首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crop planting dates: an analysis of global patterns   总被引:3,自引:0,他引:3  
Aim To assemble a data set of global crop planting and harvesting dates for 19 major crops, explore spatial relationships between planting date and climate for two of them, and compare our analysis with a review of the literature on factors that drive decisions on planting dates. Location Global. Methods We digitized and georeferenced existing data on crop planting and harvesting dates from six sources. We then examined relationships between planting dates and temperature, precipitation and potential evapotranspiration using 30‐year average climatologies from the Climatic Research Unit, University of East Anglia (CRU CL 2.0). Results We present global planting date patterns for maize, spring wheat and winter wheat (our full, publicly available data set contains planting and harvesting dates for 19 major crops). Maize planting in the northern mid‐latitudes generally occurs in April and May. Daily average air temperatures are usually c. 12–17 °C at the time of maize planting in these regions, although soil moisture often determines planting date more directly than does temperature. Maize planting dates vary more widely in tropical regions. Spring wheat is usually planted at cooler temperatures than maize, between c. 8 and 14 °C in temperate regions. Winter wheat is generally planted in September and October in the northern mid‐latitudes. Main conclusions In temperate regions, spatial patterns of maize and spring wheat planting dates can be predicted reasonably well by assuming a fixed temperature at planting. However, planting dates in lower latitudes and planting dates of winter wheat are more difficult to predict from climate alone. In part this is because planting dates may be chosen to ensure a favourable climate during a critical growth stage, such as flowering, rather than to ensure an optimal climate early in the crop's growth. The lack of predictability is also due to the pervasive influence of technological and socio‐economic factors on planting dates.  相似文献   

2.
The effects of planting date, rye (Secale cereale cv. Wren Abruzzi) and wheat (Triticura aestivum cv. Coker 797), crop destruction, fallow, and soil temperature on managing Meloidogyne incognita race 1 were determined in a 2-year study. More M. incognita juveniles (J2) and egg-producing adults were found in roots of rye planted 1 October than in roots of rye planted 1 November and wheat planted 1 November and 1 December. Numbers of M. incognita adults with and without egg masses were near or below detectable levels in roots of rye planted 1 November and wheat planted 1 November and 1 December. Meloidogyne incognita survived the mild winters in southern Georgia as J2 and eggs. The destruction of rye and wheat as a trap crop 1 March suppressed numbers of J2 in the soil temporarily but did not provide long-term benefits for susceptible crops that followed. In warmer areas where rye and wheat are grown in winter, reproduction of M. incognita may be avoided by delaying planting dates until soil temperature declines below the nematode penetration threshold (18 C), but no long-term benefits should be expected. The temperature threshold may be an important consideration in managing M. incognita population densities in areas having lower winter soil temperatures than southern Georgia.  相似文献   

3.
Climatic anomalies can pose severe challenges for farmers and resource managers. This is particularly significant with respect to gradually developing anomalies such as droughts. The impact of the 1995-1996 drought on the Oklahoma wheat crop, and the possibility that predictive information might have reduced some of the losses, is examined through a combined modeling approach using climatological data and a crop growth model that takes into account an extensive range of soil, climatic, and plant variables. The results show potential outcomes and also illustrate the point at which all possible climatic outcomes were predicting a significantly low wheat yield. Based on anecdotal evidence of the 1995-1996 drought, which suggested that farmers who planted at different times experienced different yields, the model was run assuming a variety of different planting dates. Results indicate that there is indeed a noticeable difference in the modeled wheat yields given different planting dates. The information regarding effectiveness of planting date can be used in conjunction with current long-range forecasts to develop improved predictions for the current growing season. This approach produces information regarding the likelihood of extreme precipitation events and the impact on crop yield, which can provide a powerful tool to farmers and others during periods of drought or other climatic extremes.  相似文献   

4.
Nursery researchers tend to study seedling quality instead of other sylvicultural practices such as soil preparation and planting date. The aim of this study was to determine the effects and interactions of site preparation and stock quality on the survival and growth of 1-year-old Quercus ilex L. seedlings planted on different dates. Based on the hypothesis that soil preparation affects out-planting performance more than stock quality does in Mediterranean areas, two different site preparations (subsoiling and manual holing) and three planting dates were studied. Two years after planting, high-quality seedlings planted on an early date over a subsoiling preparation showed the best survival rates (61%), followed by the same quality plant and soil preparation treatments on a mid-season planting date (40%). After two growing seasons, planting date and site preparation affected height growth rate positively, whereas relative diameter growth rate of surviving seedlings was affected by planting date only. A correct selection of the planting date and soil treatment plays an important role in the expression of seedling quality in terms of survival and growth.  相似文献   

5.
To estimate potential impact of climate change on wheat fusarium ear blight (FEB), simulated weather for the A1B climate change scenario was input into a model for estimating FEB in central China. In this article, a logistic weather‐based regression model for estimating incidence of wheat FEB in central China was developed, using up to 10 years (2001–2010) of disease, anthesis date and weather data available for 10 locations in Anhui and Hubei provinces. In the model, the weather variables were defined with respect to the anthesis date for each location in each year. The model suggested that incidence of FEB is related to number of days of rainfall in a 30‐day period after anthesis and that high temperatures before anthesis increase the incidence of disease. Validation was done to test whether this relationship was satisfied for another five locations in Anhui province with FEB data for 4–5 years but no nearby weather data, using simulated weather data obtained employing the regional climate modelling system PRECIS. How climate change may affect wheat anthesis date and FEB in central China was investigated for period 2020–2050 using wheat growth model Sirius and climate data simulated using PRECIS. The projection suggested that wheat anthesis dates will generally be earlier and FEB incidence will increase substantially for most locations.  相似文献   

6.
Planting dates of transgenic Bacillus thuringiensis Berliner (Bt) corn were adjusted to determine the utility in managing European corn borer, Ostrinia nubilalis (Hübner). Transgenic Bt (events 176 and Bt11) corn and non-Bt corn were planted at three different times to use the early- and late- planted corn as a potential trap crop for ovipositing European corn borer moths. Grain moisture and yields were recorded to determine the economic benefits of Bt corn planted on the different dates, based on European corn borer populations and corn damage data collected before harvest. Data were recorded from three locations in southwestern, central, and northeastern Iowa for three summers (1996-1998). Economic benefits are discussed in relation to EILs and yield results. Adjusting the planting dates of Bt and non-Bt corn provided variable economic differences among planting dates in northern Iowa; however, greater economic benefits were realized when Bt corn was planted late during the planting sequence in central and southwestern Iowa. These results suggest that planting corn should be conducted in a timely manner and, if delayed or required to plant late, planting Bt corn would likely provide greater economic benefits. Although yield and economic variability were high, using Bt corn in combination with planting date adjustments may be a viable option for managing European corn borer.  相似文献   

7.
During the 1991 and 1992 soybean growing seasons, field plots were established in South Carolina to study the effect of planting date on at-planting nematode densities and subsequent yield losses caused by Hoplolaimus columbus. The susceptible and intolerant soybean cv. Braxton was planted on five dates from to May to 28 June in 1991 and from 12 May to 28 June in 1992. Nematodes were recovered from soil samples collected before nematicide treatment with 1,3-D (Pi), at 6 weeks after planting (Pm), and at harvest (Pf). Initial nematode population densities did not differ among the five dates of planting in either year. The increase in numbers of nematodes from planting to 6 weeks after planting (Pm/Pi) and from planting to harvest (Pf/Pi) were not different among the five planting dates in either year. Root samples also were collected at 6 weeks after planting and at harvest, but planting date did not affect the number of nematodes extracted from roots on any sample date in either year. Altering planting dates between early May and late June was not effective in preventing yield suppression due to H. columbus.  相似文献   

8.
The impacts of planting date and nitrogen fertilization on cotton (Gossypium hirsutum L.) photosynthesis and soluble carbohydrate contents in relation to silverleaf whitefly, Bemisia tabaci (Gennadius) biotype “B”, populations were examined in field experiments. Cotton planted in late April and early June was treated with 0, 112, 168 and 224 kg/N hectare in soil using urea fertilizer. The mean photosynthetic rate of April-planted cotton was 4%-20% higher than that of June-planted cotton early in the season, but 10%- 18% lower than that of June-planted cotton late in the season. The photosynthetic rates for both planting dates were positively correlated with levels of added nitrogen. While levels of glucose for both planting dates were positively correlated with nitrogen levels, fructose and sucrose levels were not. The mean levels of fructose were up to 40% lower, while that of sucrose were up to 59% higher, in April-planted cotton than in June-planted cotton. Levels of photosynthetic rate or stomatal conductance were not correlated with adult whitefly densities for either planting date. Levels of glucose and fructose were positively correlated with whitefly densities only for June-planted cotton late in the season.  相似文献   

9.
The effects of planting dates 2-3-wk apart on boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), field-level populations, and feeding and oviposition damage to cotton, Gossypium hirsutum L., squares and bolls, were studied during 2002 and 2003 in the Lower Rio Grande Valley of Texas. Squares were 44-56% more abundant in some later planted treatments than in the earlier planted treatments, but mean cumulative numbers of oviposition- and feeding-damaged squares were 2.7 - 4.8-fold greater in some later planted treatments than in earlier treatments. Increased square production in later planted cotton was offset by boll weevil infestations that occurred when squares are most vulnerable and contribute most toward the pest's reproduction. Early planting avoided boll weevil population buildups in the field when large squares were abundant. Lint yields in 2002 did not differ significantly between the planting date treatments, but in 2003, mean yield in the middle treatment was 23% greater than in the early and late-planted treatments. Insecticide sprays in the earliest planted treatment of each year, based on the 10% damaged squares threshold, were >33% and >43% fewer than in the corresponding middle and latest planting treatments, respectively. Delayed planting, relative to the onset of favorable cotton-growing weather, at the field level, even when not applied uniformly on an areawide scale, is more cost-effective than planting too early or too late.  相似文献   

10.
新疆伊犁和塔城冬、春麦田的麦双尾蚜Diuraphis noxia (Mordvilko) 有虫株率和百株蚜量,与小麦播种时间密切相关。在小麦正常播种期内,冬小麦晚播可以显著减少麦双尾蚜数量,每晚播种10天,第二年麦双尾蚜有虫株率可以下降40%~70%;春小麦每晚播种10天,麦双尾蚜有虫株率增加30%~88%。  相似文献   

11.
To assess the effects of cutting phenology on early growth performance of three willow clones grown under different weed treatments and planting dates, freshly harvested (non-dormant) and cold-stored (dormant) cuttings from willow clone Tora, Jorr, and Olof were planted in bucket experiment outdoors in central Sweden on five planting dates (May–June 2013) with or without a model weed (spring barley). Non-dormant cuttings sprouted faster than dormant cuttings when planted early in the season. For cuttings planted later in the season, bud sprouting was affected only by willow clone. Aboveground biomass production was affected by cutting phenology, planting date, clone, and weed treatment. When planted on May 3 and May 10, biomass produced from non-dormant and dormant cuttings did not differ, while willows grown from dormant cuttings produced 59% more aboveground biomass than willows grown from non-dormant cuttings when planted on May 24–June 16. Tora produced on average 12% more biomass than Jorr and Olof, and weed competition reduced aboveground biomass production on average with 36%. The ability of willow to suppress weeds (WSA) was 26 (non-dormant cuttings) and 12% (dormant cuttings) higher for willows planted on May 3 compared with WSA of willows grown from cuttings planted later in the season. The ability to tolerate competition from weeds (WT) was 51 and 52% lower for willows grown from non-dormant and dormant cuttings planted late in the season compared with WT of willows planted earlier in the season. We conclude that planting with long-term cold storage of willow cuttings can be replaced with planting freshly harvested cuttings when planting is performed in early season, and that weed competition strongly reduces biomass production. Weed control during the establishment phase is crucial in order to maximize willow biomass production.  相似文献   

12.
A wheat canopy model for use in disease management decision support systems   总被引:1,自引:0,他引:1  
A model is described which predicts those aspects of wheat canopy development and growth which are influential in determining the development of epidemics of foliar pathogens, the efficacy of foliar applied fungicides and the impact of disease on yield; specifically the emergence, expansion and senescence of upper culm leaves in relation to anthesis date. This focus on upper leaves allowed prediction of leaf emergence dates by reference to anthesis, rather than sowing. This avoided the step changes in flag leaf emergence date with temperature, reported with earlier models, without the additional complexity of a stochastic approach. The model is designed to be coupled to models of foliar disease, where the primary effect on yield is via reduction in green canopy area and hence interception of photosynthetically active radiation. Mechanisms were incorporated to allow observations of crop development during the growing season to update state variables and adjust parameters affecting future predictions. The model was calibrated using experimental data, and validated against independent observations of crop development on four wheat cultivars across seven contrasting sites in the UK. Anthesis date and upper culm leaf emergence were always predicted within one week of their observed dates.  相似文献   

13.
A three year study was carried out at Hoytville and at Wooster, Ohio, USA from 2006 to 2008 to investigate the influence of planting date, transgenic maize and hybrid maturity on Ostrinia nubilalis (Hubner) population dynamics and oviposition patterns. Maize plants were planted in late April or early May, mid‐May and early June during each year. The moth flight pattern showed bivoltine generations during the three years. The first moth flight peaked in June, with the populations declining during July. The second moth flight peaked in August and declined towards the end of September or early October. Egg mass density did not differ significantly between transgenic and non‐transgenic maize of different maturities. Significant differences were observed, however, among planting dates, sampling dates, and sampling date × planting date interactions. Generally higher numbers of egg masses from second generation moths were deposited on late planted maize than middle and early plantings.  相似文献   

14.
Bragg soybeans were planted in nematicide-treated and nontreated plots on 15 May, 15 June, 1 July, and 15 July in 1980 and 1981 to determine the influence of planting date on damage caused by H. glycines. Although earlier studies showed the nematode was sensitive to high soil temperatures (> 34 C), late planting did not reduce damage caused by the nematode. Yields from plots treated with 1, 2-dibromo-3-chloropropane (57.5 kg a.i./ha) were 48, 118, 395, and 403% higher than yields from nontreated plots with planting dates of 15 May, 15 June, 1 July, and 15 July, respectively, when data were averaged over the 2 years. Increase in both seed size and number accounted for the yield increases in treated plots. Soil temperatures were highest during July in 1980, averaging 8.9 and 6.5 hours per day above 34 C at 10- and 20-cm depths, respectively. Larvae populations of H. glycines were reduced by the nematicide but not by late planting. These results indicate that damage caused by H. glycines may actually increase with later planting and that nematicides may be more beneficial when soybeans are planted late in a double-cropped production system.  相似文献   

15.
Neotephritisfinalis (Loew) (Diptera: Tephritidae), and sunflower bud moth, Suleima helianthana (Riley) (Lepidoptera: Tortricidae) are major head-infesting insect pests of cultivated sunflower (Helianthus annuus L.). Planting date was evaluated as a cultural pest management strategy for control of N. finalis and S. helianthana in several production regions of North Dakota during 2009 and 2010. Results of the nine site-year study revealed that late planting date (early to mid-June) reduced damage ratings and percentage of damaged heads for N. finalis compared with early planting dates (mid- to late May). Visual observations of adult N. finalis found that the majority of flies were found in the early planted sunflower (78.2%) compared with the late planted sunflower (21.8%). Late planting date also reduced the percentage of S. helianthana damaged heads compared with early planting dates. Yield losses were reduced with late planting date when populations of N. finalis and S. helianthana were high enough to cause damage. Results of this study showed that delayed planting is an effective integrated pest management strategy that can reduce head damage caused by N. finalis and S. helianthana and mitigate yield losses.  相似文献   

16.
Integration of cultural practices, such as planting date with insecticide-based strategies, was investigated to determine best management strategy for flea beetles (Phyllotreta spp.) (Coleoptera: Chrysomelidae) in canola (Brassica napus L.). We studied the effect of two spring planting dates of B. napus and different insecticide-based management strategies on the feeding injury caused by fleabeetles in North Dakota during 2002-2003. Adult beetle peak emergence usually coincided with the emergence of the early planted canola, and this resulted in greater feeding injury in the early planted canola than later planted canola. Use of late-planted canola may have limited potential for cultural control of flea beetle, because late-planted canola is at risk for yield loss due to heat stress during flowering. Flea beetle injury ratings declined when 1) the high rate of insecticide seed treatment plus a foliar insecticide applied 21 d after planting was used, 2) the high rate of insecticide seed treatment only was used, or 3) two foliar insecticide sprays were applied. These insecticide strategies provided better protection than the low rates of insecticide seed treatments or a single foliar spray, especially in areas with moderate-to-high flea beetle populations. The foliar spray on top of the seed treatment controlled later-emerging flea beetles as the seed treatment residual was diminishing and the crop became vulnerable to feeding injury. The best insecticide strategy for management of flea beetle was the high rate of insecticide seed treatment plus a foliar insecticide applied at 21 d after planting, regardless of planting date.  相似文献   

17.
A study was conducted in Mississippi from 1995 to 1997 comparing soil rhizosphere fungi isolated from Pioneer 3167 hybrid maize (Zea mays L.) planted on Brooksville silty clay and Memphis silt loam soils. Maize seedlings were collected over four sampling dates from conventional and no-tillage plots. Eleven fungal genera consisting of nineteen species were isolated from these plants; Trichoderma spp. were most frequently isolated, followed by Fusarium spp. The highest disease incidence occurred in tilled plots of the latest planting date on Brooksville silty clay when samples were collected 17 days after planting. Root disease was most severe in 1996 from seedlings planted on the last planting date in tilled plots sampled 17 days after planting. Yields were significantly (P ≤ 0.05) higher on Brooksville silty clay soil than on Memphis silt loam in both 1995 and 1996. Yields were highest from no-tillage plots and from maize planted on the earliest date. There was a significant correlation between incidence of root infection and disease severity. There was no correlation between the incidence of root infection and yield or between disease severity and yield at either location. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
The effects of planting date and application rate of imidacloprid for control of Schizaphis graminum Rondani, Rhopalosiphum padi L. (Homoptera: Aphididae), and barley yellow dwarf virus (BYDV) in hard red winter wheat were studied. The first experiment was conducted from 1997 to 1999 at two locations and consisted of three planting dates and four rates of imidacloprid-treated seed. The second experiment was conducted from 2001 to 2002 in Stillwater, OK, and consisted of two varieties of hard red winter wheat seed and four rates of imidacloprid. Aphid densities, occurrence of BYDV, yield components, and final grain yield were measured, and yield differences were used to estimate the economic return obtained from using imidacloprid. In the first study, aphid populations responded to insecticide rate in the early and middle plantings, but the response was reduced in the late planting. Yields increased as insecticide rate increased but did not always result in a positive economic return. In the second study, imidacloprid seed treatments reduced aphid numbers and BYD occurrence, protected yield, and resulted in a positive economic return. The presence of aphids and BYDV lowered yield by reducing fertile head density, total kernel weight, and test weight. Whereas the application of imidacloprid seed treatments often provided positive yield protection, it did not did not consistently provide a positive economic return. A positive economic return was consistently obtained if the cereal aphid was carrying and transmitting BYDV and was more likely to occur if wheat was treated with a low rate if imidacloprid and planted in a "dual purpose" planting date window.  相似文献   

19.
Subedi  K.D.  Budhathoki  C.B.  Subedi  M.  Gc  Yubak D. 《Plant and Soil》1997,188(2):249-256
Spikelet sterility in wheat (Triticum aestivum L.) is emerging as a production threat in different parts of Nepal. This study was aimed at determining the effects of sowing date and boron application in controlling spikelet sterility in four different genotypes of spring wheat in a rice-wheat system in the western hills of Nepal. Four genotypes of known different responses to boron were planted on 21 November, 6 December and 21 December, 1994 with or without boron application at 1 kg B ha-1 (i.e. 9 kg borax ha-1) on a soil that was known to be deficient in boron.The effect of sowing date was significant for the phenology, yield components, percentage sterility and grain yield. Sterility was significantly increased in the crop planted on 21 December, which had also the lowest 1000 seed weight and grain yield; there was an almost 50% grain yield reduction compared to the crop planted on 21 November. Terminal moisture stress (i.e. lack of moisture during the later part of the development) was observed in the late sown crop which also amplified the extent of sterility associated with boron deficiency. Genotypes differed in response to sowing dates and boron treatment for all of the phenological events measured, yield components, grain yield and percentage sterility. SW-41 and BL-1022 had significantly higher sterility at all sowing dates. BL-1249 showed a consistently lower% sterility over all sowing dates and boron treatments. The addition of boron significantly increased the number of grains set per spike thereby decreasing the total sterility in boron responsive genotypes SW-41 and BL-1022 while those not susceptible did not respond. The boron concentration in the flag leaf at anthesis was increased in treatments with added B in the soil but genotypes did not differ in boron concentration for any soil treatment.  相似文献   

20.

Background

Shorter growing season and water stress near wheat maturity are the main factors that presumably limit the yield potential of spring wheat due to late seeding in Saskatchewan, Canada. Advancing seeding dates can be a strategy to help producers mitigate the impact of climate change on spring wheat. It is unknown, however, how early farmers can seed while minimizing the risk of spring frost damage and the soil and machinery constraints.

Methodology/principal findings

This paper explores early seeding dates of spring wheat on the Canadian Prairies under current and projected future climate. To achieve this, (i) weather records from 1961 to 1990 were gathered at three sites with different soil and climate conditions in Saskatchewan, Canada; (ii) four climate databases that included a baseline (treated as historic weather climate during the period of 1961–1990) and three climate change scenarios (2040–2069) developed by the Canadian global climate model (GCM) with the forcing of three greenhouse gas (GHG) emission scenarios (A2, A1B and B1); (iii) seeding dates of spring wheat (Triticum aestivum L.) under baseline and projected future climate were predicted. Compared with the historical record of seeding dates, the predicted seeding dates were advanced under baseline climate for all sites using our seeding date model. Driven by the predicted temperature increase of the scenarios compared with baseline climate, all climate change scenarios projected significantly earlier seeding dates than those currently used. Compared to the baseline conditions, there is no reduction in grain yield because precipitation increases during sensitive growth stages of wheat, suggesting that there is potential to shift seeding to an earlier date. The average advancement of seeding dates varied among sites and chosen scenarios. The Swift Current (south-west) site has the highest potential for earlier seeding (7 to 11 days) whereas such advancement was small in the Melfort (north-east, 2 to 4 days) region.

Conclusions/significance

The extent of projected climate change in Saskatchewan indicates that growers in this region have the potential of earlier seeding. The results obtained in this study may be used for adaptation assessments of seeding dates under possible climate change to mitigate the impact of potential warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号