首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Controlled release of medications remains the most convenient way to deliver drugs. In this study, we precipitated gold nanoparticles with quercetin. We loaded gold-quercetin into poly(DL-lactide-co-glycolide) nanoparticles (NQ) and tested the biological activity of NQ on HepG2 hepatocarcinoma cells to acquire the sustained release property. We determined by circular dichroism spectroscopy that NQ effectively caused conformational changes in DNA and modulated different proteins related to epigenetic modifications and c ell cycle control. The mitochondrial membrane potential (MMP), reactive oxygen species (ROS), cell cycle, apoptosis, DNA damage, and caspase 3 activity were analyzed by flow cytometry, and the expression profiles of different anti- and pro-apoptotic as well as epigenetic signals were studied by immunoblotting. A cytotoxicity assay indicated that NQ preferentially killed cancer cells, compared to normal cells. NQ interacted with HepG2 cell DNA and reduced histone deacetylases to control cell proliferation and arrest the cell cycle at the sub-G stage. Activities of cell cycle-related proteins, such as p21WAF, cdk1, and pAkt, were modulated. NQ induced apoptosis in HepG2 cells by activating p53-ROS crosstalk and induces epigenetic modifications leading to inhibited proliferation and cell cycle arrest.  相似文献   

2.
Quercetin, a widely distributed bioflavonoid, has been shown to induce growth inhibition in a variety of human cancer cells. However, the regulation of survivin and Bcl‐2 on the quercetin‐induced cell‐growth inhibition and apoptosis in cancer cells remains unclear. In the present study, we report that quercetin can inhibit proliferation and induce apoptosis in HepG2 cells in dose‐ and time‐dependent manner. Hoechst 33258 and acridine orange/ethidium bromide (AO/EB) staining showed that HepG2 cells underwent the typical morphologic changes of apoptosis characterized by nuclear shrinkage, chromatin condensation, or fragmentation after exposure to quercetin. Cell‐cycle analysis reveals a significant increase of the proportion of cells in G0/G1 phase. We also demonstrate that the levels of survivin and Bcl‐2 protein expression in HepG2 cells decreased concurrently, and the levels of p53 protein increased significantly after treatment with quercetin by immunocytochemistry analysis. Relative activity of caspase‐3 and caspase‐9 increased significantly. These data clearly indicate that quercetin‐induced apoptosis is associated with caspase activation, and the levels of survivin and Bcl‐2. Our results indicate that the expression of survivin may be associated with Bcl‐2 expression, and the inhibition expression of survivin, in conjunction with Bcl‐2, might cause more pronounced apoptotic effects. Together, concurrent down‐regulated survivin and Bcl‐2 play an important role in HepG2 cell apoptosis induced by quercetin.  相似文献   

3.
The adenovirus E1A oncogene products stimulate DNA synthesis and cell proliferation but fail to transform primary baby rat kidney (BRK) cells because of the induction of p53-mediated programmed cell death (apoptosis). Overexpression of dominant mutant p53 (to abrogate wild-type p53 function) or introduction of apoptosis inhibitors, such as adenovirus E1B 19K or Bcl-2 oncoproteins, prevents E1A-induced apoptosis and permits transformation of BRK cells. The ability of activated Harvey-ras (H-ras) to cooperate with E1A to transform BRK cells suggests that H-ras is capable of overcoming the E1A-induced, p53-dependent apoptosis. We demonstrate here that activated H-ras was capable of suppressing apoptosis induced by E1A and wild-type p53. However, unlike Bcl-2 and the E1B 19K proteins, which completely block apoptosis but not p53-dependent growth arrest, H-ras expression permitted DNA synthesis and cell proliferation in the presence of high levels of wild-type p53. The mechanism by which H-ras regulates apoptosis and cell cycle progression is thereby strikingly different from that of the E1B 19K and Bcl-2 proteins. BRK cells transformed with H-ras and the temperature sensitive murine mutant p53(val 135), which lack E1A, underwent growth arrest at the permissive temperature for wild-type p53. p53-dependent growth arrest, however, could be relieved by E1A expression. Thus, H-ras alone was insufficient and cooperation of H-ras and E1A was required to override growth suppression by p53. Our data further suggest that two complementary growth signals from E1A plus H-ras can rescue cell death and thus permit transformation.  相似文献   

4.
5.
Induction of p53 gene expression in cancer cells can lead to both cell cycle arrest and apoptosis. To clarify whether the level of p53 expression determines the apoptotic response of hepatocellullar carcinoma (HCC) cells, we assessed the effect of various levels of expression of p53 gene on a p53-deficient HCC cell line, Hep3B, utilizing a doxycycline (Dox)-regulated inducible p53 expression system. Our results showed that apoptosis was induced in HCC cells with high levels of p53 expression. However, lower level of p53 expression induced only cell cycle arrest but not apoptosis. Bax expression was up-regulated following high levels of p53 expression, while bcl-2 expression was not altered by the level of p53 expression. Moreover, p21 expression was observed in both high and low expression of p53. These results suggest the level of p53 expression could determine if the HCC cells would go into cell cycle arrest or apoptosis. Bax may participate, at least in part, in inducing p53-dependent apoptosis and the induction of p21 alone was able to cause cell cycle arrest but not apoptosis.  相似文献   

6.
Quercetin is one of the naturally occurring dietary flavonol compounds. It is present abundantly in plants and has chemopreventive and anticancer effects. To investigate its anticancer mechanism, we examined the activity of quercetin against acute leukemia cell line, HL-60. Our results showed that quercetin inhibited cell proliferation and induced apoptosis in a time- and dose-dependent manner. Furthermore, quercetin down-regulated the expression of anti-apoptosis protein Bcl-2 and up-regulated the expression of pro-apoptosis protein Bax. Caspase-3 was also activated by quercetin, which started a caspase-3-depended mitochodrial pathway to induce apoptosis. It was also found that quercetin inhibited the expression of the cycloocygenase-2 (Cox-2) mRNA and Cox-2 protein. Taken together, these findings suggested that quercetin induces apoptosis in a caspase-3-dependent pathway by inhibiting Cox-2 expression and regulates the expression of downstream apoptotic components, including Bcl-2 and Bax. Quercetin can be a potent and promising medicine which might be safely used in leukemia therapy.  相似文献   

7.
Ho PJ  Chou CK  Kuo YH  Tu LC  Yeh SF 《Life sciences》2007,80(5):493-503
Taiwanin A, a lignan isolated from Taiwania cryptomerioides Hayata, has previously been reported to have cytotoxicity against human tumor cells, but the mechanisms are unclear. In this study, we examined the molecular mechanism of cell death of human hepatocellular carcinoma HepG2 cells induced by Taiwanin A. Taiwanin A has been found to induce cell cycle arrest at G2/M phase as well as caspase-3-dependent apoptosis within 24 h. We performed both in vitro turbidity assay and immunofluorescence staining of tubulin to show that Taiwanin A can inhibit microtubule assembly. Moreover, the tumor suppressor protein p53 in HepG2 cells was activated by Taiwanin A within 12 h. Inhibition of p53 by either pifithrin-alpha or by short hairpin RNA which blocks p53 expression attenuates Taiwanin A cytotoxicity. Our results demonstrate that Taiwanin A can act as a new class of microtubule damaging agent, arresting cell cycle progression at mitotic phase and inducing apoptosis through the activation of p53.  相似文献   

8.
The retinoblastoma protein (RB) plays an important role in growth suppression through the formation of multiple protein complexes with its target proteins using A/B and C pockets. Even though the A/B and C pockets co-operate for growth suppression, the function of RB in growth arrest is inhibited by the coexpression of RB C fragments with full length RB in the absence of p53, which implies that C pocket fragments are likely to act as a dominant-negative inhibitor of RB function. In contrast, the loss of the RB functions in the presence of p53 triggers a cell cycle arrest or apoptosis by p53-dependent pathways. Thus, it still remains to be elucidated whether the expression of RB C pocket fragments in the presence of p53 induces delayed cell cycle progression and sensitizes cells to apoptosis through p53-dependent pathways. Our results show that the expression of RB C pocket fragments not only induces delayed cell cycle progression, which is mediated by the down-regulation of cyclin A, cyclin E, and E2F-1, but also sensitizes cells to apoptosis through p53-dependent pathways.  相似文献   

9.
10.
Methylxantine derivative, caffeine, is known to prevent the p53-dependent apoptosis pathway via inhibition of ATM (ataxia telangiectasia mutated) kinase, which activates p53 by phosphorylation of the Ser-15 residue. In contrast, it has been reported that caffeine induces p53-mediated apoptosis through Bax protein in non-small-cell lung cancer cells. Therefore, the effects of caffeine on cellular growth in malignant cells are controversial. We investigated the effects of caffeine on cell proliferation, cell cycle progression, and induction of apoptosis in NB4 promyelocytic leukemia cells containing wild-type p53. Caffeine suppressed the cellular growth of NB4 cells in a dose- and time-dependent manner. Caffeine induced G(2)/M phase cell cycle arrest in NB4 cells in association with the induction of phosphorylation at the Ser-15 residue of p53 and induction of tyrosine phosphorylation of cdc2. Expression of Bax protein was increased in NB4 cells after treatment with caffeine. Interestingly, the antisense oligonucleotides for p53 significantly reduced p53 expression and caffeine-induced G(2)/M phase cell cycle arrest in NB4 cells. These results suggest that caffeine induces cell cycle arrest and apoptosis in association with activation of p53 by a novel pathway to phosphorylate the Ser-15 residue and induction of phosphorylation of cdc 2 in leukemic cells with normal p53.  相似文献   

11.
Results and prospects of the yeast three-hybrid system   总被引:13,自引:0,他引:13  
Jaeger S  Eriani G  Martin F 《FEBS letters》2004,570(1-3):7-12
The known members of inhibitor of growth (ING) gene family are considered as candidate tumor suppressor genes. ING4, a novel member of ING family, is recently reported to interact with tumor suppressor p53, p300 (a major component of histone acetyl transferase complexes), and p65(RelA) subunit of NF-κB. In this study, we investigated the cellular behaviors of HepG2 cells with exogenous ING4. Interestingly, the overexpression of ING4 negatively regulated the cell growth with significant G2/M arrest of cell cycle, and moreover, enhanced the cell apoptosis triggered by serum starvation in HepG2 cells. Furthermore, the exogenous ING4 could upregulate endogenous p21 and Bax in HepG2 cells, not in p53-deficient Saos-2 cells, suggesting that G2/M arrest induced by ING4 could be mediated by the increased p21 expression in a p53-dependent manner, although there is no significant increase of p53 expression in HepG2 cells. Moreover, HepG2 cells with exogenous ING4 could significantly increase cell death, as exposed to some DNA-damage agents, such as etoposide and doxorubicin, implying that ING4 could enhance chemosensitivity to certain DNA-damage agents in HepG2 cells.  相似文献   

12.
Quercetin, a widely distributed bioflavonoid, inhibited DNA synthesis in regenerating liver after partial hepatectomy. This inhibition was accompanied by apoptosis, evidenced by in situ end-labeling and gel electrophoresis of DNA fragmentation. Characteristic DNA fragmentation was detected as early as 2 h after injection. Northern blot analysis revealed that quercetin induced the increases in c-fos and p21WAF1CIP1 mRNA levels within 2 h. The expression of p21 protein was also enhanced, while p53 mRNA and protein levels were not affected by quercetin. These results suggest that quercetin-induced apoptosis is associated with the increase in c-fos mRNA level and the upregulation of p21 mRNA and protein expression, probably in a p53-independent pathway.  相似文献   

13.
14.
15.
16.
Genotoxic stress triggers the p53 tumor suppressor network to activate cellular responses that lead to cell cycle arrest, DNA repair, apoptosis or senescence. This network functions mainly through transactivation of different downstream targets, including cell cycle inhibitor p21, which is required for short-term cell cycle arrest or long-term cellular senescence, or proapoptotic genes such as p53 upregulated modulator of apoptosis (PUMA) and Noxa. However, the mechanism that switches from cell cycle arrest to apoptosis is still unknown. In this study, we found that mice harboring a hypomorphic mutant p53, R172P, a mutation that abrogates p53-mediated apoptosis while keeping cell cycle control mostly intact, are more susceptible to ultraviolet-B (UVB)-induced skin damage, inflammation, and immunosuppression than wild-type mice. p53R172P embryonic fibroblasts (MEFs) are hypersensitive to UVB and prematurely senesce after UVB exposure, in stark contrast to wild-type MEFs, which undergo apoptosis. However, these mutant cells are able to repair UV-induced DNA lesions, indicating that the UV hypersensitive phenotype results from the subsequent damage response. Mutant MEFs show an induction of p53 and p21 after UVR, while wild-type MEFs additionally induce PUMA and Noxa. Importantly, p53R172P MEFs failed to downregulate anti-apoptotic protein Bcl-2, which has been shown to play an important role in p53-dependent apoptosis. Taken together, these data demonstrate that in the absence of p53-mediated apoptosis, cells undergo cellular senescence to prevent genomic instability. Our results also indicate that p53-dependent apoptosis may play an active role in balancing cellular growth.  相似文献   

17.
Human papilloma virus (HPV) infection represents an emerging risk factor in head and neck squamous cell carcinoma (HNSCC). In contrast to HPV-negative HNSCC, most cases of HPV-positive HNSCC encode wild-type p53, although the p53 protein in these cells is rapidly degraded via HPV E6-mediated ubiquitination and subsequent proteasomal degradation. This unique feature of HPV-positive HNSCC has raised hope that liberation of wild-type p53 from the E6 protein may have therapeutic benefit in this disease. Indeed, suppression of E6 expression promotes apoptosis in HPV-positive HNSCC cell lines. However, the role of p53 in mediating this cell death has not been determined. Here, we demonstrate that siRNAs targeting the E6/E7 RNA, or treatment with the proteasome inhibitor bortezomib, resulted in upregulation of functional p53 and p53 gene targets in three HPV-positive HNSCC cell lines, but not in HPV-negative HNSCC cells. Apoptosis induced by E6/E7 siRNA in HPV-positive cells was found to be dependent on p53, while bortezomib-induced cell death was modestly p53-dependent. Treatment with subtoxic doses of bortezomib led to cell cycle arrest in HPV-positive, but not HPV-negative HNSCC cells. Moreover, this cell cycle arrest was mediated by p53 and the cell cycle inhibitor p21, the product of a p53 target gene. Collectively, these findings establish that wild-type p53 encoded by HPV-positive HNSCC cells, once liberated from HPV E6, can play important roles in promoting apoptosis and cell cycle arrest.  相似文献   

18.
Kuo PL  Lin TC  Lin CC 《Life sciences》2002,71(16):1879-1892
The aim of this study is to investigate the anticancer effect of aloe-emodin in two human liver cancer cell lines, Hep G2 and Hep 3B. We observed that aloe-emodin inhibited cell proliferation and induced apoptosis in both examined cell lines, but with different the antiproliferative mechanisms. In Hep G2 cells, aloe-emodin induced p53 expression and was accompanied by induction of p21 expression that was associated with a cell cycle arrest in G1 phase. In addition, aloe-emodin had a marked increase in Fas/APO1 receptor and Bax expression. In contrast, with p53-deficient Hep 3B cells, the inhibition of cell proliferation of aloe-emodin was mediated through a p21-dependent manner that did not cause cell cycle arrest or increase the level of Fas/APO1 receptor, but rather promoted aloe-emodin induced apoptosis by enhancing expression of Bax. These findings suggest that aloe-emodin may be useful in liver cancer prevention.  相似文献   

19.
Genotoxic stress triggers the p53 tumor suppressor network to activate cellular responses that lead to cell cycle arrest, DNA repair, apoptosis or senescence. This network functions mainly through transactivation of different downstream targets, including cell cycle inhibitor p21, which is required for short-term cell cycle arrest or long-term cellular senescence, or proapoptotic genes such as p53 upregulated modulator of apoptosis (PUMA) and Noxa. However, the mechanism that switches from cell cycle arrest to apoptosis is still unknown. In this study, we found that mice harboring a hypomorphic mutant p53, R172P, a mutation that abrogates p53-mediated apoptosis while keeping cell cycle control mostly intact, are more susceptible to ultraviolet-B (UVB)-induced skin damage, inflammation and immunosuppression than wild-type mice. p53R172P embryonic fibroblasts (MEFs) are hypersensitive to UVB and prematurely senesce after UVB exposure, in stark contrast to wild-type MEFs, which undergo apoptosis. However, these mutant cells are able to repair UV-induced DNA lesions, indicating that the UV-hypersensitive phenotype results from the subsequent damage response. Mutant MEFs show an induction of p53 and p21 after UVR, while wild-type MEFs additionally induce PUMA and Noxa. Importantly, p53R172P MEFs failed to downregulate anti-apoptotic protein Bcl-2, which has been shown to play an important role in p53-dependent apoptosis. Taken together, these data demonstrate that in the absence of p53-mediated apoptosis, cells undergo cellular senescence to prevent genomic instability. Our results also indicate that p53-dependent apoptosis may play an active role in balancing cellular growth.Key words: UVB irradiation, p53, DNA damage, DNA damage responses, apoptosis, senescence  相似文献   

20.
Gao L  Shen JB  Sun J  Shan BE 《生理学报》2007,59(1):58-62
本文研究了雷氏大疣蛛毒液对人肝癌细胞株HepG2增殖抑制作用及其分子机制。采用XTT法观察到雷氏大疣蛛毒液剂量依赖抑制HepG2细胞增殖;流式细胞仪检测发现,经过雷氏大疣蛛毒液作用的HepG2细胞周期发生明显的选择性改变;RT-PCR方法检测到p21基因表达增强;Western blot检测发现,p21蛋白表达增加。结果提示,雷氏大疣蛛毒液抑制人肝癌细胞HepG2增殖的可能机制之一是使p21基因和蛋白表达增加,G2IM细胞周期被阻滞,从而诱导细胞凋亡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号