response upon antigen stimulation of splenocytes from immunized mice compared to amastin as a sole antigen. Mice immunized by VP22-amastin-EGFP showed partial protection following infectious challenge with L. major, as measured by parasite load in spleens. These results suggest that the development of DNA vaccines encoding VP22 fused to a target Leishmania antigen would be a promising strategy to improve immunogenicity and DNA vaccine potency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号