首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Following removal of the lens through the cornea, early stages of lens regeneration from the dorsal iris of the adult newt, Notophthalmus viridescens, were studied using light and electron microscopic observations on sectioned, plastic-embedded irises. Specimens were fixed in Karnovsky's fixative every 2 days from 0 to 12 and 15 days after lentectomy. Infiltration of the iris epithelium by macrophages and their phagocytosis of melanosomes and small fragments of iris epithelial cells were observed. These macrophages were characterized by coarse nuclear chromatin, numerous mitochondria, free ribosomes, granular endoplasmic reticulum, Golgi complexes, vesicles, lysosomes, and phagosomes containing ingested melanosomes. Lamellipodia of varying length projected from their surface. Most of the cells lying on or close to the posterior surface of the iris could be identified as macrophages by these criteria. During this period, there was enlargement of the intercellular spaces within the iris epithelium. The iris epithelial cells near the margin of the pupil elongated, lost their melanin pigment and some associated cytoplasm, and acquired abundant free polyribosomes to form a lens vesicle of depigmented cells.  相似文献   

4.
5.
Injury to the axons of facial motoneurons stimulates increases in the synthesis of actin, tubulins, and GAP-43, and decreases in the synthesis of neurofilament proteins: mRNA levels change correspondingly. In contrast to this robust response of peripheral neurons to axotomy, injured central nervous system neurons show either an attenuated response that is subsequently aborted (rubrospinal neurons) or overall decreases in cytoskeletal protein mRNA expression (corticospinal and retinal ganglion neurons). There is evidence that these changes in synthesis are regulated by a variety of factors, including loss of endoneurially or target-derived trophic factors, positive signals arising from the site of injury, changes in the intraaxonal turnover of proteins, and substitution of target-derived trophic support by factors produced by glial cells. It is concluded that there is, as yet, no coherent explanation for the upregulation or downregulation of any of the cytoskeletal proteins following axotomy or during regeneration. In considering the relevance of these changes in cytoskeletal protein synthesis to regeneration, it is emphasized that they are unlikely to be involved in the initial outgrowth of the injured axons, both because transit times between cell body and injury site are too long, and because sprouting can occur in isolated axons. Injuryinduced acceleration of the axonal transport of tubulin and actin in the proximal axon is likely to be more important in providing the cytoskeletal protein required for initial axonal outgrowth. Subsequently, the increased synthesis and transport velocity for actin and tubulin increase the delivery of these proteins to support the increased volume of the maturing regenerating axons. Reduction in neurofilament synthesis and changes in neurofilament phosphorylation may permit the increased transport velocity of the other cytoskeletal proteins. There is little direct evidence that alterations in cytoskeletal protein synthesis are necessary for successful regeneration, nor are they sufficient in the absence of a supportive environment. Nevertheless, the correlation that exists between a robust cell body response and successful regeneration suggests that an understanding of the regulation of cytoskeletal protein synthesis following axon injury must be a part of any successful strategy to improve the regenerative capacity of the central nervous system.  相似文献   

6.
The range of lactate dehydrogenase (LDG) isozymes has been studied at the consecutive stages of retina regeneration from pigmented epithelium cells and lens regeneration from iris margin in adult crested newts. It was shown that the spectra of LDG isozymes peculiar to pigment epithelium cells and iris and characterized by the predominance of slowly migrating forms are replaced in the lens and retina regenerates by spectra characterized by the predominance of rapidly migrating isozymes which are peculiar to definitive lens and retina.  相似文献   

7.
RNA synthesis during lens cell differentiation   总被引:1,自引:0,他引:1  
  相似文献   

8.
Removal of the lens from the eye of an adult newt (Notophthalmus viridescens) is followed by regeneration of a new lens from the dorsal iris epithelial cells at the pupillary margin. This process is dependent upon the neural retina for its normal completion in vivo and in vitro. To examine the relationship between the retina and lens regeneration, we have conducted experiments that delimit the time period during which the retinal presence is critical (in vivo) and have investigated the influence of extracts of the retina on the progress of regeneration (in vitro). In vivo, removal of the retina at day 11 seriously retards further progression of regeneration while removal of the retina at day 15 does not retard regeneration significantly. This defines a "critical period" in regeneration of the lens during which the retina is required. Explantation of regenerates 11 or 12 days after lentectomy to organ culture medium enriched with either crude retinal homogenate or extracts prepared from chick or bovine retinas according to Courty et al. ('85, Biochimie, 67:265-269) reveals that the progress of regeneration can be supported in culture by the crude extract. This is the first demonstration of complete iris-lens transformation in culture in the presence of retinal extract. It is possible that the retina acts indirectly by promoting passage of the iris epithelial cells through the critical number of mitoses required before redifferentiation into lens cells can occur (as proposed by Yamada, '77, Monogr. Dev. Biol., 13:126). It is also possible that the retina acts by directly instructing the iris cells to redifferentiate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
11.
The nervous system plays an important role during the process of amphibian limb regeneration. However, the molecules that are involved in such a control of regeneration are largely unknown. We have attempted to map protein synthesis in the brains of intact newts and from newts undergoing limb or tail regeneration. Our results show unique protein synthesis in the brain of newts undergoing limb regeneration. Such an analysis can lead to the identification and characterization of these proteins.  相似文献   

12.
Here we describe a protocol for gene loss of function during regeneration in newts, specifically applied to lens regeneration. Knockdown with the use of morpholinos can be achieved both in vitro and in vivo, depending on the experimental design. These methods achieve desirable levels of gene knockdown, and thus can be compared with methods developed for use in other animals, such as zebrafish. The technology has been applied to study molecular mechanisms during the process of lens regeneration by knocking down genes at specific stages and examining their effects on other genes and lens differentiation. The protocol can take a few days or up to 20 d to complete, depending on the duration of the experiment.  相似文献   

13.
14.
15.
 After tail amputation in urodele amphibians, dramatic changes appear in the spinal cord rostral to the amputation level. Transection induces a proliferation response in cells lining the ependymal canal, giving rise to an ependymal tube in which neurogenesis occurs. Using the thymidine analog bromodeoxyuridine (BrdU) in short- and long-term labeling of cells undergoing DNA synthesis (S phase of the cell cycle), specific cell markers, and cell cultures, we show that neurons derive from the proliferative ependymal layer of the ependymal tube. Received: 30 November 1998 / Accepted: 22 December 1998  相似文献   

16.
17.
18.
The lens was removed from both eyes of adult newts (Notophthalmus viridescens), and the eyes were fixed in Karnovsky's fixative every 2 days 0-20 days after operation. Anterior half-eyes were prepared by standard procedures for scanning electron microscopy of the surface. Before fixation, the posterior iris surface was cleaned of adhering vitreous mechanically with forceps or by treatment with bovine testicular hyaluronidase or with hyaluronidase and collagenase. Some specimens were cryofractured in buffer or ethanol transverse to the mid-dorsal iris, and the fractured surface viewed with scanning electron microscopy (SEM). Cells with various combinations of ridges, blebs, filopodia, and lamellipodia were observed adhering to the posterior surface of the iris by 6 days after lentectomy. These cells, which exhibited the surface characteristics of macrophages, became more numerous in specimens fixed after longer intervals. Invasion of the iris epithelium was observed in a cryofractured specimen. After observations with SEM, selected specimens were embedded in plastic and sectioned for study with transmission electron microscopy (TEM). The cells on the iris surface had the cytological characteristics of macrophages, and other macrophages were located within the iris epithelium. In specimens fixed 16 or more days after lentectomy, a bulging lens vesicle was regenerating from the dorsal pupillary margin of the iris. Macrophages were absent or few on the surface of this developing lens but remained scattered over the adjoining iris. Roles that might be played by these macrophages during the transdifferentiation of iris epithelium into lens are discussed.  相似文献   

19.
The newt is one of the few organisms that is able to undergo lens regeneration as an adult. This review will examine the signaling pathways that are involved in this amazing phenomenon. In addition to outlining the current research involved in elucidating the key signaling molecules in lens regeneration, we will also highlight some of the similarities and differences between lens regeneration and development.  相似文献   

20.
Experiments were designed to compare the effects of recombinant newt fibroblast growth factor-1 (rnFGF-1) and recombinant human glial growth factor (rhGGF) on lens and retina regeneration in the eyes of adult newts. Both eyes were retinectomized and lentectomized. Beginning 3 days after the operation, one eye was given either 0.1 microg of rnFGF-1 or 0.1 microg of rhGGF in 1 microl of phosphate-buffered saline (PBS) per injection, three per week. Contralateral operated eyes served as controls and were treated with PBS alone or were not injected. In eyes that were not injected, injected with PBS alone, or with PBS containing rhGGF, regeneration of both the retina and the lens proceeded normally as described in the literature. In these control eyes, the entire retinal pigmented epithelium (RPE) depigmented/dedifferentiated and a retina rudiment formed from which a new retina regenerated by the end of the experiment at day 41 post-operation. Likewise, only a small area of dorsal iris depigmented/dedifferentiated and formed a lens vesicle from which a lens subsequently regenerated. The vitreous remained relatively free of loose cells.In eyes given rnFGF-1, the RPE depigmented/dedifferentiated and formed what appeared to be a retina rudiment but a new retina did not regenerate. Instead, vesicles were seen associated with the retina rudiment. In eyes given rnFGF-1, both the dorsal iris and ventral iris depigmented/dedifferentiated and lens regeneration occurred but the new lenses had abnormal fiber cells and the lens epithelium was very thin or absent. In addition, ectopic lenses usually regenerated in rnFGF-1-treated eyes. An abundance of loose cells were present in the vitreous of rnFGF-1-treated eyes associated largely with the RPE and the dorsal and ventral irises.The results are consistent with the view that the timely expression of FGFs is involved in the depigmentation/dedifferentiation of the RPE and dorsal iris and is necessary for proper regeneration of the lens and neural retina. Continued presence of FGF results in continued and excessive dedifferentiation, resulting in the lack of retina regeneration and abnormal lens regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号