首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Roze D  Rousset F 《Genetics》2003,165(4):2153-2166
Population structure affects the relative influence of selection and drift on the change in allele frequencies. Several models have been proposed recently, using diffusion approximations to calculate fixation probabilities, fixation times, and equilibrium properties of subdivided populations. We propose here a simple method to construct diffusion approximations in structured populations; it relies on general expressions for the expectation and variance in allele frequency change over one generation, in terms of partial derivatives of a "fitness function" and probabilities of genetic identity evaluated in a neutral model. In the limit of a very large number of demes, these probabilities can be expressed as functions of average allele frequencies in the metapopulation, provided that coalescence occurs on two different timescales, which is the case in the island model. We then use the method to derive expressions for the probability of fixation of new mutations, as a function of their dominance coefficient, the rate of partial selfing, and the rate of deme extinction. We obtain more precise approximations than those derived by recent work, in particular (but not only) when deme sizes are small. Comparisons with simulations show that the method gives good results as long as migration is stronger than selection.  相似文献   

2.
Extranuclear differentiation and gene flow in the finite island model   总被引:15,自引:8,他引:7       下载免费PDF全文
Takahata N  Palumbi SR 《Genetics》1985,109(2):441-457
Use of sequence information from extranuclear genomes to examine deme structure in natural populations has been hampered by lack of clear linkage between sequence relatedness and rates of mutation and migration among demes. Here, we approach this problem in two complementary ways. First, we develop a model of extranuclear genomes in a population divided into a finite number of demes. Sex-dependent migration, neutral mutation, unequal genetic contribution of separate sexes and random genetic drift in each deme are incorporated for generality. From this model, we derive the relationship between gene identity probabilities (between and within demes) and migration rate, mutation rate and effective deme size. Second, we show how within- and between-deme identity probabilities may be calculated from restriction maps of mitochondrial (mt) DNA. These results, when coupled with our results on gene flow and genetic differentiation, allow estimation of relative interdeme gene flow when deme sizes are constant and genetic variants are selectively neutral. We illustrate use of our results by reanalyzing published data on mtDNA in mouse populations from around the world and show that their geographic differentiation is consistent with an island model of deme structure.  相似文献   

3.
The equilibrium structure of the infinite, one-dimensional stepping-stone model with coincident discontinuities in the population density and migration rate is investigated in the diffusion approximation. The monoecious, diploid population is subdivided into an infinite linear array of equally large, panmictic colonies that exchange gametes isotropically. The population density and the migration rate have a discontinuity at the origin, but are elsewhere uniform. Generations are discrete and nonoverlapping; the analysis is restricted to a single locus without selection; every allele mutates to new alleles at the same rate. The three dimensionless parameters in the theory are alpha=(rho(+)/rho(-))(2) (V(+)/V(-))(3/2), and beta(+/-)=4rho(+/-) 2uV(+/-), where rho(+) (rho(-)) and V(+) (V(-)) designate the population density and variance of gametic dispersion per generation to the right (left) of the discontinuity, respectively, and u denotes the mutation rate. The characteristic length on the right (left) is V(+)/(2u) (V(-)/(2u)). The probability of identity is continuous at the origin, but its partial derivatives have a discontinuity unless migration is conservative (rho(-) V(-)=rho(+) V(+)). At least for nonconservative migration, the probability of identity (including the expected homozygosity) can be nonmonotonic even if the migration rate is uniform and the population density is monotonic. Thus, there can be a nonmonotonic genetic response in a neutral model to a monotonic environment.  相似文献   

4.
 The diffusion approximation is derived for migration and selection at a multiallelic locus in a partially selfing plant population subdivided into a lattice of colonies. Generations are discrete and nonoverlapping; both pollen and seeds disperse. In the diffusion limit, the genotypic frequencies at each point are those determined at equilibrium by the local rate of selfing and allelic frequencies. If the drift and diffusion coefficients are taken as the appropriate linear combination of the corresponding coefficients for pollen and seeds, then the migration terms in the partial differential equation for the allelic frequencies have the standard form for a monoecious animal population. The selection term describes selection on the local genotypic frequencies. The boundary conditions and the unidimensional transition conditions for a geographical barrier and for coincident discontinuities in the carrying capacity and migration rate have the standard form. In the diallelic case, reparametrization renders the entire theory of clines and of the wave of advance of favorable alleles directly applicable to plant populations. Received 30 August 1995; received in revised form 23 February 1996  相似文献   

5.
The diffusion approximation is derived for migration and selection at a multiallelic locus in a dioecious population subdivided into a lattice of panmictic colonies. Generations are discrete and nonoverlapping; autosomal and X-linked loci are analyzed. The relation between juvenile and adult subpopulation numbers is very general and includes both soft and hard selection; the zygotic sex ratio is the same in every colony. All the results hold for both adult and juvenile migration. If ploidy-weighted average selection, drift, and diffusion coefficients are used, then the ploidy-weighted average allelic frequencies satisfy the corresponding partial differential equation for a monoecious population. The boundary conditions and the unidimensional transition conditions for coincident discontinuities in the carrying capacity and migration rate extend identically. The previous unidimensional formulation and analysis of symmetric, nearest-neighbor migration of a monoecious population across a geographical barrier is generalized to symmetric migration of arbitrary finite range, and the transition conditions are shown to hold for a dioecious population. Thus, the entire theory of clines and of the wave of advance of favorable alleles is applicable to dioecious populations.This work was supported by National Science Foundation grant BSR-9006285  相似文献   

6.
The approximation of diploid migration by gametic dispersion is studied. The monoecious, diploid population is subdivided into panmictic colonies that exchange migrants. Generations are discrete and nonoverlapping; the analysis is restricted to a single locus in the absence of selection; every allele mutates to a new allele at the same rate u. Diploid-migration models without self-fertilization and with selfing at the “random” rate (equal to the reciprocal of the deme size in each deme) are investigated; in the gametic-dispersion models, selfing occurs at the random rate. It is shown for the unbounded stepping-stone model in one and two dimensions, the circular stepping-stone model, and the island model that the probabilitities of identity in state at equilibrium for diploid migration are close to those for gametic dispersion if the mutation rate is small or the deme size is large. Explicit error bounds are presented in all the above cases. It is also proved that if the number of demes is finite and the migration matrix is arbitrary but time independent and ergodic, then in the strong-migration approximation the equilibrium and the ultimate rate and pattern of convergence of both diploid-dispersion models are close to the corresponding gametic-dispersion formulae. For the strong-migration approximation at equilibrium, migration must dominate both mutation and random drift; for the convergence results, it suffices that migration dominate random drift. All the results apply to a dioecious population if the migration pattern and mutation rate are sex independent.  相似文献   

7.
For two genotypes that have the same mean number of offspring but differ in the variance in offspring number, naturalselection will favor the genotype with lower variance. In such cases, the average growth rate is not sufficient as a measure of fitness or as a predictor of fixation probability. However, the effect of variance in offspring number on the fixationprobability of mutant strategies has been calculated under several scenarios with the general conclusion that variance in offspring number reduces fitness in proportion to the inverse of the population size [Gillespie, J., Genetics 76:601–606, 1974; Proulx, S.R., Theor. Popul. Biol. 58:33–47, 2000]. This relationship becomes more complicated under a metapopulation scenario where the “effective” population size depends on migration rate, population structure, and lifecycle. It is shown that in a life cycle where reproduction and migration (the birth-migration-regulation life cycle, or BMR)occur prior to density regulation within every deme, the fitness of a strategy depends on migration rate. When migration rates are near zero, the fitness of the strategy is determined by the size of individual demes, so that the strategy favoredin small populations tends to be fixed. As migration rate increases and approaches panmixis between demes, the fitness ofa reproductive strategy approaches what its value would be in a single, panmictic deme with a population size correspondingtothe census size of the metapopulation. Interestingly, when the life cycle is characterized by having density regulation in each deme prior to migration (the BRM life cycle) the fixation probability of a strategy is independent of migration rate. These results are found to be qualitatively consistent with the individual-based simulation results in Shpak [Theor. Biosci.124:65–85, 2005]. An erratum to this article can be found at  相似文献   

8.
Wright partitioned the shifting-balance process into three phases. Phase one is the shift of a deme within a population to the domain of a higher adaptive peak from that of the historical peak. Phase two is mass selection within a deme towards that higher peak. Phase three is the conversion of additional demes to the higher peak. The migration rate between demes is critical for the existence of phases one and three. Phase one requires small effective population sizes, hence low migration rates. Phase three is optimal under high migration rates that spread the most-fit genotype from deme to deme. Thus, a population-wide peak shift requires intermediate levels of migration. By altering the rates of phases one and three, migration affects the predominant direction of mass selection within a population. This study examines the degree to which migration, through its effects on phases one and three, determines the probability of a simulated population arriving at its genotypic optimum after 12,000 generations. These simulations reveal that there is a range of migration rates for which an entire population might be expected to shift to a higher peak. Below m = 0.001 peak shifts occur frequently (phases I and II) but are not successfully exported out of subpopulations (phase III), and above 0.01 peak shifts within demes (phase I and II), required to initiate phase III, become increasingly uncommon. Because it is unlikely that real populations will have uniform migration rates from generation to generation, the probable effects of varying migration rates on broadening the range of conditions producing peak shifts are discussed.  相似文献   

9.
Many species, including humans, have dramatically expanded their range in the past, and such range expansions had certainly an impact on their genetic diversity. For example, mutations arising in populations at the edge of a range expansion can sometimes surf on the wave of advance and thus reach a larger spatial distribution and a much higher frequency than would be expected in stationary populations. We study here this surfing phenomenon in more detail, by performing extensive computer simulations under a two-dimensional stepping-stone model. We find that the probability of survival of a new mutation depends to a large degree on its proximity to the edge of the wave. Demographic factors such as deme size, migration rate, and local growth rate also influence the fate of these new mutations. We also find that the final spatial and frequency distributions depend on the local deme size of a subdivided population. This latter result is discussed in the light of human expansions in Europe as it should allow one to distinguish between mutations having spread with Paleolithic or Neolithic expansions. By favoring the spread of new mutations, a consequence of the surfing phenomenon is to increase the rate of evolution of spatially expanding populations.  相似文献   

10.
The effect of population structure on the probability of fixation of a newly introduced mutant under weak selection is studied using a coalescent approach. Wright's island model in a framework of a finite number of demes is assumed and two selection regimes are considered: a beneficial allele model and a linear game among offspring. A first-order approximation of the fixation probability for a single mutant with respect to the intensity of selection is deduced. The approximation requires the calculation of expected coalescence times, under neutrality, for lineages starting from two or three sampled individuals. The results are obtained in a general setting without assumptions on the number of demes, the deme size or the migration rate, which allows for simultaneous coalescence or migration events in the genealogy of the sampled individuals. Comparisons are made with limit cases as the deme size or the number of demes goes to infinity or the migration rate goes to zero for which a diffusion approximation approach is possible. Conditions for selection to favor a mutant strategy replacing a resident strategy in the context of a linear game in a finite island population are addressed.  相似文献   

11.
Clines with Variable Migration   总被引:5,自引:1,他引:4       下载免费PDF全文
Thomas Nagylaki 《Genetics》1976,83(4):867-886
The consequences of a discontinuity in the migration rate and of a geographical barrier in the habitat are studied in a diffusion model of migration and selection. The treatment is restricted to a single diallelic locus in a monoecious population in the absence of mutation and random drift. It is supposed further that migration is independent of genotype, the population density remains constant and uniform, and Hardy-Weinberg proportions obtain locally. It is shown that a discontinuity in the migration rate leads to a jump in the slope of the gene frequency, but not in the gene frequency itself, while a localized geographical barrier has precisely the opposite effect. These features of the gene frequency behavior are quantitatively related to the migration rate. The influence of the above inhomogeneities in migration on the maintenance of an allele in an environmental pocket is examined. The extent to which the critical condition for polymorphism is made less stringent by decreased migration outside the pocket and by a geographical barrier between the pocket and the rest of the habitat is evaluated.  相似文献   

12.
Partial migration (when only some individuals in a population undertake seasonal migrations) is common in many species and geographical contexts. Despite the development of modern statistical methods for analyzing partial migration, there have been no studies on what influences partial migration in tropical environments. We present research on factors affecting partial migration in African buffalo (Syncerus caffer) in northeastern Namibia. Our dataset is derived from 32 satellite tracking collars, spans 4 years and contains over 35,000 locations. We used remotely sensed data to quantify various factors that buffalo experience in the dry season when making decisions on whether and how far to migrate, including potential man-made and natural barriers, as well as spatial and temporal heterogeneity in environmental conditions. Using an information-theoretic, non-linear regression approach, our analyses showed that buffalo in this area can be divided into 4 migratory classes: migrants, non-migrants, dispersers, and a new class that we call "expanders". Multimodel inference from least-squares regressions of wet season movements showed that environmental conditions (rainfall, fires, woodland cover, vegetation biomass), distance to the nearest barrier (river, fence, cultivated area) and social factors (age, size of herd at capture) were all important in explaining variation in migratory behaviour. The relative contributions of these variables to partial migration have not previously been assessed for ungulates in the tropics. Understanding the factors driving migratory decisions of wildlife will lead to better-informed conservation and land-use decisions in this area.  相似文献   

13.
A simple genealogical structure is found for a general finite island model of population subdivision. The model allows for variation in the sizes of demes, in contributions to the migrant pool, and in the fraction of each deme that is replaced by migrants every generation. The ancestry of a sample of non-recombining DNA sequences has a simple structure when the sample size is much smaller than the total number of demes in the population. This allows an expression for the probability distribution of the number of segregating sites in the sample to be derived under the infinite-sites mutation model. It also yields easily computed estimators of the migration parameter for each deme in a multi-deme sample. The genealogical process is such that the lineages ancestral to the sample tend to accumulate in demes with low migration rates and/or which contribute disproportionately to the migrant pool. In addition, common ancestor or coalescent events tend to occur in demes of small size. This provides a framework for understanding the determinants of the effective size of the population, and leads to an expression for the probability that the root of a genealogy occurs in a particular geographic region, or among a particular set of demes.  相似文献   

14.
1. Geographic gradients in population dynamics may occur because of spatial variation in resources that affect the deterministic components of the dynamics (i.e. carrying capacity, the specific growth rate at small densities or the strength of density regulation) or because of spatial variation in the effects of environmental stochasticity. To evaluate these, we used a hierarchical Bayesian approach to estimate parameters characterizing deterministic components and stochastic influences on population dynamics of eight species of ducks (mallard, northern pintail, blue-winged teal, gadwall, northern shoveler, American wigeon, canvasback and redhead (Anas platyrhynchos, A. acuta, A. discors, A. strepera, A. clypeata, A. americana, Aythya valisineria and Ay. americana, respectively) breeding in the North American prairies, and then tested whether these parameters varied latitudinally. 2. We also examined the influence of temporal variation in the availability of wetlands, spring temperature and winter precipitation on population dynamics to determine whether geographical gradients in population dynamics were related to large-scale variation in environmental effects. Population variability, as measured by the variance of the population fluctuations around the carrying capacity K, decreased with latitude for all species except canvasback. This decrease in population variability was caused by a combination of latitudinal gradients in the strength of density dependence, carrying capacity and process variance, for which details varied by species. 3. The effects of environmental covariates on population dynamics also varied latitudinally, particularly for mallard, northern pintail and northern shoveler. However, the proportion of the process variance explained by environmental covariates, with the exception of mallard, tended to be small. 4. Thus, geographical gradients in population dynamics of prairie ducks resulted from latitudinal gradients in both deterministic and stochastic components, and were likely influenced by spatial differences in the distribution of wetland types and shapes, agricultural practices and dispersal processes. 5. These results suggest that future management of these species could be improved by implementing harvest models that account explicitly for spatial variation in density effects and environmental stochasticity on population abundance.  相似文献   

15.
We consider a single-species model which is composed of several habitats connected by linear migration rates and having logistic growth. A spatially varying, temporally constant environment is introduced by the non-homogeneity of its carrying capacity. Under this condition any type of purely diffusive behavior, characterized in our model by symmetric migration rates, produces an unbalanced population distribution, i.e. some locations receive more individuals than can be supported by the environmental carrying capacity, while others receive less. Using an evolutionarily stable strategy (ESS) approach we show that an asymmetric migration mechanism, induced by the heterogeneous carrying capacity of the environment, will be selected. This strategy balances the inflow and outflow of individuals in each habitat (balanced dispersal), as well as 'balancing' the spatial distribution relative to variation in carrying capacity (the Ideal Free Distribution from habitat selection theory). We show that several quantities are maximized or minimized by the evolutionarily stable dispersal strategy.  相似文献   

16.
We investigate the probability of fixation of a chromosome rearrangement in a subdivided population, concentrating on the limit where migration is so large relative to selection (m ? s) that the population can be thought of as being continuously distributed. We study two demes, and one- and two-dimensional populations. For two demes, the probability of fixation in the limit of high migration approximates that of a population with twice the size of a single deme: migration therefore greatly reduces the fixation probability. However, this behavior does not extend to a large array of demes. Then, the fixation probability depends primarily on neighborhood size (Nb), and may be appreciable even with strong selection and free gene flow (≈exp(-B ≈ Nbs) in one dimension, ≈exp(-B ≈ Nb) in two dimensions). Our results are close to those for the more tractable case of a polygenic character under disruptive selection.  相似文献   

17.
Demographic factors such as migration rate and population size can impede or facilitate speciation. In hybrid zones, reproductive boundaries between species are tested and demography mediates the opportunity for admixture between lineages that are partially isolated. Genomic ancestry is a powerful tool for revealing the history of admixed populations, but models and methods based on local ancestry are rarely applied to structured hybrid zones. To understand the effects of demography on ancestry in hybrids zones, we performed individual‐based simulations under a stepping‐stone model, treating migration rate, deme size, and hybrid zone age as parameters. We find that the number of ancestry junctions (the transition points between genomic regions with different ancestries) and heterogenicity (the genomic proportion heterozygous for ancestry) are often closely connected to demographic history. Reducing deme size reduces junction number and heterogenicity. Elevating migration rate increases heterogenicity, but migration affects junction number in more complex ways. We highlight the junction frequency spectrum as a novel and informative summary of ancestry that responds to demographic history. A substantial proportion of junctions are expected to fix when migration is limited or deme size is small, changing the shape of the spectrum. Our findings suggest that genomic patterns of ancestry could be used to infer demographic history in hybrid zones.  相似文献   

18.
Correlated dispersal paths between two or more individuals are widespread across many taxa. The population genetic implications of this collective dispersal have received relatively little attention. Here we develop two‐sample coalescent theory that incorporates collective dispersal in a finite island model to predict expected coalescence times, genetic diversities, and F‐statistics. We show that collective dispersal reduces mixing in the system, which decreases expected coalescence times and increases FST. The effects are strongest in systems with high migration rates. Collective dispersal breaks the invariance of within‐deme coalescence times to migration rate, whatever the deme size. It can also cause FST to increase with migration rate because the ratio of within‐ to between‐deme coalescence times can decrease as migration rate approaches unity. This effect is most biologically relevant when deme size is small. We find qualitatively similar results for diploid and gametic dispersal. We also demonstrate with simulations and analytical theory the strong similarity between the effects of collective dispersal and anisotropic dispersal. These findings have implications for our understanding of the balance between drift–migration–mutation in models of neutral evolution. This has applied consequences for the interpretation of genetic structure (e.g., chaotic genetic patchiness) and estimation of migration rates from genetic data.  相似文献   

19.
冯莹莹  梁丹  李兴权  罗旭 《生态学报》2021,41(21):8673-8684
鸟类鸣唱存在广泛的地理变异,研究鸟类鸣唱变异的模式及其影响因素可帮助解释自然界中广泛而复杂的鸣声变异现象。灰腹地莺(Tesia cyaniventer)是在高黎贡山海拔2000-2800 m分布的小型地栖性森林鸟类。高黎贡山南北走向的山脊海拔通常在3000m以上,这导致灰腹地莺东、西坡种群被山脊所隔离。该种小鸟鸣声洪亮易于鉴别,其鸣声地理变异可揭示山地对鸟类种群产生的隔离效应。在高黎贡山片马垭口和独龙江垭口的东西坡4个地点录制了灰腹地莺的鸣声(n=58),基于声谱分析比较了种群间鸣唱的质量特征,发现种群间鸣唱型的共享程度极低,而音节型在4个种群间均有共享。进一步测量了11个鸣唱的数量特征参数,有6个参数在不同种群间有显著差异:最低频率、中心频率、频率宽度、起始音节频率、首二音节的时间间隔、句子平均音节数。种群间的两两比较表明,鸣声特征差异呈现"隔离-距离"共同作用的格局,但隔离的影响更大。研究表明山地系统中影响鸟类鸣声地理变异的因素较为复杂,山地隔离和空间距离均对灰腹地莺的鸣唱特征产生了影响。  相似文献   

20.
Mitochondrial genomes are usually inherited maternally and therefore there is no direct selection against mutations that have deleterious effects in males only (mother’s curse). This is true in particular for mitochondrial mutations that reduce the fertility of their male carriers, as has been reported in a number of species. Using both analytical methods and computer simulations, we demonstrate that spatial population structure can induce strong selection against such male infertility mutations. This is because (1) infertile males may reduce the fecundity of the females they mate with and (2) population structure induces increased levels of inbreeding, so that the fitness of females carrying the mutation is more strongly reduced than the fitness of wild‐type females. Selection against mitochondrial male infertility mutations increases with decreasing deme size and migration rates, and in particular with female migration rates. On the other hand, the migration model (e.g., island or stepping stone model) has generally only minor effects on the fate of the mitochondrial mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号