首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Wang HJ  Xiang LX  Shao JZ  Jia S 《Cytokine》2006,35(3-4):126-134
Interleukin-21 (IL-21) is an important immune cytokine that was well characterized in human and mammals, but little is known in fish. In present study, an IL-21 homologue was cloned and well characterized from Tetraodon nigroviridis. The full-length Tetraodon IL-21 cDNA was 849bp in size, containing an open reading frame (ORF) of 438bp that translated a 145 amino-acid peptide, a 5' untranslated region (UTR) of 69bp, and a 3' UTR of 342bp. The deduced peptide shared identity of 20-49% with other known IL-21 sequences. The Tetraodon IL-21 gene had six exons while both human and Takifugu IL-21 gene contained only five exons. However, the level of synteny between human, Takifugu and Tetraodon genomes was well conserved during evolution. In vivo expression study showed that Tetraodon IL-21 mRNAs were constitutively expressed at a low level and only in limited tissues, including gut, gill and gonad in healthy fish, and stimulation with LPS increased the expression of IL-21 in these tissues and induced the expression of IL-21 in kidney, spleen and skin, indicating that IL-21 is an inflammatory stress inducible gene associated with the anti-bacterial defense in fish. Our study provided further evidence for the existence of IL-21 in fish, and gained further insight into the immunological functions of IL-21 gene in fish.  相似文献   

3.
MAGUK proteins: structure and role in the tight junction   总被引:23,自引:0,他引:23  
ZO-1, ZO-2 and ZO-3 are tight junction (TJ)-associated proteins that belong to the MAGUK family. In addition to the presence of the characteristic MAGUK modules (PDZ, SH3 and GK), ZOs have a distinctive carboxyl terminal with splicing domains, acidic- and proline-rich regions. The modular organization of these proteins allows them to function as scaffolds, which associate to transmembrane TJ proteins, the cytoskeleton and signal transduction molecules. ZOs shuttle between the TJ and the nucleus, where they may regulate gene expression.  相似文献   

4.
Interleukin-16 (IL-16) is an important pro-inflammatory cytokine that functions as a chemoattractant factor and is well characterized in human and other mammals, but is largely unknown in fish. In the present study, two isoforms of pro-IL-16 homologues were cloned and characterized from pufferfish Tetraodon nigroviridis. The full-length T. nigroviridis pro-IL-16 isoform 1 cDNA exhibits 2453 bp in size including 291 bp 5'UTR (untranslated region), 1704 bp ORF (open reading frame) and 458 bp 3'UTR, while pro-IL-16 isoform 2 cDNA exhibits a 3801 bp ORF and a 458 bp 3'UTR. Bioinformatics analysis demonstrated that the pro-IL-16 isoform 1 with a predicted mass of 60.6 kDa contained two PDZ (postsynaptic density/disc large/zona occludens-1) domains, whereas the 138.2 kDa pro-IL-16 isoform 2 had two additional PDZ domains in its N-terminal extension. RT-PCR results revealed that ,almost in all examined organs and tissues, the mRNA of both pro-IL-16 isoforms can be detected, except in intestine and gill, where the isoform 2 mRNA is absent. The two putative precursor proteins showed 30.0-33.0% identity to various mammalian and avian homologues. This is the first report of such genes in teleostean fish and we hope the molecular characterization of these two pro-IL-16 isoforms will provide insights into the study of both evolution of IL-16 precursor proteins and the immune system as a whole.  相似文献   

5.
6.
Endothelial cells of the blood-brain barrier form complex tight junctions, which are more frequently associated with the protoplasmic (P-face) than with the exocytoplasmic (E-face) membrane leaflet. The association of tight junctional particles with either membrane leaflet is a result of the expression of various claudins, which are transmembrane constituents of tight junction strands. Mammalian brain endothelial tight junctions exhibit an almost balanced distribution of particles and lose this morphology and barrier function in vitro. Since it was shown that the brain endothelial tight junctions of submammalian species form P-face-associated tight junctions of the epithelial type, the question of which molecular composition underlies the morphological differences and how do these brain endothelial cells behave in vitro arose. Therefore, rat and chicken brain endothelial cells were investigated for the expression of junctional proteins in vivo and in vitro and for the morphology of the tight junctions. In order to visualize morphological differences, the complexity and the P-face association of tight junctions were quantified. Rat and chicken brain endothelial cells form tight junctions which are positive for claudin-1, claudin-5, occludin and ZO-1. In agreement with the higher P-face association of tight junctions in vivo, chicken brain endothelia exhibited a slightly stronger labeling for claudin-1 at membrane contacts. Brain endothelial cells of both species showed a significant alteration of tight junctions in vitro, indicating a loss of barrier function. Rat endothelial cells showed a characteristic switch of tight junction particles from the P-face to the E-face, accompanied by the loss of claudin-1 in immunofluorescence labeling. In contrast, chicken brain endothelial cells did not show such a switch of particles, although they also lost claudin-1 in culture. These results demonstrate that the maintenance of rat and chicken endothelial barrier function depends on the brain microenvironment. Interestingly, the alteration of tight junctions is different in rat and chicken. This implies that the rat and chicken brain endothelial tight junctions are regulated differently.  相似文献   

7.
目的 考察氧化三甲胺(TMAO)对血管内皮细胞炎症以及肠上皮细胞炎症的影响.方法 采用不同浓度的TMAO处理HUVECs细胞,考察不同时间点的炎症因子(ICAM-1、VCAM-1)表达情况;采用不同浓度的TMAO处理HT29细胞,考察不同时间点的炎症因子(IL-1β、IL-8和IL-23)表达情况;考察TMAO对紧密连...  相似文献   

8.
Barrett's esophagus (BE) is a specialized columnar epithelium (SCE) that develops as replacement for damaged squamous epithelium (SqE) in subjects with reflux disease, and as such it is apparently more acid resistant than SqE. How SCE resists acid injury is poorly understood; one means may involve altered tight junctions (TJs) since the TJ in SqE is an early target of attack and damage by acid in reflux disease. To assess this possibility, quantitative RT-PCR for 21 claudins was performed on endoscopic biopsies on SCE of BE and from healthy SqE from subjects without esophageal disease. In SCE, Cldn-18 was the most highly expressed at the mRNA level and this finding is paralleled by marked elevation in protein expression on immunoblots. In contrast in SqE, Cldn-18 was minimally expressed at the mRNA level and undetectable at the protein level. Immunofluorescence studies showed membrane localization of Cldn-18 and colocalization with the tight junction protein, zonula occludens-1. When Cldn-18 was overexpressed in MDCK II cells and mounted as monolayers in Ussing chambers, it raised electrical resistance and, as shown by lower dilution potentials to a NaCl gradient and lower diffusion potentials to acidic gradients, selectively reduced paracellular permeability to both Na(+) and H(+) compared with parental MDCK cells. We conclude that Cldn-18 is the dominant claudin in the TJ of SCE and propose that the change from a Cldn-18-deficient TJ in SqE to a Cldn-18-rich TJ in SCE contributes to the greater acid resistance of BE.  相似文献   

9.
The paracellular barrier of epithelia and endothelia is established by several tight junction proteins including claudin-3. Although claudin-3 is present in many epithelia including skin, lung, kidney, and intestine and in endothelia, its function is unresolved as yet. We therefore characterized claudin-3 by stable transfection of MDCK II kidney tubule cells with human claudin-3 cDNA. Two clone systems were analyzed, exhibiting high or low claudin-2 expression, respectively. Expression of other claudins was unchanged. Ultrastructurally, tight junction strands were changed toward uninterrupted and rounded meshwork loops. Functionally, the paracellular resistance of claudin-3-transfected monolayers was strongly elevated, causing an increase in transepithelial resistance compared to vector controls. Permeabilities for mono- and divalent cations and for anions were decreased. In the high-claudin-2 system, claudin-3 reduced claudin-2-induced cation selectivity, while in the low-claudin-2 system no charge preference was observed, the latter thus reflecting the "intrinsic" action of claudin-3. Furthermore, the passage of the paracellular tracers fluorescein (332 Da) and FD-4 (4 kDa) was decreased, whereas the permeability to water was not affected. We demonstrate that claudin-3 alters the tight junction meshwork and seals the paracellular pathway against the passage of small ions of either charge and uncharged solutes. Thus, in a kidney model epithelium, claudin-3 acts as a general barrier-forming protein.  相似文献   

10.
Proteins' expression of tight junction proteins in rat small intestine was analyzed by means of immunohistochemistry and Western blotting. Claudins -1, -2, -3, -4, -5, -7 and occludin were analyzed. Confocal laser-scanning microscopy revealed differences in the subcellular distributions of these proteins. Claudins-1, -2, -3, -4, -5, and -7 were localized within the tight junction complex and were also detectable in subjunctional regions. Distributed subcellular localization of these proteins may reflect their different roles during formation of epithelial cell layers as well as in paracellular transport of ions in the small intestine.  相似文献   

11.
A novel laminin gamma3 chain was identified from the expressed sequence tag data base at the National Center for Biotechnology Information. A complete cDNAderived peptide sequence reveals a 1592-amino acid-long primary translation product, including a tentative 33-amino acid-long signal peptide. Comparison with the laminin gamma1 chain predicts that the two polypeptides have equal spatial dimensions. In addition, the well conserved domains VI and III(LE4) predict that gamma3 containing laminins are able to integrate to the laminin network and also via nidogen connect to other protein networks in the basement membranes. Combination of Northern analysis and in situ hybridization experiments indicate that expression of the gamma3 chain is highly tissue- and cell-specific, being significantly strong in capillaries and arterioles of kidney as well as in interstitial Leydig cells of testis.  相似文献   

12.
A potential role for prolactin-releasing peptide (PrRP) in appetite regulation and hydromineral balance in goldfish was examined. PrRP was found to be expressed in discrete regions of the goldfish brain, in particular, the hypothalamus. Intraperitoneal (IP) or intracerebroventricular administration of PrRP had dose-dependent effects to suppress food intake in goldfish. Hypothalamic PrRP mRNA expression significantly increased after feeding, as well as after 7 days of food deprivation. Refeeding fish after 7 days food deprivation did not result in a postprandial increase in PrRP mRNA expression. These data suggest an anorexigenic role for PrRP in the short term around a scheduled meal time, but not over the longer term. IP injection of PrRP significantly increased pituitary prolactin (PRL) mRNA levels, suggesting involvement in the regulation of lactotroph activity. Acclimating goldfish to an ion-poor environment decreased serum osmolality and increased PrRP and PRL mRNA levels, providing evidence for PrRP involvement in hydromineral balance through its actions on lactotrophs. Acclimation to ion-poor water diminished the anorexigenic properties of PrRP in goldfish, indicating that a role for PrRP in goldfish satiation is counterbalanced by alternate systemic needs (i.e., osmoregulatory). This was further supported by an ability to reinstate the anorexigenic actions of PrRP in fish acclimated to ion-poor water by feeding a salt-rich diet. These studies provide evidence that PrRP is involved in regulating appetite and hydromineral balance in fish, and that the degree of involvement in either process varies according to overall systemic needs in response to environmental conditions.  相似文献   

13.
Antrum mucosal protein (AMP)-18 and a synthetic peptide of amino acids 77-97 have mitogenic and motogenic properties for epithelial cells. The possibility that AMP-18 is also protective was evaluated in the colonic mucosa of mice and monolayer cultures of human colonic epithelial Caco-2/bbe (C2) cells. Administration of AMP peptide to mice with dextran sulfate sodium (DSS)-induced colonic injury delayed the onset of bloody diarrhea and reduced weight loss. Treatment of C2 cells with AMP peptide protected monolayers against decreases in transepithelial electrical resistance induced by the oxidant monochloramine, indomethacin, or DSS. A molecular mechanism for these barrier-protective effects was sought by asking whether AMP peptide acted on specific tight junction (TJ) proteins. Immunoblots of detergent-insoluble fractions of C2 cells treated with AMP peptide exhibited increased accumulation of specific TJ proteins. Occludin immunoreactivity was also increased in detergent-insoluble fractions obtained from colonic mucosal cells of mice injected with AMP peptide. Observations using laser scanning confocal (CF) microscopy supported the capacity of AMP peptide to enhance accumulation of occludin and zonula occludens-1 in TJ domains of C2 cell monolayers and together with immunoblot analysis showed that the peptide protected against loss of these TJ proteins following oxidant injury. AMP peptide also protected against a fall in TER during disruption of actin filaments by cytochalasin D and stabilized perijunctional actin during oxidant injury when assessed by CF. These findings suggest that AMP-18 could protect the intestinal mucosal barrier by acting on specific TJ proteins and stabilizing perijunctional actin.  相似文献   

14.
The connexins are a family of related gap junction proteins which contain conserved transmembrane and extracellular domains but unique cytoplasmic regions. To identify connexins with potential roles in development, a chick embryo cDNA library was screened by hybridization at low stringency with a cDNA for rat connexin-43. cDNA clones for two previously undescribed connexins were isolated. Chick connexin-45 has a predicted molecular mass of 45,376 daltons; connexin-42 has a predicted molecular mass of 41,748 daltons. Both of these predicted connexin proteins share the homologous regions noted in other members of this family, and each has its own unique regions. Southern blots of chicken genomic DNA suggest that each connexin is encoded by a distinct single copy gene. RNA blots demonstrate that while chick connexin-43, -42, and -45 are each expressed in a number of chick organs, they each have a unique tissue distribution. Each connexin mRNA is present in heart. Blots of total RNA isolated from hearts of chick embryos of different ages demonstrate that the abundance of connexin-42 and -43 mRNAs varies no more than 2-fold between the embryo and the adult. However, connexin-45 mRNA shows a dramatic change, falling 10-fold from the 6-day embryonic heart to the adult. These multiple connexins are likely to have different physiological properties and may account for the multiple physiologically distinct gap junction channels which have been observed in cardiac myocytes. They may provide a mechanism for the formation of communication compartments in the developing myocardium.  相似文献   

15.
In fishes, variation in paracellular permeability is important for regulating salt and water balance. Paracellular permeability is maintained by TJs in vertebrate epithelia. This study examined the spatial distribution and effects of salinity on claudin-3 isoform mRNA expression and abundance along the gastrointestinal (GI) tract of the euryhaline puffer fish (Tetraodon nigroviridis) and related these to morphological heterogeneity of the TJ complex. The puffer fish GI tract was divided into three regions (anterior, middle and posterior) and four isoforms of claudin-3 (Tncldn3a, Tncldn3b, Tncldn3c and Tncldn3d) were found to be expressed in each section. The effect of freshwater (FW) or seawater (SW) acclimation on regional 1) Tncldn3 isoform mRNA abundance, 2) TJ complex morphology and 3) Na+–K+-ATPase (NKA) activity was examined. In situ hybridization indicated that all Tncldn3 isoforms localized to the mucosal epithelium in the intestine. The mRNA abundance of Tncldn3 isoforms varied spatially along the GI tract. Furthermore, region as well as isoform specific alterations in mRNA abundance could be observed along the GI tract in response to salinity change. Qualitative TEM observations suggested that the depth of TJ complexes increased from anterior to posterior along the GI tract and that TJ complexes in the GI tract of FW fish were deeper than those in SW. NKA activity increased from anterior to posterior in fish acclimated to FW, whereas activity in fish acclimated to SW was uniformly high along the length of the intestine. Taken together data; (1) suggest a progressive decrease in epithelial permeability from anterior to posterior along the longitudinal axis of the puffer fish GI tract, (2) indicate that claudin-3 protein isoforms may play a role in regulating paracellular movement of solutes across this epithelium, and (3) provide further evidence that claudin-3 proteins are involved in the homeostatic control of salt and water balance in fishes.  相似文献   

16.
17.
18.
卫旭彪  刘厚奇 《生命科学》2008,20(5):812-815
细胞极性的建立是组织发育和器官形成的重要环节。而其中紧密连接是上皮细胞极性建立和维持的重要结构,也是极性破坏的靶点。因此,紧密连接对上皮细胞极性来说十分重要。保守的PAR3-PAR6-aPKC极性复合体在紧密连接的形成过程中发挥中枢作用。PAR3可与JAMs、TIAM1及LIMK2等分子相互作用,在多个信号通路中发挥调节作用,其相互作用机制复杂。PAR3还可受到来自胞外信号作用于EGFR等受体型酪氨酸磷酸化蛋白激酶的调控。由于PAR3在紧密连接形成的过程中至关重要,有关PAR3的蛋白磷酸化和EGFR等信号转导通路影响PAR3,从而调控紧密连接形成的机制成为了新的研究热点。  相似文献   

19.
20.
In tubular epithelia, barrier function varies in a segment-specific way. The aim of this study was to correlate the presence of tight junction proteins and paracellular barrier properties along rat intestine. Tissue segments of duodenum, jejunum, ileum, and colon were stripped of submucosal cell layers and mounted in Ussing chambers for impedance spectroscopy to measure epithelial resistance (R epi). In parallel, expression of tight junction proteins was analysed by Western blots and immune fluorescence confocal microscopy. Colon showed highest R epi, followed by duodenum, jejunum, and ileum. In small intestine, common transepithelial resistance (R trans or TER) overestimated true R epi by ~60%. In colon, strongest expression of “tightening” claudins 1, 3, 4, 5, and 8 was detected. In accordance with R epi the most proximal of the small intestinal segments, duodenum exhibited highest expression of “tightening” claudins and lowest expression of claudins mediating permeability, namely claudin-2, -7, and -12, compared to jejunum and ileum. These results correspond to the specific role of the duodenum as the first segment facing the acidic gastric content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号