首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stigma colonization by Erwinia amylovora is the crucial first step in the development of most fire blight infections in apple and pear trees. Suppression at this point of the disease process by antagonists of E. amylovora, such as Pantoea agglomerans (Erwinia herbicola) strain Eh1087, is a rational approach to control fire blight. We tested the hypothesis that the ability of E. amylovora to compete with Eh1087 for colonization of a stigma is reduced by the potential for Eh1087 to produce the phenazine antibiotic, d-alanylgriseoluteic acid (AGA). In competition experiments on the stigmas of apple flowers, E. amylovora was significantly less successful against Eh1087 (AGA+) than against EhDeltaAGA (AGA-). Further experiments to test the importance of pre-emptive colonization of the stigma by either the pathogen or the antagonist suggested that AGA production significantly enhanced the competitiveness of Eh1087 when it was applied at the same time or 24 h before the pathogen. We also found that pre-emptive stigma colonization by either the pathogen or the antagonist resulted in a population that was resilient to subsequent invasion by a second species suggesting that niche exclusion has a dominant influence on the dynamics of bacterial populations on stigmas.  相似文献   

2.
J L Vanneste  J Yu    S V Beer 《Journal of bacteriology》1992,174(9):2785-2796
Erwinia herbicola Eh252 is a nonpathogenic epiphytic bacterium that reduces fire blight incidence when sprayed onto apple blossoms before inoculation with Erwinia amylovora, the causal agent of fire blight. Eh252 was found to produce on minimal medium an antibiotic that inhibited the growth of E. amylovora. This antibiotic was inactivated by histidine but not by Fe(II), was sensitive to proteolytic enzymes, and showed a narrow host range of activity. To determine the role of this antibiotic in the control of fire blight, two prototrophic Tn5-induced mutants, 10:12 and 17:12, that had lost their ability to inhibit E. amylovora on plates (Ant- mutants) were compared with the wild-type strain for their ability to suppress fire blight in immature pear fruits. The two mutants had single Tn5 insertions in the chromosome; although they grew in immature pear fruits at a rate similar to that of the wild-type strain, neither of these mutants suppressed fire blight as well as Eh252 did. The Tn5-containing fragment isolated from 10:12 was used to mutagenize Eh252 by marker exchange. Derivatives that acquired the Tn5-containing fragment by homologous recombination lost the ability to inhibit E. amylovora on minimal medium. Furthermore, the three Ant- derivatives tested were also affected in their ability to inhibit E. amylovora in immature pear fruits. The results obtained suggest that antibiotic production is a determinant of the biological control of E. amylovora by Eh252, but that another mechanism(s) is involved.  相似文献   

3.
In order to find reasons for the absence of fire blight in most countries of the Southern hemisphere, bark samples from apple and pear trees in orchards of the Western Cape region in South Africa were extracted for bacteria which could be antagonistic to Erwinia amylovora. Screening was done in the late growth season and mainly Gram-positive bacteria were isolated. Approximately half of them produced growth inhibition zones on a lawn of E. amylovora. Most isolates were classified as Bacillus megaterium by microbiological assays and in API 50 test systems. They were visualized in the light microscope as non-motile large rods. These strains may not be responsible for the absence of fire blight in orchards, but they may indicate unfavourable climatic conditions for Gram-negative bacteria including E. amylovora. They may reduce the ability of E. amylovora to establish fire blight and could also be useful for application in biological disease control.  相似文献   

4.
The mechanisms by which Erwinia herbicola inhibits Erwinia amylovora , the fire blight pathogen, were investigated. The optimum pH for growth of Erw. amylovora strain Ea273 in nutrient-yeast extract-glucose broth (NYGB) was 7.0 and growth was markedly reduced at pH values below 6.0. In contrast, the growth rates of Erw. herbicola strains Eh141 and Eh112Y were only slightly reduced at pH levels as low as 4.5, relative to pH 6-8. When Ea273 was grown in NYGB in the presence of Eh141 or Eh112Y, the media became acidic and lower populations of Ea273 were recovered, compared with populations from buffered NYGB. Acidification of plant tissue as a consequence of growth of Erw. herbicola did not occur, however, and thus acid-based inhibition of growth in planta is unlikely. The growth rates of nine strains of Erw. herbicola and their abilities to reduce the pH of NYGB did not correlate with their different abilities to prevent development of fire blight incited by Ea273 in a research apple orchard. When grown in mixed culture, Eh114 and Eh112Y grew to higher populations than Ea273 due to depletion of a nitrogen source needed by Ea273. The ability of 12 strains of Erw. herbicola to produce antibiotics inhibitory to Ea273 on a glucose-asparagine medium correlated with the effectiveness of the strains in suppressing fire blight. A crude preparation of the Eh318 antibiotic delayed development of disease in immature pear fruits incited by Ea273 but not by strain Ea273R318, which is resistant in vitro to the Eh318 antibiotic. Cells of Eh318 protected immature pear fruits more effectively from infection by Ea273 than from the resistant strain Ea273R318.  相似文献   

5.
Erwinia amylovora causes fire blight disease of apple, pear, and other members of the Rosaceae. Here we present the first evidence for autoinduction in E. amylovora and a role for an N-acyl-homoserine lactone (AHL)-type signal. Two major plant virulence traits, production of extracellular polysaccharides (amylovoran and levan) and tolerance to free oxygen radicals, were controlled in a bacterial-cell-density-dependent manner. Two standard autoinducer biosensors, Agrobacterium tumefaciens NTL4 and Vibrio harveyi BB886, detected AHL in stationary-phase cultures of E. amylovora. A putative AHL synthase gene, eamI, was partially sequenced, which revealed homology with autoinducer genes from other bacterial pathogens (e.g., carI, esaI, expI, hsII, yenI, and luxI). E. amylovora was also found to carry eamR, a convergently transcribed gene with homology to luxR AHL activator genes in pathogens such as Erwinia carotovora. Heterologous expression of the Bacillus sp. strain A24 acyl-homoserine lactonase gene aiiA in E. amylovora abolished induction of AHL biosensors, impaired extracellular polysaccharide production and tolerance to hydrogen peroxide, and reduced virulence on apple leaves.  相似文献   

6.
Erwinia amylovora is a gram-negative phytopathogen that causes fire blight of pome fruit and related members of the family Rosaceae. We sequenced the putative autoinducer-2 (AI-2) synthase gene luxS from E. amylovora. Diversity analysis indicated that this gene is extremely conserved among E. amylovora strains. Quorum sensing mediated by LuxS has been implicated in coordinated gene expression, growth, and virulence in other enterobacteria; however, our evidence suggests this is not the function in E. amylovora. Mutational analysis pointed to a role in colonization of apple blossoms, the primary infection court for fire blight, although little if any role in virulence on apple shoots and pear fruit was observed. Expression of key virulence genes hrpL and dspA/E was reduced in mutants of two E. amylovora strains. Stronger effects on gene expression were observed for metabolic genes involved in the activated methyl cycle with mutants having greater levels of expression. No quorum-sensing effect was observed in coculture experiments with wild-type and mutant strains either in vitro or in apple blossoms. Known receptors essential for AI-2 quorum sensing, the LuxPQ sensor kinase or the Lsr ABC-transporter, are absent in E. amylovora, further suggesting a primarily metabolic role for luxS in this bacterium.  相似文献   

7.
The disease-specific (dsp) gene dspA/E of Erwinia amylovora encodes an essential pathogenicity effector of 198 kDa, which is critical to the development of the devastating plant disease fire blight. A yeast two-hybrid assay and in vitro protein pull-down assay demonstrated that DspA/E interacts physically and specifically with four similar putative leucine-rich repeat (LRR) receptor-like serine/threonine kinases (RLK) from apple, an important host of E. amylovora. The genes encoding these four DspA/E-interacting proteins of Malus xdomestica (DIPM1 to 4) are conserved in all genera of hosts of E. amylovora tested. They also are conserved in all cultivars of apple tested that range in susceptibility to fire blight from highly susceptible to highly resistant. The four DIPMs have been characterized, and they are expressed constitutively in host plants. In silico analysis indicated that the DIPMs have similar sequence structure and resemble LRR RLKs from other organisms. Evidence is presented for direct physical interaction between DspA/E and the apple proteins encoded by the four identified clones, which may act as susceptibility factors and be essential to disease development. Knowledge of DIPMs and the interaction with DspA/E thus may facilitate understanding of fire blight development and lead to new approaches to control of disease.  相似文献   

8.
Erwinia amylovora, causing fire blight of apple, pear and some ornamentals, Erwinia pyrifoliae, causing Asian pear blight, and Pantoea stewartii, causing Stewart's wilt of sweet maize, synthesize capsular extracellular polysaccharides (EPSs) with a high molecular mass. The EPSs are virulence factors and form viscous aggregates, which participate in clogging vessels of infected plants and causing wilting. The sizes of EPSs produced under different environmental growth conditions were determined by analysis with large pore HPLC columns. Their molecular mass of ca. 5 MDa, when isolated from agar plates, decreases to ca. 1 MDa for E. amylovora amylovoran from freeze-dried supernatants from liquid cultures and to 2 MDa for freeze-dried preparations of P. stewartii stewartan. Size changes were also found following growth in various other media and for different strains. Stewartan, amylovoran and E. pyrifoliae pyrifolan were also shown to be completely degraded by a bacteriophage EPS depolymerase.  相似文献   

9.
Fifty bacteriophage isolates of Erwinia amylovora, the causal agent of fire blight, were collected from sites in and around the Niagara region of southern Ontario and the Royal Botanical Gardens, Hamilton, Ontario. Forty-two phages survived the isolation, purification, and storage processes. The majority of the phages in the collection were isolated from the soil surrounding trees exhibiting fire blight symptoms. Only five phages were isolated from infected aerial tissue in pear and apple orchards. To avoid any single-host selection bias, six bacterial host strains were used in the initial isolation and enrichment processes. Molecular characterization of the phages with a combination of PCR and restriction endonuclease digestions showed that six distinct phage types, described as groups 1 to 6, were recovered. Ten phage isolates were related to the previously characterized E. amylovora PEa1, with some divergence of molecular markers between phages isolated from different sites. A study of the host ranges of the phages revealed that certain types were unable to efficiently lyse some E. amylovora strains and that some isolates were able to lyse the epiphytic bacterium Pantoea agglomerans. Representatives from the six molecular groups were studied by electron microscopy to determine their morphology. The phages exhibited distinct morphologies when examined by an electron microscope. Group 1 and 2 phages were tailed and contractile, and phages belonging to groups 3 to 6 had short tails or openings with thin appendages. Based on morphotypes, the bacteriophages of E. amylovora were placed in the order Caudovirales, in the families Myoviridae and PODOVIRIDAE:  相似文献   

10.
Blossoms are important sites of infection for Erwinia amylovora, the causal agent of fire blight of rosaceous plants. Before entering the tissue, the pathogen colonizes the stigmatic surface and has to compete for space and nutrient resources within the epiphytic community. Several epiphytes are capable of synthesizing antibiotics with which they antagonize phytopathogenic bacteria. Here, we report that a multidrug efflux transporter, designated NorM, of E. amylovora confers tolerance to the toxin(s) produced by epiphytic bacteria cocolonizing plant blossoms. According to sequence comparisons, the single-component efflux pump NorM is a member of the multidrug and toxic compound extrusion protein family. The corresponding gene is widely distributed among E. amylovora strains and related plant-associated bacteria. NorM mediated resistance to the hydrophobic cationic compounds norfloxacin, ethidium bromide, and berberine. A norM mutant was constructed and exhibited full virulence on apple rootstock MM 106. However, it was susceptible to antibiotics produced by epiphytes isolated from apple and quince blossoms. The epiphytes were identified as Pantoea agglomerans by 16S rRNA analysis and were isolated from one-third of all trees examined. The promoter activity of norM was twofold greater at 18 degrees C than at 28 degrees C. The lower temperature seems to be beneficial for host infection because of the availability of moisture necessary for movement of the pathogen to the infection sites. Thus, E. amylovora might employ NorM for successful competition with other epiphytic microbes to reach high population densities, particularly at a lower temperature.  相似文献   

11.
Erwinia amylovora is a phytopathogenic bacterium that causes fire blight, an economically important disease of Rosaceae . Several isolates from pears and apples with fire blight symptoms from Belarus were identified as E. amylovora . All tested isolates were yellow and mucoid on MM2Cu medium, positive in levan production and showed pathogenicity in immature pear fruits. These isolates have identical total protein patterns with E. amylovora 1/79. The PCR with specific primers for E. amylovora harpin gene also gave positive results.  相似文献   

12.
Bogs J  Geider K 《Journal of bacteriology》2000,182(19):5351-5358
Sucrose is an important storage and transport sugar of plants and an energy source for many phytopathogenic bacteria. To analyze regulation and biochemistry of sucrose metabolism of the fire blight pathogen Erwinia amylovora, a chromosomal fragment which enabled Escherichia coli to utilize sucrose as sole carbon source was cloned. By transposon mutagenesis, the scr regulon of E. amylovora was tagged, and its nucleotide sequence was determined. Five open reading frames, with the genes scrK, scrY, scrA, scrB, and scrR, had high homology to genes of the scr regulons from Klebsiella pneumoniae and plasmid pUR400. scrB and scrR of E. amylovora were fused to a histidine tag and to the maltose-binding protein (MalE) of E. coli, respectively. ScrB (53 kDa) catalyzed the hydrolysis of sucrose with a K(m) of 125 mM. Binding of a MalE-ScrR fusion protein to an scrYAB promoter fragment was shown by gel mobility shifts. This complex dissociated in the presence of fructose but not after addition of sucrose. Expression of the scr regulon was studied with an scrYAB promoter-green fluorescent protein gene fusion and measured by flow cytometry and spectrofluorometry. The operon was affected by catabolite repression and induced by sucrose or fructose. The level of gene induction correlated to the sucrose concentration in plant tissue, as shown by flow cytometry. Sucrose mutants created by site-directed mutagenesis did not produce significant fire blight symptoms on apple seedlings, indicating the importance of sucrose metabolism for colonization of host plants by E. amylovora.  相似文献   

13.
Erwinia amylovora is the causative agent of fire blight, a serious disease of some Rosaceae plants. The newly isolated bacteriophage PhiEaH2 is able to lyse E. amylovora in the laboratory and has reduced the occurrence of fire blight cases in field experiments. This study presents the sequenced complete genome and analysis of phage PhiEaH2.  相似文献   

14.
15.
Here, we present the genome of a strain of Erwinia amylovora, the fire blight pathogen, with pathogenicity restricted to Rubus spp. Comparative genomics of ATCC BAA-2158 with E. amylovora strains from non-Rubus hosts identified significant genetic differences but support the inclusion of this strain within the species E. amylovora.  相似文献   

16.
Phages able to infect the fire blight pathogen Erwinia amylovora were isolated from apple, pear, and raspberry tissues and from soil samples collected at sites displaying fire blight symptoms. Among a collection of 50 phage isolates, 5 distinct phages, including relatives of the previously described phages phiEa1 and phiEa7 and 3 novel phages named phiEa100, phiEa125, and phiEa116C, were identified based on differences in genome size and restriction fragment pattern. phiEa1, the phage distributed most widely, had an approximately 46-kb genome which exhibited some restriction site variability between isolates. Phages phiEa100, phiEa7, and phiEa125 each had genomes of approximately 35 kb and could be distinguished by their EcoRI restriction fragment patterns. phiEa116C contained an approximately 75-kb genome. phiEa1, phiEa7, phiEa100, phiEa125, and phiEa116C were able to infect 39, 36, 16, 20, and 40, respectively, of 40 E. amylovora strains isolated from apple orchards in Michigan and 8, 12, 10, 10, and 12, respectively, of 12 E. amylovora strains isolated from raspberry fields (Rubus spp.) in Michigan. Only 22 of 52 strains were sensitive to all five phages, and 23 strains exhibited resistance to more than one phage. phiEa116C was more effective than the other phages at lysing E. amylovora strain Ea110 in liquid culture, reducing the final titer of Ea110 by >95% when added at a ratio of 1 PFU per 10 CFU and by 58 to 90% at 1 PFU per 10(5) CFU.  相似文献   

17.
AIMS: The three main aims of the study were the assessment of the genetic relationship between a deviating Erwinia amylovora strain isolated from Amelanchier sp. (Maloideae) grown in Canada and other strains from Maloideae and Rosoideae, the investigation of the variability of the PstI fragment of the pEA29 plasmid using restriction fragment length polymorphism (RFLP) analysis and the determination of the number of short-sequence DNA repeats (SSR) by DNA sequence analysis in representative strains. METHODS AND RESULTS: Ninety-three strains obtained from 12 plant genera and different geographical locations were examined by repetitive-sequences PCR using Enterobacterial Repetitive Intergenic Consensus, BOX and Repetitive Extragenic Palindromic primer sets. Upon the unweighted pair group method with arithmetic mean analysis, a deviating strain from Amelanchier sp. was analysed using amplified ribosomal DNA restriction analysis (ARDRA) analysis and the sequencing of the 16S rDNA gene. This strain showed 99% similarity to other E. amylovora strains in the 16S gene and the same banding pattern with ARDRA. The RFLP analysis of pEA29 plasmid using MspI and Sau3A restriction enzymes showed a higher variability than that previously observed and no clear-cut grouping of the strains was possible. The number of SSR units reiterated two to 12 times. The strains obtained from pear orchards showing for the first time symptoms of fire blight had a low number of SSR units. CONCLUSIONS: The strains from Maloideae exhibit a wider genetic variability than previously thought. The RFLP analysis of a fragment of the pEA29 plasmid would not seem a reliable method for typing E. amylovora strains. A low number of SSR units was observed with first epidemics of fire blight. SIGNIFICANCE AND IMPACT OF THE STUDY: The current detection techniques are mainly based on the genetic similarities observed within the strains from the cultivated tree-fruit crops. For a more reliable detection of the fire blight pathogen also in wild and ornamentals Rosaceous plants the genetic features of deviating E. amylovora strains have to be studied in detail.  相似文献   

18.
Detection and identification of the fire blight pathogen, Erwinia amylovora, can be accurately done by polymerase chain reaction (PCR) analysis in less than 6 h. Two oligomers derived from a 29-kb plasmid which is common to all strains of E. amylovora were used to amplify a 0.9-kb fragment of the plasmid. By separation of the PCR products on agarose gel, this fragment wa specifically detected when E. amylovora DNA was present in the amplification assay. It was not found when DNA from other plant-pathogenic bacteria was used for the assay. A visible band specific to the 0.9-kb fragment was produced with DNA from fewer than 100 E. amylovora cells. A signal of similar strength was also obtained from E. amylovora cell lysates in the presence of the mild detergent Tween 20. Signals were weaker when bacteria were added to the PCR mixture without the detergent. As with results obtained from hybridization experiments using pEA29 DNA< the PCR signal was obtained with E. amylovora isolates from various geographic regions. This technique could also be used for detection of the fire blight pathogen in extracts of tissue obtained from infected plant material.  相似文献   

19.
The enterobacterium Erwinia amylovora is a devastating plant pathogen causing necrotrophic fire blight disease of apple, pear, and other rosaceous plants. In this study, we used a modified in vivo expression technology system to identify E. amylovora genes that are activated during infection of immature pear tissue, a process that requires the major pathogenicity factors of this organism. We identified 394 unique pear fruit-induced (pfi) genes on the basis of sequence similarity to known genes and separated them into nine putative function groups including host-microbe interactions (3.8%), stress response (5.3%), regulation (11.9%), cell surface (8.9%), transport (13.5%), mobile elements (1.0%), metabolism (20.3%), nutrient acquisition and synthesis (15.5%), and unknown or hypothetical proteins (19.8%). Known virulence genes, including hrp/hrc components of the type III secretion system, the major effector gene dspE, type II secretion, levansucrase (lsc), and regulators of levansucrase and amylovoran biosynthesis, were upregulated during pear tissue infection. Known virulence factors previously identified in E. (Pectobacterium) carotovora and Pseudomonas syringae were identified for the first time in E. amylovora and included HecA hemagglutinin family adhesion, Peh polygalacturonase, new effector HopPtoC(EA), and membrane-bound lytic murein transglycosylase MltE(EA). An insertional mutation within hopPtoC(EA) did not result in reduced virulence; however, an mltE(EA) knockout mutant was reduced in virulence and growth in immature pears. This study suggests that E. amylovora utilizes a variety of strategies during plant infection and to overcome the stressful and poor nutritional environment of its plant hosts.  相似文献   

20.
Erwinia amylovora, the causative agent of fire blight, was identified independently from the common plasmid pEA29 by three different PCR assays with chromosomal DNA. PCR with two primers was performed with isolated DNA and with whole cells, which were directly added to the assay mixture. The oligonucleotide primers were derived from the ams region, and the PCR product comprised the amsB gene, which is involved in exopolysaccharide synthesis. The amplified fragment of 1.6 kb was analyzed, and the sequence was found to be identical for two E. amylovora strains. The identity of the PCR products was further confirmed by restriction analysis. The 1.6-kb signal was also used for detection of the fire blight pathogen in the presence of other plant-associated bacteria and in infected plant tissue. For further identification of isolated strains, the 16S rRNA gene of E. amylovora and other plant-associated bacteria was amplified and the products were digested with the restriction enzyme HaeIII. The pattern obtained for E. amylovora was different from that of other bacteria. The sequence of the 16S rRNA gene was determined from a cloned fragment and was found to be closely related to the sequences of Escherichia coli and other Erwinia species. Finally, arbitrarily primed PCR with a 17-mer oligonucleotide derived from the sequence of transposon Tn5 produced a unique banding pattern for all E. amylovora strains investigated. These methods expand identification methods for E. amylovora, which include DNA hybridization and a PCR technique based on plasmid pEA29.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号