首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Virus-specific cytotoxic T lymphocytes (CTL) with high levels of functional avidity have been associated with viral clearance in hepatitis C virus infection and with enhanced antiviral protective immunity in animal models. However, the role of functional avidity as a determinant of HIV-specific CTL efficacy remains to be assessed. Here we measured the functional avidities of HIV-specific CTL responses targeting 20 different, optimally defined CTL epitopes restricted by 13 different HLA class I alleles in a cohort comprising 44 HIV controllers and 68 HIV noncontrollers. Responses restricted by HLA-B alleles and responses targeting epitopes located in HIV Gag exhibited significantly higher functional avidities than responses restricted by HLA-A or HLA-C molecules (P = 0.0003) or responses targeting epitopes outside Gag (P < 0.0001). The functional avidities of Gag-specific and HLA-B-restricted responses were higher in HIV controllers than in noncontrollers (P = 0.014 and P = 0.018) and were not restored in HIV noncontrollers initiating antiretroviral therapy. T-cell receptor (TCR) analyses revealed narrower TCR repertoires in higher-avidity CTL populations, which were dominated by public TCR sequences in HIV controllers. Together, these data link the presence of high-avidity Gag-specific and HLA-B-restricted CTL responses with viral suppression in vivo and provide new insights into the immune parameters that mediate spontaneous control of HIV infection.  相似文献   

2.
The genetic polymorphism that has the greatest impact on immune control of human immunodeficiency virus (HIV) infection is expression of HLA-B*57. Understanding of the mechanism for this strong effect remains incomplete. HLA-B*57 alleles and the closely related HLA-B*5801 are often grouped together because of their similar peptide-binding motifs and HIV disease outcome associations. However, we show here that the apparently small differences between HLA-B*57 alleles, termed HLA-B*57 micropolymorphisms, have a significant impact on immune control of HIV. In a study cohort of >2,000 HIV C-clade-infected subjects from southern Africa, HLA-B*5703 is associated with a lower viral-load set point than HLA-B*5702 and HLA-B*5801 (medians, 5,980, 15,190, and 19,000 HIV copies/ml plasma; P = 0.24 and P = 0.0005). In order to better understand these observed differences in HLA-B*57/5801-mediated immune control of HIV, we undertook, in a study of >1,000 C-clade-infected subjects, a comprehensive analysis of the epitopes presented by these 3 alleles and of the selection pressure imposed on HIV by each response. In contrast to previous studies, we show that each of these three HLA alleles is characterized both by unique CD8(+) T-cell specificities and by clear-cut differences in selection pressure imposed on the virus by those responses. These studies comprehensively define for the first time the CD8(+) T-cell responses and immune selection pressures for which these protective alleles are responsible. These findings are consistent with HLA class I alleles mediating effective immune control of HIV through the number of p24 Gag-specific CD8(+) T-cell responses generated that can drive significant selection pressure on the virus.  相似文献   

3.
The human immunodeficiency virus (HIV)-mediated immune response may be beneficial or harmful, depending on the balance between expansion of HIV-specific T cells and the level of generalized immune activation. The current study utilizes multicolor cytokine flow cytometry to study HIV-specific T cells and T-cell activation in 179 chronically infected individuals at various stages of HIV disease, including those with low-level viremia in the absence of therapy ("controllers"), low-level drug-resistant viremia in the presence of therapy (partial controllers on antiretroviral therapy [PCAT]), and high-level viremia ("noncontrollers"). Compared to noncontrollers, controllers exhibited higher frequencies of HIV-specific interleukin-2-positive gamma interferon-positive (IL-2(+) IFN-gamma(+)) CD4(+) T cells. The presence of HIV-specific CD4(+) IL-2(+) T cells was associated with low levels of proliferating T cells within the less-differentiated T-cell subpopulations (defined by CD45RA, CCR7, CD27, and CD28). Despite prior history of progressive disease, PCAT patients exhibited many immunologic characteristics seen in controllers, including high frequencies of IL-2(+) IFN-gamma(+) CD4(+) T cells. Measures of immune activation were lower in all CD8(+) T-cell subsets in controllers and PCAT compared to noncontrollers. Thus, control of HIV replication is associated with high levels of HIV-specific IL-2(+) and IFN-gamma(+) CD4(+) T cells and low levels of T-cell activation. This immunologic state is one where the host responds to HIV by expanding but not exhausting HIV-specific T cells while maintaining a relatively quiescent immune system. Despite a history of advanced HIV disease, a subset of individuals with multidrug-resistant HIV exhibit an immunologic profile comparable to that of controllers, suggesting that functional immunity can be reconstituted with partially suppressive highly active antiretroviral therapy.  相似文献   

4.
A small fraction of HIV-infected individuals (<1%), referred to as elite controllers (EC), are able to maintain undetectable viral loads indefinitely without treatment. The role of the maturational phenotype of T cells in the control of HIV infection in these individuals is not well described. We compared the maturational and functional phenotypes of Gag-specific CD4 and CD8 T cells from EC, who maintain undetectable viral loads without treatment; relative controllers (RC), who maintain viral loads of <1,000 copies/ml without treatment; and noncontrollers (NC), who fail to control viral replication. EC maintained higher frequencies of HIV-specific CD4 T cells, less mature polyfunctional Gag-specific CD4 T cells (CD27(+) CD57(-) CD45RO(+)), and Gag-specific polyfunctional CD4 T cells than those observed in NC. In EC, the frequency of polyfunctional Gag-specific CD8 T cells was higher than that observed in RC and NC. RC had a similar functional phenotype to that observed in NC, despite consistently lower viral loads. Finally, we found a direct correlation between the frequency of Gag-specific CD27(+) CD57(-) CD45RO(+) CD4(+) T cells and the frequency of mature HIV-specific CD8 T cells. Altogether, our data suggest that immature Gag-specific interleukin-2 (IL-2)-producing CD4(+) T cells may play an important role in spontaneous control of HIV viremia by effectively supporting HIV-specific CD8 T lymphocytes. This difference appears to differentiate EC from RC.  相似文献   

5.
A small number of HIV-infected individuals known as elite controllers experience low levels of chronic phase viral replication and delayed progression to AIDS. Specific HLA class I alleles are associated with elite control, implicating CD8(+) T lymphocytes in the establishment of these low levels of viral replication. Most HIV-infected individuals that express protective HLA class I alleles, however, do not control viral replication. Approximately 50% of Mamu-B*00801(+) Indian rhesus macaques control SIVmac239 replication in the chronic phase in a manner that resembles elite control in humans. We followed both the immune response and viral evolution in SIV-infected Mamu-B*00801(+) animals to better understand the role of CD8(+) T lymphocytes during the acute phase of viral infection, when viral control status is determined. The virus escaped from immunodominant Vif and Nef Mamu-B*00801-restricted CD8(+) T lymphocyte responses during the critical early weeks of acute infection only in progressor animals that did not control viral replication. Thus, early CD8(+) T lymphocyte escape is a hallmark of Mamu-B*00801(+) macaques who do not control viral replication. By contrast, virus in elite controller macaques showed little evidence of variation in epitopes recognized by immunodominant CD8(+) T lymphocytes, implying that these cells play a role in viral control.  相似文献   

6.
Human immunodeficiency virus type 1 (HIV-1)-infected persons who maintain plasma viral loads of <50 copies RNA/ml without treatment have been termed elite controllers (EC). Factors contributing to durable control of HIV in EC are unknown, but an HLA-dependent mechanism is suggested by overrepresentation of "protective" class I alleles, such as B*27, B*51, and B*57. Here we investigated the relative replication capacity of viruses (VRC) obtained from EC (n = 54) compared to those from chronic progressors (CP; n = 41) by constructing chimeric viruses using patient-derived gag-protease sequences amplified from plasma HIV RNA and inserted into an NL4-3 backbone. The chimeric viruses generated from EC displayed lower VRC than did viruses from CP (P < 0.0001). HLA-B*57 was associated with lower VRC (P = 0.0002) than were other alleles in both EC and CP groups. Chimeric viruses from B*57(+) EC (n = 18) demonstrated lower VRC than did viruses from B*57(+) CP (n = 8, P = 0.0245). Differences in VRC between EC and CP were also observed for viruses obtained from individuals expressing no described "protective" alleles (P = 0.0065). Intriguingly, two common HLA alleles, A*02 and B*07, were associated with higher VRC (P = 0.0140 and 0.0097, respectively), and there was no difference in VRC between EC and CP sharing these common HLA alleles. These findings indicate that cytotoxic T-lymphocyte (CTL) selection pressure on gag-protease alters VRC, and HIV-specific CTLs inducing escape mutations with fitness costs in this region may be important for strict viremia control in EC of HIV.  相似文献   

7.
Certain major histocompatibility complex (MHC) class I alleles are strongly associated with control of human immunodeficiency virus and simian immunodeficiency virus (SIV). CD8(+) T cells specific for epitopes restricted by these molecules may be particularly effective. Understanding how CD8(+) T cells contribute to control of viral replication should yield important insights for vaccine design. We have recently identified an Indian rhesus macaque MHC class I allele, Mamu-B*08, associated with elite control and low plasma viremia after infection with the pathogenic isolate SIVmac239. Here, we infected four Mamu-B*08-positive macaques with SIVmac239 to investigate why some of these macaques control viral replication. Three of the four macaques controlled SIVmac239 replication with plasma virus concentrations below 20,000 viral RNA copies/ml at 20 weeks postinfection; two of four macaques were elite controllers (ECs). Interestingly, two of the four macaques preserved their CD4(+) memory T lymphocytes during peak viremia, and all four recovered their CD4(+) memory T lymphocytes in the chronic phase of infection. Mamu-B*08-restricted CD8(+) T-cell responses dominated the acute phase and accounted for 23.3% to 59.6% of the total SIV-specific immune responses. Additionally, the ECs mounted strong and broad CD8(+) T-cell responses against several epitopes in Vif and Nef. Mamu-B*08-specific CD8(+) T cells accounted for the majority of mutations in the virus at 18 weeks postinfection. Interestingly, patterns of viral variation in Nef differed between the ECs and the other two macaques. Natural containment of AIDS virus replication in Mamu-B*08-positive macaques may, therefore, be related to a combination of immunodominance and viral escape from CD8(+) T-cell responses.  相似文献   

8.
To better understand relationships between CD8+ T-cell specificity and the immune control of human immunodeficiency virus type 1 (HIV-1), we analyzed the role of HLA-B*13, an allele associated with low viremia, in a cohort of 578 C clade-infected individuals in Durban, South Africa. Six novel B*13-restricted cytotoxic T lymphocyte epitopes were defined from analyses of 37 B*13-positive subjects, including three Gag epitopes. These B*13-restricted epitopes contribute to a broad Gag-specific CD8+ response that is associated with the control of viremia. These data are consistent with data from studies of other HLA-class I alleles associated with HIV control that have shown that the targeting of multiple Gag epitopes is associated with relative suppression of viremia.  相似文献   

9.
Cytotoxic T lymphocyte (CTL) responses targeting specific HIV proteins, in particular Gag, have been associated with relative control of viral replication in vivo. However, Gag-specific CTL can also be detected in individuals who do not control the virus and it remains thus unclear how Gag-specific CTL may mediate the beneficial effects in some individuals but not in others. Here, we used a 10mer peptide set spanning HIV Gag-p24 to determine immunogen-specific T-cell responses and to assess functional properties including functional avidity and cross-reactivity in 25 HIV-1 controllers and 25 non-controllers without protective HLA class I alleles. Our data challenge the common belief that Gag-specific T cell responses dominate the virus-specific immunity exclusively in HIV-1 controllers as both groups mounted responses of comparable breadths and magnitudes against the p24 sequence. However, responses in controllers reacted to lower antigen concentrations and recognized more epitope variants than responses in non-controllers. These cross-sectional data, largely independent of particular HLA genetics and generated using direct ex-vivo samples thus identify T cell responses of high functional avidity and with broad variant reactivity as potential functional immune correlates of relative HIV control.  相似文献   

10.
Certain major histocompatibility complex (MHC) class I alleles are associated with the control of human immunodeficiency virus and simian immunodeficiency virus (SIV) replication. We have designed sequence-specific primers for detection of the rhesus macaque MHC class I allele Mamu-B*08 by PCR and screened a cohort of SIV-infected macaques for this allele. Analysis of 196 SIV(mac)239-infected Indian rhesus macaques revealed that Mamu-B*08 was significantly overrepresented in elite controllers; 38% of elite controllers were Mamu-B*08 positive compared to 3% of progressors (P = 0.00001). Mamu-B*08 was also associated with a 7.34-fold decrease in chronic phase viremia (P = 0.002). Mamu-B*08-positive macaques may, therefore, provide a good model to understand the correlates of MHC class I allele-associated immune protection and viral containment in human elite controllers.  相似文献   

11.
The potential contribution of HLA-A alleles to viremic control in chronic HIV type 1 (HIV-1) infection has been relatively understudied compared with HLA-B. In these studies, we show that HLA-A*7401 is associated with favorable viremic control in extended southern African cohorts of >2100 C-clade-infected subjects. We present evidence that HLA-A*7401 operates an effect that is independent of HLA-B*5703, with which it is in linkage disequilibrium in some populations, to mediate lowered viremia. We describe a novel statistical approach to detecting additive effects between class I alleles in control of HIV-1 disease, highlighting improved viremic control in subjects with HLA-A*7401 combined with HLA-B*57. In common with HLA-B alleles that are associated with effective control of viremia, HLA-A*7401 presents highly targeted epitopes in several proteins, including Gag, Pol, Rev, and Nef, of which the Gag epitopes appear immunodominant. We identify eight novel putative HLA-A*7401-restricted epitopes, of which three have been defined to the optimal epitope. In common with HLA-B alleles linked with slow progression, viremic control through an HLA-A*7401-restricted response appears to be associated with the selection of escape mutants within Gag epitopes that reduce viral replicative capacity. These studies highlight the potentially important contribution of an HLA-A allele to immune control of HIV infection, which may have been concealed by a stronger effect mediated by an HLA-B allele with which it is in linkage disequilibrium. In addition, these studies identify a factor contributing to different HIV disease outcomes in individuals expressing HLA-B*5703.  相似文献   

12.

Aim of the Study

Association of two HLA class I variants with HIV-1 pretreatment viremia, CD4+ T cell count at the care-entry and CD4+ T cell nadir.

Methods

414 HIV-positive Caucasians (30% women) aged 19-73 years were genotyped for HLA-C -35 (rs9264942) and HLA-B*5701 variants. HIV-1 viral load, as well as CD4+ T cell count at care-entry and nadir, were compared across alleles, genotypes and haplotypes.

Results

HLA-C -35 C/C genotype was found in 17.6% patients, C/T genotype in 48.1%, and T/T genotype in 34.3% patients. HLA-B*5701 variant was present in 5.8% of studied population. HIV plasma viremia in the group with C allele was significantly lower (p=0.0002) compared to T/T group [mean:4.66 log (SD:1.03) vs. 5.07 (SD:0.85) log HIV-RNA copies/ml, respectively], while CD4+ T cell count at baseline was notably higher among C allele carriers compared to T/T homozygotes [median: 318 (IQR:127-537) cells/μl vs. median: 203 (IQR:55-410) cells/μl, respectively] (p=0.0007). Moreover, CD4+ T cell nadir among patients with C allele [median: 205 (IQR:83.5-390) cells/μl] was significantly higher compared to T/T group [median: 133 (IQR:46-328) cells/μl] (p=0.006). Among cases with HLA-B*5701 allele, significantly lower pretreatment viremia and higher baseline CD4+ T cell count were found (mean: 4.08 [SD: 1.2] vs. mean: 4.84 [SD:0.97] log HIV-RNA copies/ml, p=0.003 and 431 vs. 270 cells/μl, p=0.04, respectively) compared to HLA-B*5701 negative individuals. The lowest viremia (mean: 3.85 log [SD:1.3]) HIV-RNA copies/ml and the highest baseline and nadir CD4+ T cell [median: 476 (IQR:304-682) vs. median: 361 (IQR: 205-574) cells/μl, respectively) were found in individuals with HLA-B*5701(+)/HLA-C –35 C/C haplotype.

Conclusions

HLA-C -35 C and HLA-B*5701 allele exert a favorable effect on the immunological (higher baseline and nadir CD4+ T cell count) and virologic (lower pretreatment HIV viral load) variables. This protective effect is additive for the compound HLA-B*5701(+)/HLA-C -35 C/C haplotype.  相似文献   

13.
Human immunodeficiency virus type 1 (HIV-1) controllers maintain viremia at <2,000 RNA copies/ml without antiretroviral therapy. Viruses from controllers with chronic infection were shown to exhibit impaired replication capacities, in part associated with escape mutations from cytotoxic-T-lymphocyte (CTL) responses. In contrast, little is known about viruses during acute/early infection in individuals who subsequently become HIV controllers. Here, we examine the viral replication capacities, HLA types, and virus sequences from 18 HIV-1 controllers identified during primary infection. gag-protease chimeric viruses constructed using the earliest postinfection samples displayed significantly lower replication capacities than isolates from persons who failed to control viremia (P = 0.0003). Protective HLA class I alleles were not enriched in these early HIV controllers, but viral sequencing revealed a significantly higher prevalence of drug resistance mutations associated with impaired viral fitness in controllers than in noncontrollers (6/15 [40.0%] versus 10/80 [12.5%], P = 0.018). Moreover, of two HLA-B57-positive (B57+) controllers identified, both harbored, at the earliest time point tested, signature escape mutations within Gag that likewise impair viral replication capacity. Only five controllers did not express “protective” alleles or harbor viruses with drug resistance mutations; intriguingly, two of them displayed typical B57 signature mutations (T242N), suggesting the acquisition of attenuated viruses from B57+ donors. These data indicate that acute/early stage viruses from persons who become controllers have evidence of reduced replication capacity during the initial stages of infection which is likely associated with transmitted or acquired CTL escape mutations or transmitted drug resistance mutations. These data suggest that viral dynamics during acute infection have a major impact on HIV disease outcome.Human immunodeficiency virus type I (HIV-1)-infected individuals who control viremia spontaneously without antiviral therapy have been termed HIV controllers (3, 18, 21, 48, 52). Unraveling the mechanisms associated with this phenotype should provide important insights regarding HIV pathogenesis and could contribute to vaccine development.Host and viral genetics, as well as host innate and adaptive immune responses, influence the rate of disease progression in HIV-1 infection (reviewed in reference 18). Several studies have reported the correlation between in vitro HIV replication capacity and level of plasma virus loads or disease progression in individuals with chronic infection (6, 13, 35, 45, 50, 55). Studies of HIV-1 elite controllers (EC), who control viremia to below the limit of detection in commercial assays, have revealed the presence of replication-competent viruses in these individuals (7), although these viruses appear to be less fit based on studies of envelope (35) and Gag-protease (45). This fitness defect in the chronic phase of infection is due at least in part to fitness-impairing mutations induced by cytotoxic-T-lymphocyte (CTL) responses restricted by “protective” HLA class I alleles (46).In contrast, little is known about viruses obtained from the acute/early phase of infection in persons who subsequently become HIV-1 controllers, largely due to the difficulty in enrolling such people during the acute/early phase of infection. The characterization of acute/early-phase viruses in individuals who subsequently achieve low set-point virus loads is of paramount importance to our understanding of the mechanisms of HIV-1 control.In the present study, we analyzed acute/early-phase plasma HIV RNA sequences from 18 untreated individuals who were diagnosed during the acute/early phase and subsequently became controllers (<2,000 RNA copies/ml). We compared these to sequences from a group of HIV-1 noncontrollers enrolled similarly during acute/early infection. We also generated chimeric viruses carrying patient-derived gag-protease sequences from acute/early-phase infection and compared the viral replication capacities of the chimeric viruses from controllers and from noncontrollers.We observed that the chimeric viruses derived from controllers have significantly reduced replicative capacities compared to those from noncontrollers. Moreover, we observed that at least 80% of these individuals who go on to become controllers featured transmission of attenuated drug-resistant viruses, transmission of HLA-B57-restricted CTL escape variants to HLA-mismatched recipients, selection of attenuated CTL escape variants in HLA-B57-positive (B57+) recipients, or combinations of these factors. Taken together, these results indicate that the initial viral dynamics have a major influence on the subsequent course of disease.  相似文献   

14.
15.
Preferential HLA usage in the influenza virus-specific CTL response   总被引:5,自引:0,他引:5  
To study whether individual HLA class I alleles are used preferentially or equally in human virus-specific CTL responses, the contribution of individual HLA-A and -B alleles to the human influenza virus-specific CTL response was investigated. To this end, PBMC were obtained from three groups of HLA-A and -B identical blood donors and stimulated with influenza virus. In the virus-specific CD8(+) T cell population, the proportion of IFN-gamma- and TNF-alpha-producing cells, restricted by individual HLA-A and -B alleles, was determined using virus-infected C1R cells expressing a single HLA-A or -B allele for restimulation of these cells. In HLA-B*2705- and HLA-B*3501-positive individuals, these alleles were preferentially used in the influenza A virus-specific CTL response, while the contribution of HLA-B*0801 and HLA-A*0101 was minor in these donors. The magnitude of the HLA-B*0801-restricted response was even lower in the presence of HLA-B*2705. C1R cells expressing HLA-B*2705, HLA-A*0101, or HLA-A*0201 were preferentially lysed by virus-specific CD8(+) T cells. In contrast, the CTL response to influenza B virus was mainly directed toward HLA-B*0801-restricted epitopes. Thus, the preferential use of HLA alleles depended on the virus studied.  相似文献   

16.
To better understand the qualitative features of effective human immunodeficiency virus (HIV)-specific immunity, we examined the TCR clonal composition of CD8(+) T cells recognizing conserved HIV p24-derived epitopes in HLA-B*5701-positive long-term nonprogressors/elite controllers (LTNP/EC) and HLA-matched progressors. Both groups displayed oligoclonal HLA-B5701-restricted p24-specific CD8(+) T-cell responses with similar levels of diversity and few public clonotypes. Thus, HIV-specific CD8(+) T-cell responses in LTNP/EC are not differentiated from those of progressors on the basis of clonal diversity or TCR sharing.  相似文献   

17.
The role of CD4(+) T cells in the control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication is not well understood. Even though strong HIV- and SIV-specific CD4(+) T-cell responses have been detected in individuals that control viral replication, major histocompatibility complex class II (MHC-II) molecules have not been definitively linked with slow disease progression. In a cohort of 196 SIVmac239-infected Indian rhesus macaques, a group of macaques controlled viral replication to less than 1,000 viral RNA copies/ml. These elite controllers (ECs) mounted a broad SIV-specific CD4(+) T-cell response. Here, we describe five macaque MHC-II alleles (Mamu-DRB*w606, -DRB*w2104, -DRB1*0306, -DRB1*1003, and -DPB1*06) that restricted six SIV-specific CD4(+) T-cell epitopes in ECs and report the first association between specific MHC-II alleles and elite control. Interestingly, the macaque MHC-II alleles, Mamu-DRB1*1003 and -DRB1*0306, were enriched in this EC group (P values of 0.02 and 0.05, respectively). Additionally, Mamu-B*17-positive SIV-infected rhesus macaques that also expressed these two MHC-II alleles had significantly lower viral loads than Mamu-B*17-positive animals that did not express Mamu-DRB1*1003 and -DRB1*0306 (P value of <0.0001). The study of MHC-II alleles in macaques that control viral replication could improve our understanding of the role of CD4(+) T cells in suppressing HIV/SIV replication and further our understanding of HIV vaccine design.  相似文献   

18.
Previous studies have suggested that polyfunctional mucosal CD8+ T-cell responses may be a correlate of protection in HIV controllers. Mucosal T-cell breadth and/or specificity may also contribute to defining protective responses. In this study, rectal CD8+ T-cell responses to HIV Gag, Env, and Nef were mapped at the peptide level in four subject groups: elite controllers (n = 16; viral load [VL], <75 copies/ml), viremic controllers (n = 14; VL, 75 to 2,000 copies/ml), noncontrollers (n = 14; VL, >10,000 copies/ml), and antiretroviral-drug-treated subjects (n = 8; VL, <75 copies/ml). In all subject groups, immunodominant CD8+ T-cell responses were generally shared by blood and mucosa, although there were exceptions. In HIV controllers, responses to HLA-B27- and HLA-B57-restricted epitopes were common to both tissues, and their magnitude (in spot-forming cells [SFC] per million) was significantly greater than those of responses restricted by other alleles. Furthermore, peptides recognized by T cells in both blood and rectal mucosa, termed “concordant,” elicited higher median numbers of SFC than discordant responses. In magnitude as well as breadth, HIV Gag-specific responses, particularly those targeting p24 and p7, dominated in controllers. Responses in noncontrollers were more evenly distributed among epitopes in Gag, Env, and Nef. Viremic controllers showed significantly broader mucosal Gag-specific responses than other groups. Taken together, these findings demonstrate that (i) Gag-specific responses dominate in mucosal tissues of HIV controllers; (ii) there is extensive overlap between CD8+ T cells in blood and mucosal tissues, with responses to immunodominant epitopes generally shared by both sites; and (iii) mucosal T-cell response breadth alone cannot account for immune control.Despite more than two decades of intensive research, the immunologic correlates of protection from human immunodeficiency virus (HIV) infection and disease progression remain incompletely understood. To date, the majority of studies of HIV-specific T-cell responses have focused on the measurement of such responses in peripheral blood lymphocytes. Nevertheless, the majority of the body''s lymphocytes are housed in mucosal tissues, notably the gastrointestinal (GI) tract (18, 33, 40). The gastrointestinal mucosa also serves as a major target of HIV infection and CD4+ T-cell depletion (7, 25, 36), as well as an important site of transmission (18, 33, 40). Antigen-experienced T cells may preferentially traffic to tissue sites of infection (50), where they may also expand in an antigen-driven manner. Because of the unique role of the gastrointestinal mucosa in HIV pathogenesis, detailed studies of HIV-specific immune responses in this compartment may contribute important insights to our understanding of the disease process.An important question is the degree to which T-cell responses in mucosal tissues are “compartmentalized” and distinct in specificity and/or clonality from those found elsewhere in the body, including in peripheral blood. Because of the technical challenges associated with obtaining large numbers of viable lymphocytes from mucosal biopsy specimen tissue, comprehensive mapping of the fine specificity of mucosal HIV-specific T-cell responses has been difficult. Relying on a polyclonal expansion approach, Ibarrondo and colleagues successfully mapped HIV-specific CD8+ T-cell responses in blood and rectal mucosa of chronically infected persons to the level of peptide pools but not to individual epitopes (29). Their studies revealed a similar pattern of responses, and nearly identical immunodominance hierarchies, in the two tissue sites.We have focused our recent studies of mucosal immunity on a group of individuals who control HIV infection in the absence of antiretroviral therapy. These are often called “long-term nonprogressors” (LTNP) (14), referring to their ability to maintain normal CD4+ T-cell counts for more than 10 years without medication. LTNP are believed to account for 5 to 15% of the HIV-infected population. Several recent studies have used the term “HIV controllers,” defined as those who maintain undetectable plasma HIV RNA levels (“elite controllers”) and those who have persistently detectable but low plasma HIV RNA levels (“viremic controllers”). Elite controllers represent less than 1% of the HIV-infected population (14). In contrast, individuals with viral loads of >10,000 copies/ml in the absence of therapy are termed “noncontrollers.” Recently, we found that “polyfunctional” HIV-specific T cells, producing multiple antiviral factors, were significantly more abundant in gastrointestinal mucosa of HIV controllers than in those of noncontrollers or subjects on highly active antiretroviral therapy (HAART) (20). Furthermore, in many cases these strong, polyfunctional mucosal T-cell responses were not mirrored in peripheral blood, suggesting that HIV-specific T cells either preferentially traffic to or undergo expansion within mucosal tissues.Because of these findings, we undertook a follow-up study to determine the breadth and fine specificity, to the peptide level, of mucosal CD8+ T-cell responses to HIV Gag, Env, and Nef among HIV controllers, noncontrollers, and individuals on HAART. We hypothesized that controllers might harbor an unusually broad repertoire of HIV-specific CD8+ T cells in mucosal tissues. We found a similar response breadth in mucosal tissues of all three subject groups, arguing against a critical role for mucosal T-cell response breadth in determining the extent of HIV control. In contrast, we found that high-magnitude mucosal responses directed at well-conserved regions in Gag were a strong and consistent correlate of control. Finally, concordant responses, defined as those common to blood and mucosa, were generally stronger than discordant responses, underscoring the observation that T cells responding to immunodominant epitopes are broadly distributed throughout the body in both controllers and noncontrollers.  相似文献   

19.
20.
Analyses of the breadth and specificity of virus-specific CD8(+) T cell responses associated with control of HIV have largely relied on measurement of cytokine secretion by effector T cells. These have resulted in the identification of HIV elite controllers with low or absent responses in which non-T-cell mechanisms of control have been suggested. However, successful control of HIV infection may be associated with central memory T cells, which have not been consistently examined in these individuals. Gag-specific T cells were characterized using a peptide-based cultured enzyme-linked immunosorbent spot assay (ELISpot). Peripheral blood mononuclear cells from HIV elite controllers (n = 10), progressors (n = 12), and antiretroviral-treated individuals (n = 9) were cultured with overlapping peptides for 12 days. Specificity was assessed by tetramer staining, functional features of expanded cells were assessed by cytokine secretion, and virus inhibition and phenotypic characteristics were assessed by cell sorting and coculture assays. After peptide stimulation, elite controllers showed a greater number of previously undetectable (new) responses compared to progressors (P = 0.0008). These responses were highly polyfunctional, with 64.5% of responses having 3 to 5 functions. Expandable epitope-specific CD8(+) T cells from elite controllers had strong virus inhibitory capacity and predominantly displayed a central memory phenotype. These data indicate that elite controllers with minimal T cell responses harbor a highly functional, broadly directed central memory T cell population that is capable of suppressing HIV in vitro. Comprehensive examination of this cell population could provide insight into the immune responses associated with successful containment of viremia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号