首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proenzyme dipeptidyl peptidase I (DPP I) of Schistosoma japonicum was expressed in a baculovirus expression system utilizing Trichoplusia ni BTI-5B1-4 (High Five) strain host insect cells. The recombinant enzyme was purified from cell culture supernatants by affinity chromatography on nickel–nitriloacetic acid resin, exploiting a polyhistidine tag fused to the COOH-terminus of the recombinant protease. The purified recombinant enzyme resolved in reducing SDS–PAGE gels as three forms, of 55, 39, and 38 kDa, all of which were reactive with antiserum raised against bacterially expressed S. japonicum DPP I. NH2-terminal sequence analysis of the 55-kDa polypeptide revealed that it corresponded to residues −180 to −175, NH2-SRXKXK, of the proregion peptide of S. japonicum DPP I. The 39- and 38-kDa polypeptides shared the NH2-terminal sequence, LDXNQLY, corresponding to residues −73 to −67 of the proregion peptide and thus were generated by removal of 126 residues from the NH2-terminus of the proenzyme. Following activation for 24 h at pH 7.0, 37°C under reducing conditions, the recombinant enzyme exhibited exopeptidase activity against synthetic peptidyl substrates diagnostic of DPP I. Specificity constants (kcat/Km) for the recombinant protease for the substrates H-Gly-Arg-NHMec and H-Gly-Phe-NHMec were found to be 14.4 and 10.7 mM1 s−1, respectively, at pH 7.0. Approximately 1 mg of affinity-purified schistosome DPP I was obtained per liter of insect cell culture supernatant, representing 2 × 109 High Five cells.  相似文献   

2.
Aqualysin I is a subtilisin-type serine protease which is secreted into the culture medium by Thermus aquaticus YT-1, an extremely thermophilic Gram-negative bacterium. The nucleotide sequence of the entire gene for aqualysin I was determined, and the deduced amino acid sequence suggests that aqualysin I is produced as a large precursor, consisting of at least three portions, an NH2-terminal pre-pro-sequence (127 amino acid residues), the protease (281 residues), and a COOH-terminal pro-sequence (105 residues). When the cloned gene was expressed in Escherichia coli cells, aqualysin I was not secreted. However, a precursor of aqualysin I lacking the NH2-terminal pre-pro-sequence (38-kDa protein) accumulated in the membrane fraction. On treatment of the membrane fraction at 65 degrees C, enzymatically active aqualysin I (28-kDa protein) was produced in the soluble fraction. When the active site Ser residue was replaced with Ala, cells expressing the mutant gene accumulated a 48-kDa protein in the outer membrane fraction. The 48-kDa protein lacked the NH2-terminal 14 amino acid residues of the precursor, and heat treatment did not cause any subsequent processing of this precursor. These results indicate that the NH2-terminal signal sequence is cleaved off by a signal peptidase of E. coli, and that the NH2- and COOH-terminal pro-sequences are removed through the proteolytic activity of aqualysin I itself, in that order. These findings indicate a unique four-domain structure for the aqualysin I precursor; the signal sequence, the NH2-terminal pro-sequence, mature aqualysin I, and the COOH-terminal pro-sequence, from the NH2 to the COOH terminus.  相似文献   

3.
The virally encoded proteases from human immunodeficiency virus (HIV) and avian myeloblastosis virus (AMV) have been compared relative to their ability to hydrolyze a variant of the three-domain Pseudomonas exotoxin, PE66. This exotoxin derivative, missing domain I and referred to as LysPE40, is made up of a 13-kilodalton NH2-terminal translocation domain II connected by a segment of 40 amino acids to enzyme domain III of the toxin, a 23-kilodalton ADP-ribosyltransferase. HIV protease hydrolyzes two peptide bonds in LysPE40, a Leu-Leu bond in the interdomain region and a Leu-Ala bond in a nonstructured region three residues in from the NH2-terminus. Neither of these sites is cleaved by the AMV enzyme; hydrolysis occurs, instead, at an Asp-Val bond in another part of the interdomain segment and at a Leu-Thr bond in the NH2-terminal region of domain II. Synthetic peptides corresponding to these cleavage sites are hydrolyzed by the individual proteases with the same specificity displayed toward the protein substrate. Peptide substrates for one protease are neither substrates nor competitive inhibitors for the other. A potent inhibitor of HIV type 1 protease was more than 3 orders of magnitude less active toward the AMV enzyme. These results suggest that although the crystallographic models of Rous sarcoma virus protease (an enzyme nearly identical to the AMV enzyme) and HIV type 1 protease show a high degree of similarity, there exist structural differences between these retroviral proteases that are clearly reflected by their kinetic properties.  相似文献   

4.
Previous studies have indicated the existence of separate binding sites of ubiquitin-protein ligase, E3, specific for basic (Type I) or bulky hydrophobic (Type II) NH2-terminal amino acid residues of proteins. Another class (Type III) of protein substrates appeared to interact with E3 at regions other than the NH2 terminus (Reiss, Y., Kaim, D., and Hershko, A. (1988) J. Biol. Chem. 263, 2693-2698). In the present study we have used affinity chromatography on immobilized protein substrates to examine the question of whether the different binding sites belong to one E3 enzyme, or to different E3 species. Another objective was to develop a procedure for the extensive purification of E3. When a crude extract of reticulocytes is applied to Type I or Type II protein substrates linked to Sepharose, E3 becomes strongly bound to the affinity columns and is not eluted with salt at high concentration. However, the enzyme can be specifically eluted by a dipeptide that has an NH2-terminal residue similar to that of matrix-bound protein substrate. A 350-fold purification is obtained in this single step. Preparations of E3 purified on either Type I or Type II protein substrate affinity columns act on both types of protein substrates, indicating that the separate binding sites for basic and hydrophobic NH2-terminal residues belong to one enzyme. Another species of E3 that acts strongly on some Type III protein substrates does not bind to Type I or Type II protein substrate affinity columns.  相似文献   

5.
The endoproteolytic activity previously detected in rat intestinal mucosal extracts (Beinfeld M., Bourdais, J., Kuks, P., Morel, A., and Cohen, P. (1989) J. Biol. Chem. 264, 4460-4465), was purified to homogeneity as a 65-kDa molecular species. This putative proprotein-processing enzyme cleaves the peptide bond on the carboxyl side of a single arginine residue in hepta-[Leu62-Gln-Arg-Ser-Ala-Asn-Ser68] or trideca-[Asp56-Glu-Met-Arg-Leu-Glu-Leu-Gln-Arg-Ser-Ala-Asn-+ ++Ser68] peptides, reproducing the prosomatostatin sequence around Arg64, the locus for endoproteolytic release of either somatostatin-28 or its NH2-terminal fragment, somatostatin-28-(1-12), from their common precursor. This enzyme exhibits a strict selectivity for arginyl residues, as demonstrated with related substrates, and did not cleave at lysyl residues. Moreover, only arginyl residues belonging to peptides of the prosomatostatin family were cleaved, since no hydrolysis of peptides from other prohormones was detected. In addition, the arginine residue situated at position -5 on the NH2-terminal side of Arg64 not only did not function as a cleavage locus, but had no effect on the overall cleavage kinetics of the prosomatostatin-(56-68) peptide substrate. This enzyme also cleaved, but with much less efficiency, the peptide bond on the carboxyl side of an arginine in peptides containing either an Arg-Lys or a Lys-Arg doublet corresponding to prohormone cleavage sites. This enzyme was insensitive to divalent cation chelators, was completely inhibited by aprotinin and leupeptin, and was somewhat inhibited by other serine-protease inhibitors. It is concluded that this endoprotease is a serine protease and could be involved in prohormone or proprotein post-translational processing at single arginine cleavage sites.  相似文献   

6.
T J Krieger  V Y Hook 《Biochemistry》1992,31(17):4223-4231
Purification and potential tachykinin and enkephalin precursor cleaving enzymes from bovine chromaffin granules was undertaken using as substrates the model precursors 35S-(Met)-beta-preprotachykinin [35S-(Met)-beta-PPT] and 35S-(Met)-preproenkephalin [35S-(Met)-PPE]. Purification by concanavalin A-Sepharose, Sephacryl S200, and chromatofocusing resulted in a chromaffin granule aspartyl protease (CGAP) that preferred the tachykinin over the enkephalin precursor. CGAP was composed of 47-, 30-, and 16.5-kDa polypeptides migrating as a single band in a nondenaturing electrophoretic gel system, and coeluting with an apparent molecular mass of 45-55 kDa by size-exclusion chromatography. These results suggest that two forms exist: a single 47-kDa polypeptide and a complex of 30 + 16.5-kDa-associated subunits. CGAP was optimally active at pH 5.0-5.5, indicating that it would be active within the acidic intragranular environment. Cleavage at basic residues was suggested by HPLC and HVE identification of 35S-(Met)-NKA-Gly-Lys as the major acid-soluble product generated from 35S-(Met)-beta-PPT. Neuropeptide K was cleaved at a Lys-Arg basic residue site, as determined by identification of proteolytic products by microsequencing and amino acid composition analyses. Structural studies showed that the three CGAP polypeptides were similar to bovine cathepsin D in NH2-terminal sequences and amino acid compositions, indicating that CGAP appears to be a cathepsin D-related protease or cathepsin D itself. The 47- and 16.5-kDa polypeptides of CGAP possessed identical NH2-terminal sequences, suggesting that the 16.5-kDa polypeptide may be derived from the 47-kDa form by proteolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Three chymotryptic fragments accounting for almost the entire amino acid sequence of gizzard calponin (Takahashi, K., and Nadal-Ginard, B. (1991) J. Biol. Chem. 266, 13284-13288) were isolated and characterized. They encompass the segments of residues 7-144 (NH2-terminal 13-kDa peptide), 7-182 (NH2-terminal 22-kDa peptide), and 183-292 (COOH-terminal 13-kDa peptide). They arise from the sequential hydrolysis of the peptide bonds at Tyr182-Gly183 and Tyr144-Ala145 which were protected by the binding of F-actin to calponin. Only the NH2-terminal 13- and 22-kDa fragments were retained by immobilized Ca(2+)-calmodulin, but only the larger 22 kDa entity cosedimented with F-actin and inhibited, in the absence of Ca(2+)-calmodulin, the skeletal actomyosin subfragment-1 ATPase activity as the intact calponin. Since the latter peptide differs from the NH2-terminal 13-kDa fragment by a COOH-terminal 38-residue extension, this difference segment appears to contain the actin-binding domain of calponin. Zero-length cross-linked complexes of F-actin and either calponin or its 22-kDa peptide were produced. The total CNBr digest of the F-actin-calponin conjugate was fractionated over immobilized calmodulin. The EGTA-eluted pair of cross-linked actin-calponin peptides was composed of the COOH-terminal actin segment of residues 326-355 joined to the NH2-terminal calponin region of residues 52-168 which seems to contain the major determinants for F-actin and Ca(2+)-calmodulin binding.  相似文献   

8.
The 72-kDa gelatinase/type IV collagenase, a metalloproteinase thought to play a role in metastasis and in angiogenesis, forms a noncovalent stoichiometric complex with the tissue inhibitor of metalloproteinase-2 (TIMP-2), a potent inhibitor of enzyme activity. To define the regions of the 72-kDa gelatinase responsible for TIMP-2 binding, a series of NH2- and COOH-terminal deletions of the enzyme were constructed using the polymerase chain reaction technique. The full-length and the truncated enzymes were expressed in a recombinant vaccinia virus mammalian cell expression system (Vac/T7). Two truncated enzymes ending at residues 425 (delta 426-631) and 454 (delta 455-631) were purified. Like the full-length recombinant 72-kDa gelatinase, both COOH-terminally truncated enzymes were activated with organomercurial and digested gelatin and native collagen type IV. In contrast to the full-length enzyme, delta 426-631 and delta 455-631 enzymes were less sensitive to TIMP-2 inhibition requiring 10 mol of TIMP-2/mol of enzyme to achieve maximal inhibition of enzymatic activity. The activated but not the latent forms of the delta 426-631 and delta 455-631 proteins formed a complex with TIMP-2 only when excess molar concentrations of inhibitor were used. We also expressed the 205-amino acid COOH-terminal fragment, delta 1-426, and found that it binds TIMP-2. In addition, a truncated version of the 72-kDa gelatinase lacking the NH2-terminal 78 amino acids (delta 1-78) of the proenzyme retained the ability to bind TIMP-2. These studies demonstrate that 72-kDa gelatinases lacking the COOH-terminal domain retain full enzymatic activity but acquire a reduced sensitivity to TIMP-2 inhibition. These data suggest that both the active site and the COOH-terminal tail of the 72-kDa gelatinase independently and cooperatively participate in TIMP-2 binding.  相似文献   

9.
Procollagen N-proteinase (EC 3.4.24.14), the enzyme that cleaves the NH2-terminal propeptides from type I procollagen, was purified over 20,000-fold with a yield of 12% from extracts of 17-day-old chick embryo tendons. The procedure involved precipitation with ammonium sulfate, adsorption on concanavalin A-Sepharose, and five additional column chromatographic steps. The purified enzyme was a neutral, Ca2+-dependent proteinase (5-10 mM) that was inhibited by metal chelators. It had a molecular mass of 500 kDa as determined by gel filtration. The enzyme contained unreduced polypeptides of 61, 120, 135, and 161 kDa that were separated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The 135- and 161-kDa polypeptides were catalytically active after elution from the polyacrylamide gel. Other properties of 500-kDa enzyme are: 1) the Km for type I procollagen is 54 nM at pH 7.5 and 35 degrees C, and the kappa cat is 350 h-1; 2) the activation energy for reaction with type I procollagen is 7,100 cal mol-1; 3) the isoelectric point is 3.6; and 4) the enzyme specifically cleaves the NH2-terminal propeptides of type I and II procollagen, but not of type III procollagen. A minor form of N-proteinase with a 300-kDa mass was also purified and was found to contain a 90-kDa polypeptide as the major active polypeptide. The enzyme appeared to be a degraded form of the 500-kDa N-proteinase. The properties of the 300-kDa enzyme were similar to those observed for the 500-kDa enzyme.  相似文献   

10.
Factor Xa (FXa) is a key protease of the coagulation pathway whose activity is known to be in part modulated by binding to factor Va (FVa) and sodium ions. Previous investigations have established that solvent-exposed, charged residues of the FXa alpha-helix 163-170 (h163-170), Arg(165) and Lys(169), participate in its binding to FVa. In the present study we aimed to investigate the role of the other residues of h163-170 in the catalytic functions of the enzyme. FX derivatives were constructed in which point mutations were made or parts of h163-170 were substituted with the corresponding region of either FVIIa or FIXa. Purified FXa derivatives were compared with wild-type FXa. Kinetic studies in the absence of FVa revealed that, compared with wild-type FXa, key functional parameters (catalytic activity toward prothrombin and tripeptidyl substrates and non-enzymatic interaction of a probe with the S1 site) were diminished by mutations in the NH(2)-terminal portion of h163-170. The defective amidolytic activity of these FXa derivatives appears to result from their impaired interaction with Na(+) because using a higher Na(+) concentration partially restored normal catalytic parameters. Furthermore, kinetic measurements with tripeptidyl substrates or prothrombin indicated that assembly of these FXa derivatives with an excess of FVa in the prothrombinase complex improves their low catalytic efficiency. These data indicate that residues in the NH(2)-terminal portion of the FVa-binding h163-170 are energetically linked to the S1 site and Na(+)-binding site of the protease and that residues Val(163) and Ser(167) play a key role in this interaction.  相似文献   

11.
Processing of pulmonary surfactant protein B by napsin and cathepsin H   总被引:10,自引:0,他引:10  
Surfactant protein B (SP-B) is an essential constituent of pulmonary surfactant. SP-B is synthesized in alveolar type II cells as a preproprotein and processed to the mature peptide by the cleavage of NH2- and COOH-terminal peptides. An aspartyl protease has been suggested to cleave the NH2-terminal propeptide resulting in a 25-kDa intermediate. Napsin, an aspartyl protease expressed in alveolar type II cells, was detected in fetal lung homogenates as early as day 16 of gestation, 1 day before the onset of SP-B expression and processing. Napsin was localized to multivesicular bodies, the site of SP-B proprotein processing in type II cells. Incubation of SP-B proprotein from type II cells with a crude membrane extract from napsin-transfected cells resulted in enhanced levels of a 25-kDa intermediate. Purified napsin cleaved a recombinant SP-B/EGFP fusion protein within the NH2-terminal propeptide between Leu178 and Pro179, 22 amino acids upstream of the NH2 terminus of mature SP-B. Cathepsin H, a cysteine protease also implicated in pro-SP-B processing, cleaved SP-B/EGFP fusion protein 13 amino acids upstream of the NH2 terminus of mature SP-B. Napsin did not cleave the COOH-terminal peptide, whereas cathepsin H cleaved the boundary between mature SP-B and the COOH-terminal peptide and at several other sites within the COOH-terminal peptide. Knockdown of napsin by small interfering RNA resulted in decreased levels of mature SP-B and mature SP-C in type II cells. These results suggest that napsin, cathepsin H, and at least one other enzyme are involved in maturation of the biologically active SP-B peptide.  相似文献   

12.
Martensen PM  Justesen J 《BioTechniques》2001,30(4):782-4, 786, 788 passim
The insect cell line BTI-TN-5B1-4 (High Five) is frequently used to express recombinant proteins in large amounts using the baculovirus expression system. However, extensive proteolytic degradation of recombinant proteins is often encountered. Furthermore, we have observed that recombinant proteins migrate in SDS-PAGE in agreement with poly-ubiquitinated forms of the protein, suggesting a ubiquitin/proteasome degradation pathway. Here, we describe a systematic study unraveling the effect of adding proteasome inhibitors or specific protease inhibitors to the growth medium of High Five insect cells infected with recombinant baculovirus. Furthermore, protease inhibitors were added to the lysis buffer to establish the most efficient way to inhibit proteolytic activity after lysis of baculovirus-infected cells expressing recombinant proteins. We conclude that a combination of adding protease inhibitors to the growth medium and to the lysis buffer minimizes the proteolytic activity in High Five cells. The most efficient protease inhibitors were E-64 in the growth medium together with Leupeptin in the lysis buffer at concentrations higher than with available cocktails of inhibitors. The optimal treatment of High Five cells is different from the optimal treatment of Sf9 cells. For proteins susceptible to ubiquitinylation, a treatment of insect cell cultures with the proteasome inhibitor MG132 (LLL) leads to a considerable reduction of the yield of production of recombinant protein.  相似文献   

13.
The immune epitopes of proliferating cell nuclear antigen (PCNA), also called cyclin, were analyzed by determining the reactivity between PCNA peptide fragments and anti-PCNA antibodies from lupus patients, murine monoclonal antibody (19A2), and rabbit anti-NH2-terminal peptide antibody. Limited digestion of PCNA/cyclin with Staphylococcus aureus V8 protease resulted in several peptide fragments. Five fragments of 30, 20, 15, 14, and 13 kDa were reactive with rabbit anti-NH2-terminal peptide antibody denoting that they contained the NH2-terminal peptide. The 30- and 20-kDa fragments reacted with 19A2 but the others did not. Lupus sera reacted with 17- and 15-kDa peptide fragments allowing their classification into three groups. Two of eight sera (type A) reacted only with the 17-kDa fragment. Two others (type B) reacted with both the 17- and 15-kDa fragments and the remaining four sera (type C) reacted only with the 15-kDa fragment. The sera reacting with the 15-kDa fragment also reacted with the 20-kDa fragment, but the sera reactive only with the 17-kDa fragment did not, indicating that the 17-kDa fragment was not a degradation product of 20-kDa fragments. The 19A2 epitope resided in the region between 15 and 20 kDa from the NH2 terminus, whereas there was at least one distinct epitope on each 15- and 17-kDa peptide, which were recognized by lupus autoantibodies.  相似文献   

14.
Proteolytic processing enzymes are required to convert the enkephalin precursor to active opioid peptides. In this study, a novel 33-kDa thiol protease that cleaves complete precursor in the form of [35S]methionine preproenkephalin was purified from bovine adrenal medullary chromaffin granules. Chromatography on concanavalin A-Sepharose and Sephacryl S-200, chromatofocusing, and chromatography on thiopropyl-Sepharose resulted in an 88,000-fold purification with a recovery of 35% of enzyme activity. The thiol protease is a glycoprotein with a pI of 6.0. It cleaves [35S]methionine preproenkephalin with a pH optimum of 5.5, indicating that it is functional at the intragranular pH of 5.5-6.0. Interestingly, production of trichloroacetic acid-soluble products was optimal at pH 4.0, suggesting that processing of initial precursor and intermediates may require slightly different pH conditions. The protease requires dithiothreitol for activity and is inhibited by the thiol protease inhibitors iodoacetate, p-hydroxymercuribenzoate, mercuric chloride, and cystatin. These properties distinguish it from other thiol proteases (cathepsins B, H, L, N, and S), indicating that a unique thiol protease has been identified. The enzyme converted [35S]cysteine preproenkephalin (possessing [35S]cysteine residues specifically within the precursor's NH2-terminal segment) to 22.1-, 21.6-, 17.7-, 17.3-, and 15.0-kDa intermediates that contain the precursor's NH2-terminal segment; proenkephalin in vivo is converted to similar intermediates. The enzyme cleaves peptide F at Lys-Arg and Lys-Lys dibasic amino acid sites to generate methionine enkephalin and intermediates. The appropriate vesicular localization, pH optimum, proteolytic products, and cleavage site specificity suggest that this thiol protease may be involved in enkephalin precursor processing. Most interestingly, [35S]methionine beta-preprotachykinin, a precursor of substance P, is minimally cleaved, suggesting that the thiol protease may possess some selectivity for the enkephalin precursor.  相似文献   

15.
alpha-Lytic protease is a 19.8-kDa protein secreted from the Gram-negative bacterium Lysobacter enzymogenes. We have cloned and sequenced the gene for this serine protease. The nucleotide sequence contains an open reading frame which codes for the 198-residue mature enzyme and a potential prepro-peptide, also of 198 residues. The COOH-terminal 49 residues of the pro-peptide are significantly homologous to the propeptides of Streptomyces griseus proteases A and B. We suggest that this pro-peptide region facilitates formation of the active enzyme. A region bridging the NH2-terminal pre- and pro-peptides is homologous to a maize inhibitor of serine proteases. We speculate that this region inhibits enzymatic activity of the prepro-enzyme.  相似文献   

16.
DNA topoisomerase I (Topo I) contributes to various important biological functions, and its activity is therefore likely regulated in response to different physiological conditions. Increases in both the synthesis and degradation of Topo I were previously shown to accompany phytohemagglutinin stimulation of proliferation in human peripheral T lymphocytes. The mechanism of this degradation of Topo I has now been investigated with both in vivo and in vitro assays. The activity of a nuclear protease that specifically degrades Topo I was induced in proliferating T lymphocytes. The full-length Topo I protein (100 kDa) was sequentially degraded to 97- and 82-kDa fragments both in vivo and in vitro. The initial site of proteolytic cleavage was mapped to the NH(2)-terminal region of the enzyme. The degradation of Topo I in vitro was inhibited by aprotinin or soybean trypsin inhibitor, suggesting that the enzyme responsible is a trypsin-like serine protease. Furthermore, Topo I degradation by this protease was Mg(2+)-dependent. The Topo I-specific protease activity induced during T lymphocytes proliferation was not detected in Jurkat (human T cell leukemia) cells and various other tested human cancer cell lines, possibly explaining why the abundance of Topo I is increased in tumor cells.  相似文献   

17.
The membrane-bound form of aminopeptidase P (aminoacylprolyl-peptide hydrolase) (EC 3.4.11.9) was purified to apparent homogeneity from bovine lung microsomes. The enzyme was solubilized using phosphatidylinositol-specific phospholipase C (Bacillus thuringiensis), indicating that bovine lung amino-peptidase P is attached to membranes via a glycosylphosphatidylinositol anchor. The enzyme was purified 1900-fold with a yield of 25% by chromatography on decyl-agarose, omega-aminodecyl-agarose, a second decylagarose column, DEAE-Sephacel, and an ultrafiltration step. Native gradient polyacrylamide gel electrophoresis revealed a single stained protein band whose position in the gel corresponded to cleavage of the Arg1-Pro2 bond of bradykinin. The Mr was 360,000 by gel permeation chromatography and 95,000 by reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The substrate specificity of aminopeptidase P was determined using approximately 50 peptides with proline in the second position. The enzyme could hydrolyze lower NH2-terminal homologs of bradykinin, including Arg-Pro-Pro, which was used as the routine substrate in a rapid fluorescence assay performed in the absence of added Mn2+. Some peptides having NH2-terminal amino acids other than arginine were also cleaved. Aminopeptidase P appeared to favor peptides that had 2 proline residues or proline analogs in positions 2 and 3 of the substrate. In general, tripeptides having a single proline residue in position 2 were poor substrates. Aminopeptidase P was inhibited by a series of peptides, 3-8 residues long, having an NH2-terminal Pro-Pro sequence. The enzyme was also inhibited by metal-chelating agents, 2-mercaptoethanol (4 mM), p-chloromercuribenzenesulfonic acid, and NaCl at concentrations greater than or equal to 0.25 M. The purified enzyme had a pH optimum of 6.5-7.0 and was most stable in the basic pH range. A role for membrane-bound aminopeptidase P in the pulmonary inactivation of circulating bradykinin is proposed.  相似文献   

18.
Protein phosphatase 2A (PP2A) contains a 36-kDa catalytic subunit (PP2Ac), a 65-kDa structural subunit (PR65/A), and a regulatory B subunit. The core enzyme consists of the structural and catalytic subunits. The catalytic subunit exists as two closely related isoforms, alpha and beta. Several natural toxins, including okadaic acid (OA) and microcystins, specifically inhibit PP2A. To obtain biologically active recombinant PP2A and to compare the properties of the PP2A catalytic subunit alpha and beta isoforms, we expressed human PP2Acalpha and cbeta in High Five insect cells. The recombinant PP2Acalpha and cbeta possess similar phosphatase activities using p-NPP and phosphopeptide as substrates and are strongly inhibited by OA and microcystin-LR to similar degrees. In addition, PP2Acalpha or cbeta was co-expressed with PR65/A and co-purified as a core dimer, PP2AD (Aalpha/calpha and Aalpha/cbeta) with PR65alpha/Aalpha. The recombinant PP2AD bound to the B subunit in vitro. These results show that the recombinant PP2Acalpha and cbeta are identical in their ability to associate with the A and B subunits, in their phosphatase activities, and in carboxyl-methylation. Furthermore, our results show that High Five insect cells can produce biologically active recombinant PP2A, which should be a valuable tool for detecting natural toxins and investigating the mechanism of PP2A catalysis and other protein interactions.  相似文献   

19.
Streptomyces strain K1-02, which was identified as a strain of Streptomyces albidoflavus, secreted at least six extracellular proteases when it was cultured on feather meal-based medium. The major keratinolytic serine proteinase was purified to homogeneity by a two-step procedure. This enzyme had a molecular weight of 18,000 and was optimally active at pH values ranging from 6 to 9.5 and at temperatures ranging from 40 to 70 degrees C. Its sensitivity to protease inhibitors, its specificity on synthetic substrates, and its remarkably high level of NH2-terminal sequence homology with Streptomyces griseus protease B (SGPB) showed that the new enzyme, designated SAKase, was homologous to SGPB. We tested the activity of SAKase with soluble and fibrous substrates (elastin, keratin, and type I collagen) and found that it was very specific for keratinous substrates compared to SGPB and proteinase K.  相似文献   

20.
Previous studies have indicated that at least part of the selection of proteins for degradation takes place at a binding site on ubiquitin-protein ligase, to which the protein substrate is bound prior to ligation to ubiquitin. It was also shown that proteins with free NH2-terminal alpha-NH2 groups bind better to this site than proteins with blocked NH2 termini (Hershko, A., Heller, H., Eytan, E., and Reiss, Y. (1986) J. Biol. Chem. 261, 11992-11999). In the present study, we used simple derivatives of amino acids, such as methyl esters, hydroxamates, or dipeptides, to examine the question of whether the protein binding site of the ligase is able to distinguish between different NH2-terminal residues of proteins. Based on specific patterns of inhibition of the binding to ligase by these derivatives, three types of protein substrates could be distinguished. Type I substrates are proteins that have a basic NH2-terminal residue (such as ribonuclease and lysozyme); these are specifically inhibited by derivatives of the 3 basic amino acids (His, Arg, and Lys) with respect to degradation, ligation to ubiquitin, and binding to ligase. Type II substrates (such as beta-lactoglobulin or pepsinogen, that have a Leu residue at the NH2 terminus) are not affected by the above compounds, but are specifically inhibited by derivatives of bulky hydrophobic amino acids (Leu, Trp, Phe, and Tyr). In these cases, the amino acid derivatives apparently act as specific inhibitors of the binding of the NH2-terminal residue of proteins, as indicated by the following observations: (a) derivatives in which the alpha-NH2 group is blocked were inactive and (b) in dipeptides, the inhibitory amino acid residue had to be at the NH2-terminal position. An additional class (Type III) of substrates comprises proteins that have neither basic nor bulky hydrophobic NH2-terminal amino acid residues; the binding of these proteins is not inhibited by homologous amino acid derivatives that have NH2-terminal residues similar to that of the protein. It is concluded that Type I and Type II proteins bind to distinct and separate subsites of the ligase, specific for basic or bulky hydrophobic NH2-terminal residues, respectively. On the other hand, Type III proteins apparently predominantly interact with the ligase at regions of the protein molecule other than the NH2-terminal residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号