首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The spatial relationship between Lys-61, the nucleotide binding site and Cys-374 was studied. Lys-61 was labelled with fluorescein-5-isothiocyanate as a resonance energy acceptor, the nucleotide-binding site was labelled with the fluorescent ATP analogues epsilon ATP or formycin-A 5'-triphosphate (FTP) and Cys-374 was labelled with 5-(2-[(iodoacetyl)amino]ethyl)aminonaphthalene-1-sulfonic acid (1,5-IAEDANS) as a resonance energy donor. The distances between the nucleotide binding site and Lys-61 or between Lys-61 and Cys-374 were calculated to be 3.5 +/- 0.3 nm and 4.60 +/- 0.03 nm, respectively. (The assumption has been made in calculating these distances that the energy donor and acceptor rotate rapidly relative to the fluorescence lifetime.) On the other hand, when doubly-labelled actin with 1,5-IAEDANS at Cys-374 and FITC at Lys-61 was polymerized in the presence of a twofold molar excess of phalloidin [Miki, M. (1987) Eur. J. Biochem. 164, 229-235], the fluorescence of 1,5-IAEDANS bound to actin was quenched significantly. This could be attributed to inter-monomer energy transfer. The inter-monomer distance between FITC attached to Lys-61 in a monomer and 1,5-IAEDANS attached to Cys-374 in its nearest-neighbour monomer in an F-actin filament was calculated to be 3.34 +/- 0.06 nm, assuming that the likely change in the intra-monomer distance does not change during polymerization by more than 0.4 nm. One possible spatial relationship between Lys-61, Cys-374 and the nucleotide binding site in an F-actin filament is proposed. The effect of myosin subfragment-1 (S1) binding on the energy transfer efficiency was studied. The fluorescence intensity of AEDANS-FITC-actin decreased by 30% upon interaction with S1. The fluorescence intensity of AEDANS-FITC-actin polymer in the presence of phalloidin increased by 21% upon interaction with S1. The addition of ATP led to the fluorescence intensity returning to the initial level. Assuming that the change of fluorescence intensity can be attributed to conformational change in the actin molecule induced by S1 binding, the intra-monomer distance was reduced by 0.4 nm and the inter-monomer distance was increased by 0.2 nm.  相似文献   

2.
The spatial relationships between Lys-61, Cys-374 on actin or SH1 on myosin subfragment-1 (S1) and Cys-190 on tropomyosin or Cys-133 on troponin-I (TnI) in a reconstituted thin filament were studied by fluorescence resonance energy transfer. 5-(2-Iodoacetylaminoethyl)aminonaphthalene 1-sulfonic acid (IAEDANS) attached to Lys-190 on tropomyosin or to Cys-133 on TnI was used as a donor. Fluorescein 5-isothiocyanate (FITC) attached to Lys-61 or 5-(iodoacetoamido)fluorescein (IAF) attached to Cys-374 on actin and 4-dimethylaminophenyl-azophenyl 4'-maleimide (DABMI) attached to SH1 on S1 were used as an acceptor. The transfer efficiency between AEDANS attached to Cys-190 on tropomyosin and FITC attached to Lys-61 on actin was 0.42 in the absence of troponin, 0.46 in the presence of troponin and Ca2+ and 0.55 in the presence of troponin and absence of Ca2+. The corresponding distances between the probes were calculated to be 4.7 nm, 4.6 nm and 4.3 nm respectively, assuming a random orientation factor K2 = 2/3. A large difference in the transfer efficiency from AEDANS attached to Cys-133 on TnI to FITC attached to Lys-61 on actin was observed between in the presence (0.52) and absence (0.70) of Ca2+. The corresponding distances between the probes were calculated to be 4.5 nm in the presence of Ca2+ and 3.9 nm in the absence of Ca2+. The distance between Cys-190 on tropomyosin and Cys-374 on actin was measured to be 5.1 nm and the transfer efficiency (0.35) did not change upon addition of troponin whether Ca2+ is present or not, in agreement with the previous report [Tao, T., Lamkin, M. & Lehrer, S. S. (1983) Biochemistry 22, 3059-3064]. The distance between Cys-133 on TnI and Cys-374 on actin was measured to be 4.4 nm. No detectable change in transfer efficiency (0.58) was observed between values in the presence and absence of Ca2+. These results suggest that a relative movement of the two domains of actin monomer in a reconstituted thin filament occurs in response to a change in Ca2+ concentration. The transfer efficiencies between DABMI attached to SH1 on S1 and AEDANS attached to Cys-190 on tropomyosin or Cys-133 on TnI were too small (less than 2%) for an accurate estimation of the distances, suggesting the distances are longer than 7.3 nm.  相似文献   

3.
In muscle thin filaments, the inhibitory region (residues 96-117) of troponin I (TnI) is thought to interact with troponin C (TnC) in the presence of Ca(2+) and with actin in the absence of Ca(2+). To better understand these interactions, we prepared mutant TnIs which contained a single Cys-96 or Cys-117 and labeled them with the thiol-specific fluorescent probe N-(iodoacetyl)-N'-(1-sulfo-5-naphthyl)ethylenediamine (IAEDANS). We characterized the microenvironments of the AEDANS labels on TnI in the presence and absence of Ca(2+) by measuring the extent of acrylamide quenching of fluorescence and lifetime-resolved anisotropy. In the troponin-tropomyosin (Tn-Tm) complex, the AEDANS labels on both Cys-96 and Cys-117 were less accessible to solvent and less flexible in the presence of Ca(2+), reflecting closer interactions with TnC under these conditions. In reconstituted thin filaments, the environment of the AEDANS on Cys-96 was not greatly affected by Ca(2+), while the AEDANS on Cys-117 was more accessible but significantly less flexible as it moved away from actin and interacted strongly with TnC in the presence of Ca(2+). We used fluorescence resonance energy transfer (FRET) to measure distances between AEDANS on TnI Cys-96 or Cys-117 and 4-?[(dimethylamino)phenyl]azo?phenyl-4'-maleimide (DABmal) on actin Cys-374 in reconstituted thin filaments. In the absence of Ca(2+), the mean distances were 40.2 A for Cys-96 and 35.2 A for Cys-117. In the presence of Ca(2+), Cys-96 moved away from actin Cys-374 by approximately 3.6 A, while Cys-117 moved away by approximately 8 A. This suggests the existence of a flexible "hinge" region near the middle of TnI, allowing amino acid residues in the N-terminal half of TnI to interact with TnC in a Ca(2+)-independent manner, while the C-terminal half of TnI binds to actin in the absence of Ca(2+) or to TnC in the presence of Ca(2+). This is the first report to demonstrate structural movement of the inhibitory region of TnI in the thin filament.  相似文献   

4.
The resonance energy transfer between fluorescein-5-isothiocyanate (FITC) attached to Lys-61 and Co2+ bound to the high-affinity metal binding site was measured. The distance between FITC and Co2+ on the actin molecule was calculated to be either 1.9 nm, using the absorption spectrum of Co-EDTA or 2.8 nm, using the absorption spectrum of Co2+ bound to carboxypeptidase as a model spectrum of Co2+ bound to actin, respectively. The effects of the polymerization of actin and of the interaction of actin with myosin subfragment-1 (S1) on the solvent accessibility of the fluorescein molecule attached to Lys-61 or Cys-374 were measured. The accessibility of the probe at Lys-61 was reduced following polymerization and also appreciably reduced by interaction with S1. The accessibility of the probe attached to Cys-374 was affected to only a small degree. These results indicate that the Lys-61 residue is located close to an actin-actin contact region as well as being close to an S1 binding site, although it is not directly involved [Miki, M. (1987) Eur. J. Biochem. 164, 228-235]. The accessibility of the probe at Lys-61 was also decreased by the addition of the tropomyosintroponin complex, although the accessibility of the probe at Cys-374 was not affected at all. Thus, Lys-61 appears to be involved in the binding site of the regulatory proteins.  相似文献   

5.
I DalleDonne  A Milzani  R Colombo 《Biochemistry》1999,38(38):12471-12480
The susceptibility of monomeric actin to both methionine and cysteine oxidation when treated with the oxidizing agent tert-butyl hydroperoxide (t-BH) was investigated. The results show that no methionine residue was susceptible to oxidation by t-BH at concentrations of 1-20 mM, while Cys-374, one of the five cysteine residues of the actin molecule, was found to be the site of the oxidative modification. Perturbations in the intrinsic tryptophan fluorescence and the decreased susceptibility to limited proteolysis by alpha-chymotrypsin and subtilisin of oxidized actin give an indication of some alterations in protein conformation in subdomain 1, and in the central segment of surface loop 39-51, in subdomain 2. Urea denaturation curves indicate a lower conformational stability for the oxidized actin. G-actin structural alterations due to Cys-374 oxidation produced by t-BH result in a decrease in the maximum rate of polymerization, an increase in both the delay time and the time required for half-maximum assembly, a decrease in the elongation rate, and enhancement of the critical monomer concentration for polymerization. The results suggest that oxidation of actin Cys-374 induces structural alterations in the conformation of at least two different distant regions of the molecule. The involvement of both the C-terminus of the actin polypeptide chain and the DNase-I-binding loop in the intermonomer interactions in the polymer could account for the altered kinetics of polymerization shown by the oxidized actin.  相似文献   

6.
Disulfide cross-linking of caldesmon to actin.   总被引:2,自引:0,他引:2  
Treatment of a solution of actin and smooth muscle caldesmon with 5,5'-dithiobis(2-nitrobenzoic acid) results in the formation of a disulfide cross-link between the C-terminal penultimate residue Cys-374 of actin and Cys-580 in caldesmon's C-terminal actin-binding region. Therefore, these 2 residues are close in the actin-caldesmon complex. Since myosin also binds to actin in the vicinity of Cys-374 and since caldesmon inhibits actomyosin ATPase activity by the reduction of myosin binding to actin, then the inhibition might be by caldesmon sterically hindering or blocking myosin's interaction with actin. [Ca2+]Calmodulin, which reverses the inhibition of the ATPase activity, decreases the yield of the cross-linked species, suggesting a weakening of the caldesmon-actin interaction in the cross-linked region. It is possible to maximally cross-link one caldesmon molecule/every three actin monomers, in the absence or presence of tropomyosin, clearly ruling out an elongated, end-to-end alignment of caldesmon on the actin filament in vitro, and raising the possibility that the N-terminal part of caldesmon projects out from the filament. Reaction of 5,5'-dithiobis(2-nitrobenzoic acid)-modified actin with caldesmon leads to the same disulfide cross-linked product between actin and caldesmon Cys-580, enabling the specific labeling of the other caldesmon cysteine, residue 153, in the N-terminal part of caldesmon with a spectroscopic probe.  相似文献   

7.
The accessibility of the cysteine residues of actin from rabbit muscles to the thiol-targeted reagent 7-dimethylamino-4-methyl-(N-maleimidyl)coumarin (DACM) was investigated. Under conditions where the actin is in the unpolymerized form (G-actin), the most reactive thiol group was Cys-257, suggesting that it was located on the surface of the actin molecule. The selective modification of Cys-374 for this reagent as reported by Sutoh [(1982) Biochemistry 21, 3654-3661] was not observed. Cys-10, Cys-217 and Cys-374 were much less reactive and only gradually became extensively modified when the concentration of DACM approached 5 molar equivalents of actin. Presumably these thiol groups were located further inward away from the surface or situated in a different environment that rendered them less reactive. On the other hand, Cys-285 was completely inaccessible and presumably was buried. The lack of preferential labelling of Cys-374 by DACM is incompatible with the finding with iodoacetic acid as the reagent as reported by Elzinga & Collins [(1975) J. Biol. Chem. 250, 5897-5905]. This discrepancy, however, might well be due to the different reagents employed. The DACM-G-actin largely retained its competence for polymerization. Upon polymerization of G-actin, practically all the thiol groups became inaccessible to DACM, suggesting that a drastic change occurred in the conformation of actin units in the transition of monomers to filamentous actin.  相似文献   

8.
Temperature dependence of the fluorescence intensity and anisotropy decay of N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine attached to Cys374 of actin monomer was investigated to characterize conformational differences between Ca- and Mg-G-actin. The fluorescence lifetime is longer in Mg-G-actin than that in Ca-G-actin in the temperature range of 5-34 degrees C. The width of the lifetime distribution is smaller by 30% in Mg-saturated actin monomer at 5 degrees C, and the difference becomes negligible above 30 degrees C. The semiangle of the cone within which the fluorophore can rotate is larger in Ca-G-actin at all temperatures. Electron paramagnetic resonance measurements on maleimide spin-labeled (on Cys374) monomer actin gave evidence that exchange of Ca2+ for Mg2+ induced a rapid decrease in the mobility of the label immediately after the addition of Mg2+. These results suggest that the C-terminal region of the monomer becomes more rigid as a result of the replacement of Ca2+ by Mg2+. The change can be related to the difference between the polymerization abilities of the two forms of G-actin.  相似文献   

9.
H S Park  T Tao  P D Chantler 《Biochemistry》1991,30(13):3189-3195
Resonance energy transfer measurements have been made on hybrid myosins in order to map distances between sites on the regulatory light chain, heavy chain, and actin as well as to assess potential conformational changes of functional importance. Using scallop (Aequipecten) myosin hybrid molecules possessing clam (Mercenaria) regulatory light chains, we have been able to map the distance between Cys-55 on the regulatory light chain and the fast-reacting thiol on the myosin heavy chain (SH-1). This distance is shown to be approximately 6.4 nm, and it is not altered by the presence or absence of Ca2+, MgATP, or actin. Experiments performed at low ionc strength on heavy meromyosin (HMM) derived from these hybrid myosins gave results similar to those performed on the soluble parent myosin preparations. The distances between Cys-374 on actin and each of the above sites were also measured. Mercenaria regulatory light-chain Cys-55, within the hybrid myosin molecule, was found to be greater than 8.0 nm away from actin Cys-374. Scallop heavy-chain SH-1 is shown to be approximately 4.5 nm away from actin Cys-374, in broad agreement with earlier measurements made by others in nonregulatory myosins. The significance of our results is discussed with respect to putative conformational changes within the region of the heavy chain connecting SH-1 to the N-terminal region of the light chain.  相似文献   

10.
In order to help understand the spatial rearrangements of thin filament proteins during the regulation of muscle contraction, we used fluorescence resonance energy transfer (FRET) to measure Ca(2+)-dependent, myosin-induced changes in distances and fluorescence energy transfer efficiencies between actin and the inhibitory region of troponin I (TnI). We labeled the single Cys-117 of a mutant TnI with N-(iodoacetyl)-N'-(1-sulfo-5-naphthyl)ethylenediamine (IAEDANS) and Cys-374 of actin with 4-dimethylaminophenylazophenyl-4'-maleimide (DABmal). These fluorescent probes were used as donor and acceptor, respectively, for the FRET measurements. We reconstituted a troponin-tropomyosin (Tn-Tm) complex which contained the AEDANS-labeled mutant TnI, together with natural troponin T (TnT), troponin C (TnC) and tropomyosin (Tm) from rabbit fast skeletal muscle. Fluorescence titration of the AEDANS-labeled Tn-Tm complex with DABmal-labeled actin, in the presence and absence of Ca(2+), resulted in proportional, linear increases in energy transfer efficiency up to a 7:1 molar excess of actin over Tn-Tm. The distance between AEDANS on TnI Cys-117 and DABmal on actin Cys-374 increased from 37.9 A to 44.1 A when Ca(2+) bound to the regulatory sites of TnC. Titration of reconstituted thin filaments, containing AEDANS-labeled Tn-Tm and DABmal-labeled actin, with myosin subfragment 1 (S1) decreased the energy transfer efficiency, in both the presence and absence of Ca(2+). The maximum decrease occurred at well below stoichiometric levels of S1 binding to actin, showing a cooperative effect of S1 on the state of the thin filaments. S1:actin molar ratios of approximately 0.1 in the presence of Ca(2+), and approximately 0.3 in the absence of Ca(2+), were sufficient to cause a 50% reduction in normalized transfer efficiency. The distance between AEDANS on TnI Cys-117 and DABmal on actin Cys-374 increased by approximately 7 A in the presence of Ca(2+) and by approximately 2 A in the absence of Ca(2+) when S1 bound to actin. Our results suggest that TnI's interaction with actin inhibits actomyosin ATPase activity by modulating the equilibria among active and inactive states of the thin filament. Structural rearrangements caused by myosin S1 binding to the thin filament, as detected by FRET measurements, are consistent with the cooperative behavior of the thin filament proteins.  相似文献   

11.
We have employed the method of radial distance measurements in order to orient the actin monomer in the F-actin filament. This method utilizes fluorescence resonance energy transfer measurements of the distance between two equivalent chemical points located on two different monomers. The interprobe distance obtained this way is used to compute the radial coordinate of the labeled amino acid [Taylor, D. L., Reidler, J., Spudich, J. A., & Stryer, L. (1981) J. Cell Biol. 89, 362-367]. Theoretical analysis has indicated that if radial coordinates of four points are determined and six intramolecular distances are known, one can, within symmetry limits, position the monomer about the filament axis. The radial distance of Gln-41 that had been enzymatically modified with dansyl, rhodamine, and fluorescein derivatives of cadaverine was found to be approximately 40-42 A. The determination of the radial distance of Cys-374 was accomplished by using monobromobimane and N-[[(iodoacetyl)amino]ethyl]-5- naphthylamine-1-sulfonate as donors and N-[4-[[4-(dimethylamino)phenyl]azo]phenyl]maleimide as acceptor; the results were consistent with a radial coordinate for this residue of 20-25 A. The effect of myosin subfragment 1 (S1) binding on the radial coordinates of (1) Gln-41, (2) Cys-374, and (3) the nucleotide binding site was also examined. S1 had a small effect on the radial coordinate of Gln-41, increasing it to 44-47 A. In the two remaining lases the change in the radial coordinate due to the S1 binding was negligible. This finding excludes certain models of the interaction between actin and S1 in which actin monomer rotates by a large angle when subfragment 1 binds to it.  相似文献   

12.
Conditions are described for the selective modification of Cys-10 on actin achieved following the blocking of the more reactive Cys-374. Labelling of Cys-10 did not affect the formation of actin filaments. This residue should be capable of serving as a site for fluorescence donors or acceptors and thus will be a useful locus to probe F-actin structure.  相似文献   

13.
Using fluorescence resonance energy transfer spectroscopy we demonstrate that thymosin beta(4) (tbeta(4)) binding induces spatial rearrangements within the small domain (subdomains 1 and 2) of actin monomers in solution. Tbeta(4) binding increases the distance between probes attached to Gln-41 and Cys-374 of actin by 2 A and decreases the distance between the purine base of bound ATP (epsilonATP) and Lys-61 by 1.9 A, whereas the distance between Cys-374 and Lys-61 is minimally affected. Distance determinations are consistent with tbeta(4) binding being coupled to a rotation of subdomain 2. By differential scanning calorimetry, tbeta(4) binding increases the cooperativity of ATP-actin monomer denaturation, consistent with conformational rearrangements in the tbeta(4)-actin complex. Changes in fluorescence resonance energy transfer are accompanied by marked reduction in solvent accessibility of the probe at Gln-41, suggesting it forms part of the binding interface. Tbeta(4) and cofilin compete for actin binding. Tbeta(4) concentrations that dissociate cofilin from actin do not dissociate the cofilin-DNase I-actin ternary complex, consistent with the DNase binding loop contributing to high-affinity tbeta(4)-binding. Our results favor a model where thymosin binding changes the average orientation of actin subdomain 2. The tbeta(4)-induced conformational change presumably accounts for the reduced rate of amide hydrogen exchange from actin monomers and may contribute to nucleotide-dependent, high affinity binding.  相似文献   

14.
We define conditions under which the two C-terminal residues of actin, Cys-374 and Phe-375, can be selectively removed by proteolysis with trypsin. This modification had little effect on the secondary structure of actin detected by Fourier-transform infrared spectroscopy. However, removing these residues caused small but significant decreases in the critical concentration of actin, in its ability to activate myosin ATPase, and in its interaction with tropomyosin and troponin. Removing residues 374-375 caused dramatic changes in the actin filament as seen by electron microscopy. The filaments had a much greater and more irregular curvature and were intertwined into disordered multifilament bundles. Removing 374-375 also significantly lowered the flow viscosity of filamentous-actin solutions. These data suggest an increase in the flexibility and fragility of the filament, supporting the idea that the C-terminus forms one of the major intermonomer contacts in the filament.  相似文献   

15.
Y Doi  Y Kanatani  F Kim 《FEBS letters》1992,301(1):99-102
It has been shown that the EGTA-resistant actin, one of the two actin molecules associated to gelsolin, can be predominantly cross-linked to gelsolin by benzophenone-4-maleimide (BPM), a photoaffinity-labeling reagent, which was conjugated to Cys-374 of actin prior to cross-linking (Doi, Y., Banba, M. and Vertut-Do?, A. (1991) Biochemistry 30, 5769-5777). When a chymotryptic digest of gelsolin containing the amino-terminal 15-kDa fragment was mixed with BPM-actin (42 kDa) and irradiated for cross-linking, a band of 58 kDa appeared on SDS-PAGE which was shown to contain actin molecule by using fluorescently labeled actin. The amino-terminal sequence of the 58-kDa complex was identical to that of gelsolin, confirming that the amino-terminal segment (residues 1-133) of pig plasma gelsolin lies closely to Cys-374 of actin in the EGTA-resistant complex.  相似文献   

16.
Movements of different areas of polypeptide chains within F-actin monomers induced by S1 or pPDM-S1 binding were studied by polarized fluorimetry. Thin filaments of ghost muscle were reconstructed by adding G-actin labeled with fluorescent probes attached alternatively to different sites of actin molecule. These sites were: Cys-374 labeled with 1,5-IAEDANS, TMRIA or 5-IAF; Lys-373 labeled with NBD-Cl; Lys-113 labeled with Alexa-488; Lys-61 labeled with FITC; Gln-41 labeled with DED and Cys-10 labeled with 1,5-IAEDANS, 5-IAF or fluorescein-maleimid. In addition, we used TRITC-, FITC-falloidin and e-ADP that were located, respectively, in filament groove and interdomain cleft. The data were analysed by model-dependent and model-independent methods (see appendixes). The orientation and mobility of fluorescent probes were significantly changed when actin and myosin interacted, depending on fluorophore location and binding site of actomyosin. Strong binding of S with actin leads to 1) a decrease in the orientation of oscillators of derivatives of falloidin (TRITC-falloidin, FITC-falloidin) and actin-bound nucleotide (e-ADP); 2) an increase in the orientation of dye oscillators located in the "front' surface of the small domain (where actin is viewed in the standard orientation with subdomains 1/2 and 3/4 oriented to the right and to the left, respectively); 3) a decrease in the angles of dye oscillators located on the "back" surface of subdomain-1. In contrast, a weak binding of S1 to actin induces the opposite effects in orientation of these probes. These data suggest that during the ATP hydrolysis cycle myosin heads induce a change in actin monomer (a tilt and twisting of its small domain). Presumably, these alterations in F-actin conformation play an important role in muscle contraction.  相似文献   

17.
M Nyitrai  G Hild  Z Lakos    B Somogyi 《Biophysical journal》1998,74(5):2474-2481
A fluorescence resonance energy transfer (FRET) parameter, f' (defined as the average transfer efficiency, (E), normalized by the actual fluorescence intensity of the donor in the presence of acceptor, F(DA)), was previously shown to be capable of monitoring both changes in local flexibility of the protein matrix and major conformational transitions. The temperature profile of this parameter was used to detect the change of the protein flexibility in the small domain of the actin monomer (G-actin) upon the replacement of Ca2+ by Mg2+. The Cys-374 residue of the actin monomer was labeled with N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (IAEDANS) to introduce a fluorescence donor and the Lys-61 residue with fluorescein-5-isothiocyanate (FITC) to serve as an acceptor. The f' increases with increasing temperature over the whole temperature range for Mg-G-actin. This parameter increases similarly in the case of Ca-G-actin up to 26 degrees C, whereas an opposite tendency appears above this temperature. These data indicate that there is a conformational change in Ca-G-actin above 26 degrees C that was not detected in the case of Mg-G-actin. In the temperature range between 6 degrees C and 26 degrees C the slope of the temperature profile of f' is the same for Ca-G-actin and Mg-G-actin, suggesting that the flexibility of the protein matrix between the two labels is identical in the two forms of actin.  相似文献   

18.
In this study, we use fluorescent probes and proteolytic digestions to demonstrate structural coupling between distant regions of actin. We show that modifications of Cys-374 in the C-terminus of actin slow the rate of nucleotide exchange in the nucleotide cleft. Conformational coupling between the C-terminus and the DNasal loop in subdomain II is observed in proteolytic digestion experiments in which a new C-terminal cleavage site is exposed upon DNasel binding. The functional consequences of C-terminal modification are evident from S-1 ATPase activity and the in vitro motility experiments with modified actins. Pyrene actin, labeled at Cys-374, activates S-1 ATPase activity only half as well as control actin. This reduction is attributed to a lower Vmax value because the affinity of pyrene actin to S-1 is not significantly altered. The in vitro sliding velocity of pyrene actin is also decreased. However, IAEDANS labeling of actin (also at Cys-374) enhances the Vmax of acto-S-1 ATPase activity and the in vitro sliding velocity by approximately 25%. These results are discussed in terms of conformational coupling between distant regions in actin and the functional implications of the interactions of actin-binding proteins with the C-terminus of actin.  相似文献   

19.
Modification of Lys-61 in actin with fluorescein-5-isothiocyanate (FITC) blocks actin polymerization [Burtnick, L. D. (1984) Biochim. Biophys. Acta 791, 57-62]. FITC-labelled actin recovered its ability to polymerize on addition of phalloidin. The polymers had the same characteristic helical thread-like structure as normal F-actin and the addition of myosin subfragment-1 to the polymers formed the characteristic arrowhead structure in electron microscopy. The polymers activated the ATPase activity of myosin subfragment-1 as efficiently as normal F-actin. These results indicate that Lys-61 is not directly involved in an actin-actin binding region nor in myosin binding site. From static fluorescence polarization measurements, the rotational relaxation time of FITC-labelled actin filaments was calculated to be 20 ns as the value reduced in water at 20 degrees C, while any rotational relaxation time of 1,5-IAEDANS bound to Cys-374 on F-actin in the presence of a twofold molar excess of phalloidin could not be detected by static polarization measurements under the same conditions. This indicates that the Lys-61 side chain is extremely mobile even in the filamentous structure. Fluorescence resonance energy transfer between the donor 1,5-IAEDANS bound to SH1 of myosin subfragment-1 and the acceptor fluorescein-5-isothiocyanate bound to Lys-61 of actin in the rigor complex was measured. The transfer efficiency was 0.39 +/- 0.05 which corresponds to the distance of 5.2 +/- 0.1 nm, assuming that the energy donor and acceptor rotate rapidly relative to the fluorescence lifetime and that the transfer occurs between a single donor and an acceptor.  相似文献   

20.
Structural models of F-actin suggest that three segments in actin, the DNase I binding loop (residues 38-52), the hydrophobic plug (residues 262-274) and the C-terminus, contribute to the formation of an intermolecular interface between three monomers in F-actin. To test these predictions and also to assess the dynamic properties of intermolecular contacts in F-actin, Cys-374 pyrene-labeled skeletal alpha-actin and pyrene-labeled yeast actin mutants, with Gln-41 or Ser-265 replaced with cysteine, were used in fluorescence experiments. Large differences in Cys-374 pyrene fluorescence among copolymers of subtilisin-cleaved (between Met-47 and Gly-48) and uncleaved alpha-actin showed both intra- and intermolecular interactions between the C-terminus and loop 38-52 in F-actin. Excimer band formation due to intermolecular stacking of pyrene probes attached to Cys-41 and Cys-265, and Cys-41 and Cys-374, in mutant yeast F-actin confirmed the proximity of these residues on the paired sites (to within 18 A) in accordance with the models of F-actin structure. The dynamic properties of the intermolecular interface in F-actin formed by loop 38-52, plug 262-274 and the C-terminus may account for the observed cross-linking of these sites with reagents < 18 A. The functional importance of actin filament dynamics was demonstrated by the inhibition of the in vitro motility in the Gln-41-Cys-374 cross-linked actin filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号