首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We studied the effects of 1alpha,25-dihydroxyvitamin D3 (1alpha, 25-(OH)2D3) on differentiation, maturation, and functions of dendritic cells (DC) differentiated from human monocytes in vitro in the presence of GM-CSF and IL-4 for 7 days. Recovery and morphology were not affected by 1alpha,25-(OH)2D3 up to 100 nM. DC differentiated in the presence of 10 nM 1alpha,25-(OH)2D3 (D3-DC) showed a marked decrease in the expression of CD1a, while CD14 remained elevated. Mannose receptor and CD32 were significantly increased, and this correlated with an enhancement of endocytic activity. Costimulatory molecules such as CD40 and CD86 were slightly decreased or nonsignificantly affected (CD80 and MHC II). However, after induction of DC maturation with LPS or incubation with CD40 ligand-transfected cells, D3-DC showed marginal increases in MHC I, MHC II, CD80, CD86, CD40, and CD83. The accessory cell function of D3-DC in classical MLR was also inhibited. Moreover, allogeneic T cells stimulated with D3-DC were poor responders in a second MLR to untreated DC from the same or an unrelated donor, thus indicating the onset of a nonspecific hyporesponsivity. In conclusion, our data suggest that 1alpha,25-(OH)2D3 may modulate the immune system, acting at the very first step of the immune response through the inhibition of DC differentiation and maturation into potent APC.  相似文献   

2.
We have established a system for directed differentiation of human embryonic stem (hES) cells into myeloid dendritic cells (DCs). As a first step, we induced hemopoietic differentiation by coculture of hES cells with OP9 stromal cells, and then, expanded myeloid cells with GM-CSF using a feeder-free culture system. Myeloid cells had a CD4+CD11b+CD11c+CD16+CD123(low)HLA-DR- phenotype, expressed myeloperoxidase, and included a population of M-CSFR+ monocyte-lineage committed cells. Further culture of myeloid cells in serum-free medium with GM-CSF and IL-4 generated cells that had typical dendritic morphology; expressed high levels of MHC class I and II molecules, CD1a, CD11c, CD80, CD86, DC-SIGN, and CD40; and were capable of Ag processing, triggering naive T cells in MLR, and presenting Ags to specific T cell clones through the MHC class I pathway. Incubation of DCs with A23187 calcium ionophore for 48 h induced an expression of mature DC markers CD83 and fascin. The combination of GM-CSF with IL-4 provided the best conditions for DC differentiation. DCs obtained with GM-CSF and TNF-alpha coexpressed a high level of CD14, and had low stimulatory capacity in MLR. These data clearly demonstrate that hES cells can be used as a novel and unique source of hemopoietic and DC precursors as well as DCs at different stages of maturation to address essential questions of DC development and biology. In addition, because ES cells can be expanded without limit, they can be seen as a potential scalable source of cells for DC vaccines or DC-mediated induction of immune tolerance.  相似文献   

3.
The interaction between immune complexes (IC) and the receptors for the Fc portion of IgG (FcgammaRs) triggers regulatory and effector functions in the immune system. In this study, we investigated the effects of IC on differentiation, maturation, and functions of human monocyte-derived dendritic cells (DC). When IC were added on day 0, DC generated on day 6 (IC-DC) showed lower levels of CD1a and increased expression of CD14, MHC class II, and the macrophage marker CD68, as compared with normally differentiated DC. The use of specific blocking FcgammaR mAbs indicated that the effect of IC was exerted mainly through their interaction with FcgammaRI and to a lesser extend with FcgammaRII. Immature IC-DC also expressed higher levels of CD83, CD86, and CD40 and the expression of these maturation markers was not further regulated by LPS. The apparent lack of maturation following TLR stimulation was associated with a decreased production of IL-12, normal secretion of IL-10 and CCL22, and increased production of CXCL8 and CCL2. IC-DC displayed low endocytic activity and a reduced ability to induce allogeneic T cell proliferation both at basal and LPS-stimulated conditions. Altogether, these data reveal that IC strongly affect DC differentiation and maturation. Skewing of DC function from Ag presentation to a proinflammatory phenotype by IC resembles the state of activation observed in DC obtained from patients with chronic inflammatory autoimmune disorders, such as systemic lupus erythematosus disease and arthritis. Therefore, the altered maturation of DC induced by IC may be involved in the pathogenesis of autoimmune diseases.  相似文献   

4.
Dendritic cells (DC) are cells of the hematopoietic system specialized in capturing antigens and initiating T cell-mediated immune responses. We show here that human DC generated from adherent peripheral blood mononuclear cells (PBMC) after in vitro stimulation with granulocyte macrophage colony stimulating factor (GM-CSF) and interleukin-4 (IL-4) express Fas antigen (APO-1, CD95) and can undergo apoptosis upon triggering of Fas by monoclonal antibodies. Immature monocytes-derived dendritic cells (MDDC) upregulate CD86 and HLA-DR expression and develop dendrites and veiled processes. Flow cytometry analysis revealed CD95 expression in approx. 40% of these MDDC and incubation with anti-CD95 mAb (0.5μg/ml) induced apoptosis when compared to untreated controls. The extent of apoptosis induced by the agonist anti-Fas antibody strongly related to the percentage of cells expressing CD 95. Upon tumor necrosis factor α (TNF-α) additional stimulation, MDDC assumed a characteristic mature dendritic cells morphology showing prolonged veils, CD83 expression, and high levels of HLA-DR. These cells have downregulated their Fas receptors (to approx. 20%) and undergo apoptosis to a lesser extent when treated with anti-CD 95, as demonstrated by the hardly noticeable effect of this antibody on the viability of cultured cells as compared to controls. Thus, upon TNF-α induced maturation, MDDC became resistant to Fas-induced apoptosis. The apoptotic episodes surrounding the earlier stage of DC differentiation appeared to be mediated by Fas. In contrast, a Fas independent pathway is probably responsible for the apoptotic events associated with terminally differentiated DC.  相似文献   

5.
Alcohol consumption inhibits accessory cell function and Ag-specific T cell responses. Myeloid dendritic cells (DCs) coordinate innate immune responses and T cell activation. In this report, we found that in vivo moderate alcohol intake (0.8 g/kg of body weight) in normal volunteers inhibited DC allostimulatory capacity. Furthermore, in vitro alcohol treatment during DC differentiation significantly reduced allostimulatory activity in a MLR using naive CD4(+) T cells, and inhibited tetanus toxoid Ag presentation by DCs. Alcohol-treated DCs showed reduced IL-12, increased IL-10 production, and a decrease in expression of the costimulatory molecules CD80 and CD86. Addition of exogenous IL-12 and IL-2, but not neutralization of IL-10, during MLR ameliorated the reduced allostimulatory capacity of alcohol-treated DCs. Naive CD4(+) T cells primed with alcohol-treated DCs showed decreased IFN-gamma production that was restored by exogenous IL-12, indicating inhibition of Th1 responses. Furthermore, CD4(+) T cells primed with alcohol-treated DCs were hyporesponsive to subsequent stimulation with the same donor-derived normal DCs, suggesting the ability of alcohol-treated DCs to induce T cell anergy. LPS-induced maturation of alcohol-treated immature DCs partially restored the reduced allostimulatory activity, whereas alcohol given only during DC maturation failed to inhibit DC functions, suggesting that alcohol primarily impairs DC differentiation rather than maturation. NFkappaB activation, a marker of DC maturation was not affected by alcohol. Taken together, alcohol both in vitro and in vivo can impair generation of Th1 immune responses via inhibition of DC differentiation and accessory cell function through mechanisms that involve decreased IL-12 induction.  相似文献   

6.
For vaccination strategies and adoptive immunotherapy purposes, immature dendritic cells (DC) can be generated from adherent monocytes using GM-CSF and IL-4. Presently, the only clinically applicable method to induce stable maturation of DC is the use of supernatants of activated monocytes (monocyte-conditioned medium (MCM)). MCM contains an undefined mixture of cytokines and is difficult to standardize. Here we report that stable maturation of DC can be simply induced by the addition of polyriboinosinic polyribocytidylic acid (poly(I:C)), a synthetic dsRNA clinically applied as an immunomodulator. Poly(I:C)-treated DC show a mature phenotype with high expression levels of HLA-DR, CD86, and the DC maturation marker CD83. This mature phenotype is retained for 48 h after cytokine withdrawal. In contrast to untreated DC, poly(I:C)-treated DC down-regulate pinocytosis, produce high levels of IL-12 and low levels of IL-10, induce strong T cell proliferation in a primary allo MLR, and effectively present peptide Ags to HLA class I-restricted CTL. In conclusion, we present a simple methodology for the preparation of clinically applicable mature DC.  相似文献   

7.
To trigger an effective T cell-mediated immune response in the skin, cutaneous dendritic cells (DC) migrate into locally draining lymph nodes, where they present Ag to naive T cells. Little is known about the interaction of DC with the various cellular microenvironments they encounter during their migration from the skin to lymphoid tissues. In this study, we show that human DC generated from peripheral blood monocytes specifically interact with human dermal fibroblasts via the interaction of beta(2) integrins on DC with Thy-1 (CD90) and ICAM-1 on fibroblasts. This induced the phenotypic maturation of DC reflected by expression of CD83, CD86, CD80, and HLA-DR in a TNF-alpha- and ICAM-1-dependent manner. Moreover, fibroblast-matured DC potently induced T cell activation reflected by CD25 expression and enhanced T cell proliferation. Together these data demonstrate that dermal fibroblasts that DC can encounter during their trafficking from skin to lymph node can act as potent regulators of DC differentiation and function, and thus may actively participate in the regulation and outcome of DC-driven cutaneous immune responses.  相似文献   

8.
The in vivo mechanisms of action of most vaccine adjuvants are poorly understood. In this study, we present data in mice that reveal a series of critical interactions between the cholera toxin (CT) adjuvant and the dendritic cells (DC) of the splenic marginal zone (MZ) that lead to effective priming of an immune response. For the first time, we have followed adjuvant targeting of MZ DC in vivo. We used CT-conjugated OVA and found that the Ag selectively accumulated in MZ DC following i.v. injections. The uptake of Ag into DC was GM1 ganglioside receptor dependent and mediated by the B subunit of CT (CTB). The targeted MZ DC were quite unique in their phenotype: CD11c(+), CD8alpha(-), CD11b(-), B220(-), and expressing intermediate or low levels of MHC class II and DEC205. Whereas CTB only delivered the Ag to MZ DC, the ADP-ribosyltransferase activity of CT was required for the maturation and migration of DC to the T cell zone, where these cells distinctly up-regulated CD86, but not CD80. This interaction appeared to instruct Ag-specific CD4(+) T cells to move into the B cell follicle and strongly support germinal center formations. These events may explain why CT-conjugated Ag is substantially more immunogenic than Ag admixed with soluble CT and why CTB-conjugated Ag can tolerize immune responses when given orally or at other mucosal sites.  相似文献   

9.
Sex biases in autoimmunity and infection suggest that steroid sex hormones directly modulate immune cells. We show in this study that 17-beta-estradiol (E2) promotes the differentiation of functional dendritic cells (DC) from murine bone marrow precursor cells. Remarkably, ex vivo DC differentiation was inhibited in steroid hormone-deficient medium, and was restored by addition of physiological amounts of E2, but not dihydrotestosterone. DC differentiation was inhibited by the estrogen receptor (ER) antagonists ICI 182,780 and tamoxifen, and from ERalpha(-/-) bone marrow cells, indicating that E2 acted via ERs. E2 addition was most effective in promoting DC differentiation immediately ex vivo, but did not increase DC proliferation. E2 treatment specifically promoted differentiation of a CD11c(+) CD11b(int) DC population that displayed high levels of cell surface MHC class II and CD86, suggesting that E2 could augment numbers of potent APC. DC that differentiated in E2-supplemented medium were fully functional in their capability to mediate presentation of self and foreign Ags and stimulate the proliferation of naive CD4(+) T cells. The requirement for estrogen during DC differentiation suggests a mechanism by which E2 levels in peripheral tissues might modulate both the number and functional capabilities of DC in vivo, thereby influencing immune responses.  相似文献   

10.
Recombinant Streptococcus gordonii expressing on the surface the C-fragment of tetanus toxin was tested as an Ag delivery system for human monocyte-derived dendritic cells (DCs). DCs incubated with recombinant S. gordonii were much more efficient than DCs pulsed with soluble C-fragment of tetanus toxin at stimulating specific CD4+ T cells as determined by cell proliferation and IFN-gamma release. Compared with DCs treated with soluble Ag, DCs fed with recombinant bacteria required 102- to 103-fold less Ag and were at least 102 times more effective on a per-cell basis for activating specific T cells. S. gordonii was internalized in DCs by conventional phagocytosis, and cytochalasin D inhibited presentation of bacteria-associated Ag, but not of soluble Ag, suggesting that phagocytosis was required for proper delivery of recombinant Ag. Bacteria were also very potent inducers of DC maturation, although they enhanced the capacity of DCs to activate specific CD4+ T cells at concentrations that did not stimulate DC maturation. In particular, S. gordonii dose-dependently up-regulated expression of membrane molecules (MHC I and II, CD80, CD86, CD54, CD40, CD83) and reduced both phagocytic and endocytic activities. Furthermore, bacteria promoted in a dose-dependent manner DC release of cytokines (IL-6, TNF-alpha, IL-1beta, IL-12, TGF-beta, and IL-10) and of the chemokines IL-8, RANTES, IFN-gamma-inducible protein-10, and monokine induced by IFN-gamma. Thus, recombinant Gram-positive bacteria appear a powerful tool for vaccine design due to their extremely high capacity to deliver Ags into DCs, as well as induce DC maturation and secretion of T cell chemoattractans.  相似文献   

11.
Tumor-derived immunosuppressive factors contribute to the evasion of malignant cells from the immune response, partially by hampering dendritic cell (DC) differentiation. Here, we analyze whether soluble mediators released by the most frequent histological types of non-small cell lung carcinoma, squamous cell carcinoma (SCC), and adenocarcinoma (AD) cells, affect the development and functionality of DC. Monocytes from healthy donors were differentiated in vitro into DC with granulocyte–macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-4, in the absence or presence of soluble factors (SF) from SCC or AD cell lines. Monocytes were differentiated in parallel into macrophages (MΦ s) with macrophage colony-stimulating factor (M-CSF). SF-treated DC were phenotypically and functionally more similar to MΦ s than to untreated DC [control DC (Ctrl-DC)]. Both tumors increased myelomonocytic markers (CD14, CD16, CD32, and CD163) and impaired CD1a expression on DC. SF-treated DC increased their endocytic capacity, and released higher levels of IL-6, IL-10, and lower levels of IL-12, compared to Ctrl-DC. SF-treated DC were poor stimulators in mixed lymphocyte reactions, and naïve CD4+ T lymphocytes stimulated by SF-treated DC secreted lower levels of interferon (IFN)-γ and higher amounts of IL-10 than controls. In contrast to AD, the effects caused by SCC were mostly abolished by IL-6 neutralization during monocyte differentiation. However, tumor-derived prostanoid blockade recovered the IFN-γ levels secreted by lymphocytes stimulated with SF-treated DC, whereas prostanoid/IL-6 or prostanoid/IL-10 blockade decreased IL-10 production only by SCC-DC-stimulated lymphocytes. Thus, we provide evidence that lung SCC and AD cause comparable deficiencies on DC in vitro, skewing monocyte differentiation from DC to MΦ -like cells, but most of these changes occurred via different mediators.  相似文献   

12.
Whether dendritic cells (DC) play a passive or active role in Th2 response induction is poorly understood. In this study, we show that CD8- DC pulsed with Th2-polarizing Ag (soluble egg Ag (SEA)) from Schistosoma mansoni potently stimulate Th2 responses in vivo and in vitro while failing to undergo a conventional maturation process. Thus, in contrast to DC pulsed with the Th1 response inducing Ag Propionebacterium acnes, SEA-exposed DC exhibit a phenotype that is most similar to that of immature DC, failing to up-regulate expression of CD40, CD54, CD80, CD86, or OX40L; producing no detectable IL-4, IL-10, or IL-12; and displaying only a minor increase in MHC class II expression. Importantly, in vitro derived DC exposed to SEA were phenotypically similar to CD8- DC isolated from active S. mansoni infection. By discriminating between different types of pathogen and responding appropriately, CD8- DC play a major role in the decision process to mount either a Th1 or Th2 response.  相似文献   

13.
Macrophages and dendritic cells are involved in the immune response to Mycobacterium tuberculosis (Mtb). Such a response, although extensively studied using animal models and cells from human blood, has not been characterized in cells from pulmonary hilar lymph nodes (PHLN). We characterized populations of myeloid APC from PHLN and determined their expression of CCR2, CCR5, CCR7, CD40, CD54, CD80, and CD86 as well as the cytokine/chemokine microenvironment before and after purified protein derivative (PPD) and mannosilated lipoarabinomannan (ManLAM) stimulation. Results show that there are at least three APC populations in PHLN, defined as CD14highHLA-DRlow/-, CD14dimHLA-DRdim, and CD14-HLA-DRhigh/dendritic cells (DC), with the largest number represented by CD14dimHLA-DRdim cells (where dim indicates intermediate levels). CD14-HLA-DRhigh/DC expressed higher levels of costimulatory molecules and lower levels of CCR2 and CCR5, but all cell populations showed similar CCR7 levels. PPD and ManLAM specifically down-regulated CCR2 expression but not that of CCR5 and CCR7, and such down-regulation was observed on all APC populations. Mtb Ag did not affect the expression of costimulatory molecules. PPD but not ManLAM specifically induced MCP-1/CCL2 production, which was likely associated with the induction of IFN-gamma because this cytokine was highly induced by PPD. We characterized, for the first time, different APC from human PHLN and show that Mtb Ag exert fine and specific regulation of molecules closely associated with the immune response to Mtb infection. Because knowledge of this response in secondary lymphoid tissues is still poorly understood in humans, such studies are necessary and important for a better understanding of lymphoid cell microenvironment and migrating capacities and their role in the immunopathogenesis of tuberculosis.  相似文献   

14.
The ability of dendritic cells (DC) to initiate immune responses in naive T cells is dependent upon a maturation process that allows the cells to develop their potent Ag-presenting capacity. Although immature DC can be derived in vitro by treatment of peripheral blood monocytes with GM-CSF and IL-4, additional signals such as those provided by TNF-alpha, CD40 ligand, or LPS are required for complete maturation and maximum APC function. Because we recently found that microbial lipoproteins can activate monocytes and DC through Toll-like receptor (TLR) 2, we also investigated whether lipoproteins can drive DC maturation. Immature DC were cultured with or without lipoproteins and were monitored for expression of cell surface markers indicative of maturation. Stimulation with lipopeptides increased expression of CD83, MHC class II, CD80, CD86, CD54, and CD58, and decreased CD32 expression and endocytic activity; these lipopeptide-matured DC also displayed enhanced T cell stimulatory capacity in MLR, as measured by T cell proliferation and IFN-gamma secretion. The lipid moiety of the lipopeptide was found to be essential for induction of maturation. Preincubation of maturing DC with an anti-TLR2 blocking Ab before addition of lipopeptide blocked the phenotypic and functional changes associated with DC maturation. These results demonstrate that lipopeptides can stimulate DC maturation via TLR2, providing a mechanism by which products of bacteria can participate in the initiation of an immune response.  相似文献   

15.
It has previously been reported that cholera toxin (CT) is a potent mucosal adjuvant that enhances Th2 or mixed Th1/Th2 type responses to coadministered foreign Ag. Here we demonstrate that CT also promotes the generation of regulatory T (Tr) cells against bystander Ag. Parenteral immunization of mice with Ag in the presence of CT induced T cells that secreted high levels of IL-4 and IL-10 and lower levels of IL-5 and IFN-gamma. Ag-specific CD4(+) T cell lines and clones generated from these mice had cytokine profiles characteristic of Th2 or type 1 Tr cells, and these T cells suppressed IFN-gamma production by Th1 cells. Furthermore, adoptive transfer of bone marrow-derived dendritic cells (DC) incubated with Ag and CT induced T cells that secreted IL-4 and IL-10 and low concentrations of IL-5. It has previously been shown that IL-10 promotes the differentiation or expansion of type 1 Tr cells. Here we found that CT synergized with low doses of LPS to induce IL-10 production by immature DC. CT also enhanced the expression of CD80, CD86, and OX40 (CD134) on DC and induced the secretion of the chemokine, macrophage inflammatory protein-2 (MIP-2), but inhibited LPS-driven induction of CD40 and ICAM-I expression and production of the inflammatory cytokines/chemokines IL-12, TNF-alpha, MIP-1alpha, MIP-1beta, and monocyte chemoattractant protein-1. Our findings suggest that CT induces maturation of DC, but, by inducing IL-10, inhibiting IL-12, and selectively affecting surface marker expression, suppresses the generation of Th1 cells and promotes the induction of T cells with regulatory activity.  相似文献   

16.
Polycyclic aromatic hydrocarbons (PAHs) such as benzo(a)pyrene (BP) are environmental carcinogens exhibiting potent immunosuppressive properties. To determine the cellular bases of this immunotoxicity, we have studied the effects of PAHs on differentiation, maturation, and function of monocyte-derived dendritic cells (DC). Exposure to BP during monocyte differentiation into DC upon the action of GM-CSF and IL-4 markedly inhibited the up-regulation of markers found in DC such as CD1a, CD80, and CD40, without altering cell viability. Besides BP, PAHs such as dimethylbenz(a)anthracene and benzanthracene also strongly altered CD1a levels. Moreover, DC generated in the presence of BP displayed decreased endocytic activity. Features of LPS-mediated maturation of DC, such as CD83 up-regulation and IL-12 secretion, were also impaired in response to BP treatment. BP-exposed DC poorly stimulated T cell proliferation in mixed leukocyte reactions compared with their untreated counterparts. In contrast to BP, the halogenated arylhydrocarbon 2,3,7,8-tetrachlorodibenzo-p-dioxin, which shares some features with PAHs, including interaction with the arylhydrocarbon receptor, failed to phenotypically alter differentiation of monocytes into DC, suggesting that binding to the arylhydrocarbon receptor cannot mimic PAH effects on DC. Overall, these data demonstrate that exposure to PAHs inhibits in vitro functional differentiation and maturation of blood monocyte-derived DC. Such an effect may contribute to the immunotoxicity of these environmental contaminants due to the major role that DC play as potent APC in the development of the immune response.  相似文献   

17.
Transendothelial trafficking model mimics in vivo differentiation of monocytes into dendritic cells (DC). The serum from patients with systemic lupus erythematosus promotes the differentiation of monocytes into mature DC. We have shown that selective inhibition of NF-κB by adenoviral gene transfer of a novel mutated IκBα (AdIκBαM) in DC contributes to T cell tolerance. Here we demonstrated for the first time that asthmatic serum facilitated human monocyte-derived DC (MDDC) maturation associated with increased NF-κB activation in this model. Furthermore, selective blockade of NF-κB by AdIκBαM in MDDC led to increased apoptosis, and decreased levels of CD80, CD83, CD86, and IL-12 p70 but not IL-10 in asthmatic serum-stimulated MDDC, accompanied by reduced proliferation of T cells. These results suggest that AdIκBαM-transferred MDDC are at a more immature stage which is beneficial to augment the immune tolerance in asthma.  相似文献   

18.
TGF-beta 1 is critical for differentiation of epithelial-associated dendritic Langerhans cells (LC). In accordance with the characteristics of in vivo LC, we show that LC obtained from human monocytes in vitro in the presence of TGF-beta 1 1) express almost exclusively intracellular class II Ags, low CD80, and no CD83 and CD86 Ags and 2) down-regulate TNF-RI (p55) and do not produce IL-10 after stimulation, in contrast to dermal dendritic cells and monocyte-derived dendritic cells. Surprisingly, while LC exhibit E-cadherin down-regulation upon exposure to TNF-alpha and IL-1, TGF-beta 1 prevents the final LC maturation in response to TNF-alpha, IL-1, and LPS with respect to Class II CD80, CD86, and CD83 Ag expression, loss of FITC-dextran uptake, production of IL-12, and Ag presentation. In sharp contrast, CD40 ligand cognate signal induces full maturation of LC and is not inhibited by TGF-beta 1. The presence of emigrated immature LCs in human reactive skin-draining lymph nodes provides in vivo evidence that LC migration and final maturation may be differentially regulated. Therefore, due to the effects of TGF-beta 1, inflammatory stimuli may not be sufficient to induce full maturation of LC, thus avoiding potentially harmful immune responses. We conclude that TGF-beta 1 appears to be responsible for both the acquisition of LC phenotype, cytokine production pattern, and prevention of noncognate maturation.  相似文献   

19.
There is evidence for immune system involvement in atherogenesis. In the present study the effect of platelets on dendritic cells (DC), an important immunologic regulator, was examined in vitro. Platelet-rich plasma, after exposure to shear stress, was added to human monocyte-derived immature DC, which were then examined for surface Ag expression, allogeneic T lymphocyte stimulatory activity, and cytokine production. After exposure, the number of anti-CD40 ligand (anti-CD40L) and anti-P-selectin IgG molecules bound per platelet was increased. These activated platelets induced DC maturation, as revealed by significant up-regulation of CD83, CD80, and CD86 Ags. The addition of platelets in the presence of IFN-gamma plus LPS significantly enhanced IL-10 production from immature DC. After platelet addition, mature DC provoked a significant proliferation of allogeneic naive T lymphocytes. These activated T cells showed lower IFN-gamma production than those stimulated by LPS- and IFN-gamma-treated DC. CD40L on the platelet surface was not involved in maturation of DC, as mAb to CD40L failed to block maturation. The effect of platelets was observed even if platelets and DC were separated using large pore-sized membranes or when platelets were depleted from plasma by centrifugation. Furthermore, it was abrogated after the depletion of protein fraction. Thus, soluble protein factors excreted from activated platelets contribute to IL-10-producing DC maturation.  相似文献   

20.
Acute and chronic Plasmodium falciparum malaria are accompanied by severe immunodepression possibly related to subversion of dendritic cells (DC) functionality. Phagocytosed hemozoin (malarial pigment) was shown to inhibit monocyte functions related to immunity. Hemozoin-loaded monocytes, frequently found in circulation and adherent to endothelia in malaria, may interfere with DC development and play a role in immunodepression. Hemozoin-loaded and unloaded human monocytes were differentiated in vitro to immature DC (iDC) by treatment with GM-CSF and IL-4, and to mature DC (mDC) by LPS challenge. In a second setting, hemozoin was fed to iDC further cultured to give mDC. In both settings, cells ingested large amounts of hemozoin undegraded during DC maturation. Hemozoin-fed monocytes did not apoptose but their differentiation and maturation to DC was severely impaired as shown by blunted expression of MHC class II and costimulatory molecules CD83, CD80, CD54, CD40, CD1a, and lower levels of CD83-specific mRNA in hemozoin-loaded iDC and mDC compared with unfed or latex-loaded DC. Further studies indicated activation of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) in hemozoin-loaded iDC and mDC, associated with increased expression of PPAR-gamma mRNA, without apparent involvement of NF-kappaB. Moreover, expression of PPAR-gamma was induced and up-regulation of CD83 was inhibited by supplementing iDC and mDC with plausible concentrations of 15(S)-hydroxyeicosatetraenoic acid, a PPAR-gamma ligand abundantly produced by hemozoin via heme-catalyzed lipoperoxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号