首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Although the S3 pocket of the thrombin active site is lined with lipophilic amino acid residues, the accommodation of polarity within the lipophilic P3 moiety of small molecule inhibitors is possible provided that the polar functionality is capable of pointing away from the binding pocket outwards toward solvent while simultaneously allowing the lipophilic portion of the P3 ligand to interact with the S3 amino acid residues. Manipulation of this motif provided the means to effect optimization of functional potency, in vivo antithrombotic efficacy and oral bioavailability in a series of 3-aminopyrazinone thrombin inhibitors which contained non-charged groups at the P1 position.  相似文献   

2.
Phosphatidylinositol-3-kinase beta (PI3Kβ) is an important therapeutic target in arterial thrombosis and special types of cancer. In this study, a new series of aminopyridine-based PI3Kβ selective inhibitors have been developed by the structure-based design strategy. When incorporated with the phenyl ring on sulfonamide moiety, aminopyrimidine analogs showed good potency on PI3Kβ and selectivity over PI3Kα. Intriguingly, replacement of phenyl group on sulfonamide with naphthyl group enhanced selectivity over PI3Kα while retaining submicromolar PI3Kβ potency. Molecular modeling suggests that increased PI3Kβ specificity is caused by the interaction with salt bridge (Lys782-Asp923) and Asp862 that creat a unique pocket in PI3Kβ. These results clearly provide useful insight in the design of new PI3Kβ inhibitors with high potency and selectivity.  相似文献   

3.
The field of medicinal chemistry aims to design and optimize small molecule leads into drug candidates that may positively interfere with pathological disease situations in humans or combat the growth of infective pathogens. From the plethora of crystal structures of protein-inhibitor complexes we have learned how molecules recognize each other geometrically, but we still have rather superficial understanding of why they bind to each other. This contribution surveys a series of 26 thrombin inhibitors with small systematic structural differences to elucidate the rationale for their widely deviating binding affinity from 185 μM to 4 nM as recorded by enzyme kinetic measurements. Five well-resolved (resolution 2.30 - 1.47 Å) crystal structures of thrombin-inhibitor complexes and an apo-structure of the uncomplexed enzyme (1.50 Å) are correlated with thermodynamic data recorded by isothermal titration calorimetry with 12 selected inhibitors from the series. Taking solubility data into account, the variation in physicochemical properties allows conclusions to be reached about the relative importance of the enthalpic binding features as well as to estimate the importance of the parameters more difficult to capture, such as residual ligand entropy and desolvation properties. The collected data reveal a comprehensive picture of the thermodynamic signature that explains the so far poorly understood attractive force experienced by m-chloro-benzylamides to thrombin.  相似文献   

4.
The proteolytic enzyme β-secretase (BACE1) plays a central role in the synthesis of the pathogenic β-amyloid in Alzheimer's disease. SAR studies of the S2' region of the BACE1 ligand binding pocket with pyrazolyl and thienyl P2' side chains are reported. These analogs exhibit low nanomolar potency for BACE1, and demonstrate >50- to 100-fold selectivity for the structurally related aspartyl proteases BACE2 and cathepsin D. Small groups attached at the nitrogen of the P2' pyrazolyl moiety, together with the P3 pyrimidine nucleus projecting into the S3 region of the binding pocket, are critical components to ligand's potency and selectivity. P2' thiophene side chain analogs are highly potent BACE1 inhibitors with excellent selectivity against cathepsin D, but only modest selectivity against BACE2. The cell-based activity of these new analogs tracked well with their increased molecular binding with EC(50) values of 0.07-0.2 μM in the ELISA assay for the most potent analogs.  相似文献   

5.
Factor VIIa (FVIIa), a serine protease enzyme, coupled with tissue factor (TF) plays an important role in a number of thrombosis-related disorders. Inhibition of TF·FVIIa occurs early in the coagulation cascade and might provide some safety advantages over other related enzymes. We report here a novel series of substituted biphenyl derivatives that are highly potent and selective TF·FVIIa inhibitors. Parallel synthesis coupled with structure-based drug design allowed us to explore the S2 pocket of the enzyme active site. A number of compounds with IC50 value of <10 nM were synthesized. The X-ray crystal structures of some of these compounds complexed with TF·FVIIa were determined and results were applied to design the next round of inhibitors. All the potent inhibitors were tested for inhibition against a panel of related enzymes and selectivity of 17,600 over thrombin, 450 over trypsin, 685 over FXa, and 76 over plasmin was achieved. Two groups, vinyl 36b and 2-furan 36ab, were identified as the optimum binding substituents on the phenyl ring in the S2 pocket. Compounds with these two substituents are the most potent compounds in this series with good selectivity over related serine proteases. These compounds will be further explored for structure–activity relationship.  相似文献   

6.
The 3D structure of human factor VIIa/soluble tissue factor in complex with a peptide mimetic inhibitor, propylsulfonamide-D-Thr-Met-p-aminobenzamidine, is determined by X-ray crystallography. As compared with the interactions between thrombin and thrombin inhibitors, the interactions at S2 and S3 sites characteristic of factor VIIa and factor VIIa inhibitors are revealed. The S2 site has a small pocket, which is filled by the hydrophobic methionine side chain in P2. The small S3 site fits the small size residue, D-threonine in P3. The structural data and SAR data of the peptide mimetic inhibitor show that these interactions in the S2 and S3 sites play an important role for the improvement of selectivity versus thrombin. The results will provide valuable information for the structure-based drug design of specific inhibitors for FVIIa/TF.  相似文献   

7.
8.
We implemented both structure-based drug design and the concept of polyvalency to discover a series of potent and unsymmetrical Schistosoma japonicum glutathione S-transferase (SjGST) inhibitors 10-12. This strategy achieved not only an excellent enhancement (10- to 490-fold) in the inhibitory potency, compared to the monofunctional analogues 1-5, but was also an effective modification by selecting a hydrophobic moiety with a flexible linker. The designed compounds with a low micromolar hit demonstrate special values in refining the new generation of SjGST inhibitors. The stoichiometry of the binding is one inhibitor molecule per SjGST monomer via isothermal titration calorimetric measurement.  相似文献   

9.
Additivity of functional group contributions to protein-ligand binding is a very popular concept in medicinal chemistry as the basis of rational design and optimized lead structures. Most of the currently applied scoring functions for docking build on such additivity models. Even though the limitation of this concept is well known, case studies examining in detail why additivity fails at the molecular level are still very scarce. The present study shows, by use of crystal structure analysis and isothermal titration calorimetry for a congeneric series of thrombin inhibitors, that extensive cooperative effects between hydrophobic contacts and hydrogen bond formation are intimately coupled via dynamic properties of the formed complexes. The formation of optimal lipophilic contacts with the surface of the thrombin S3 pocket and the full desolvation of this pocket can conflict with the formation of an optimal hydrogen bond between ligand and protein. The mutual contributions of the competing interactions depend on the size of the ligand hydrophobic substituent and influence the residual mobility of ligand portions at the binding site. Analysis of the individual crystal structures and factorizing the free energy into enthalpy and entropy demonstrates that binding affinity of the ligands results from a mixture of enthalpic contributions from hydrogen bonding and hydrophobic contacts, and entropic considerations involving an increasing loss of residual mobility of the bound ligands. This complex picture of mutually competing and partially compensating enthalpic and entropic effects determines the non-additivity of free energy contributions to ligand binding at the molecular level.  相似文献   

10.
The high incidence of thrombembolic diseases justifies the development of new antithrombotics. The search for a direct inhibitor has resulted in the synthesis of a considerable number of low molecular weight molecules that inhibit human α-thrombin potently. However, efforts to develop an orally active drug remain in progress as the most active inhibitors with a highly basic P1 moiety exhibit an unsatisfactory bioavailability profile. In our previous work we solved several X-ray structures of human α-thrombin in complexes with (1) novel bicyclic arginine mimetics attached to the glycylproline amide and pyridinone acetamide scaffold and (2) inhibitors with a novel aza scaffold and with charged or neutral P1 moieties. In the present contribution, we correlate the structures of the complex between these inhibitors and the protein with the calculated free energy of binding. The energy of solvation was calculated using the Poisson–Boltzmann approach. In particular, the requirements for successful recognition of an inhibitor at the protein’s active site pocket S1 are discussed. Figure We report here on free energy of binding analysis of thrombin inhibitors with novel aza scaffold and novel bicyclic arginine mimetics in S1 pocket of thrombin  相似文献   

11.
Human glutamate carboxypeptidase II (GCPII) is involved in neuronal signal transduction and intestinal folate absorption by means of the hydrolysis of its two natural substrates, N-acetyl-aspartyl-glutamate and folyl-poly-γ-glutamates, respectively. During the past years, tremendous efforts have been made toward the structural analysis of GCPII. Crystal structures of GCPII in complex with various ligands have provided insight into the binding of these ligands, particularly to the S1′ site of the enzyme. In this article, we have extended structural characterization of GCPII to its S1 site by using dipeptide-based inhibitors that interact with both S1 and S1′ sites of the enzyme. To this end, we have determined crystal structures of human GCPII in complex with phosphapeptide analogs of folyl-γ-glutamate, aspartyl-glutamate, and γ-glutamyl-glutamate, refined at 1.50, 1.60, and 1.67 Å resolution, respectively. The S1 pocket of GCPII could be accurately defined and analyzed for the first time, and the data indicate the importance of Asn519, Arg463, Arg534, and Arg536 for recognition of the penultimate (i.e., P1) substrate residues. Direct interactions between the positively charged guanidinium groups of Arg534 and Arg536 and a P1 moiety of a substrate/inhibitor provide mechanistic explanation of GCPII preference for acidic dipeptides. Additionally, observed conformational flexibility of the Arg463 and Arg536 side chains likely regulates GCPII affinity toward different inhibitors and modulates GCPII substrate specificity. The biochemical experiments assessing the hydrolysis of several GCPII substrate derivatives modified at the P1 position, also included in this report, further complement and extend conclusions derived from the structural analysis. The data described here form an a solid foundation for the structurally aided design of novel low-molecular-weight GCPII inhibitors and imaging agents.  相似文献   

12.
The crystal structures of four active site-directed thrombin inhibitors, 1-4, in a complex with human alpha-thrombin have been determined and refined at up to 2.0 A resolution using X-ray crystallography. These compounds belong to a structurally novel family of inhibitors based on a 2,3-disubstituted benzo[b]thiophene structure. Compared to traditional active-site directed inhibitors, the X-ray crystal structures of these complexes reveal a novel binding mode. Unexpectedly, the lipophilic benzo[b]thiophene nucleus of the inhibitor appears to bind in the S1 specificity pocket. At the same time, the basic amine of the C-3 side chain of the inhibitor interacts with the mostly hydrophobic proximal, S2, and distal, S3, binding sites. The second, basic amine side chain at C-2 was found to point away from the active site, occupying a location between the S1 and S1' sites. Together, the aromatic rings of the C-2 and C-3 side chains sandwich the indole ring of Trp60D contained in the thrombin S2 insertion loop defined by the sequence "Tyr-Pro-Pro-Trp." [The thrombin residue numbering used in this study is equivalent to that reported for chymotrypsinogen (Hartley BS, Shotton DM, 1971, The enzymes, vol. 3. New York: Academic Press. pp 323-373).] In contrast to the binding mode of more classical thrombin inhibitors (D-Phe-Pro-Arg-H, NAPAP, Argatroban), this novel class of benzo[b]thiophene derivatives does not engage in hydrogen bond formation with Gly216 of the thrombin active site. A detailed analysis of the three-dimensional structures not only provides a clearer understanding of the interaction of these agents with thrombin, but forms a foundation for rational structure-based drug design. The use of the data from this study has led to the design of derivatives that are up to 2,900-fold more potent than the screening hit 1.  相似文献   

13.
A congeneric series of benzamidine-type ligands with a central proline moiety and a terminal cycloalkyl group—linked by a secondary amine, ether, or methylene bridge—was synthesized as trypsin inhibitors. This series of inhibitors was investigated by isothermal titration calorimetry, crystal structure analysis in two crystal forms, and molecular dynamics simulations. Even though all of these congeneric ligands exhibited essentially the same affinity for trypsin, their binding profiles at the structural, dynamic, and thermodynamic levels are very distinct. The ligands display a pronounced enthalpy/entropy compensation that results in a nearly unchanged free energy of binding, even though individual enthalpy and entropy terms change significantly across the series. Crystal structures revealed that the secondary amine-linked analogs scatter over two distinct conformational families of binding modes that occupy either the inside or of the outside the protein's S3/S4 specificity pocket. In contrast, the ether-linked and methylene-linked ligands preferentially occupy the hydrophobic specificity pocket. This also explains why the latter ligands could only be crystallized in the conformationally restricting closed crystal form whereas the derivative with the highest residual mobility in the series escaped our attempts to crystallize it in the closed form; instead, a well-resolved structure could only be achieved in the open form with the ligand in disordered orientation. These distinct binding modes are supported by molecular dynamics simulations and correlate with the shifting enthalpic/entropic signatures of ligand binding. The examples demonstrate that, at the molecular level, binding modes and thermodynamic binding signatures can be very different even for closely related ligands. However, deviating binding profiles provide the opportunity to optimally address a given target.  相似文献   

14.
Structure-based design led to the discovery of a novel class of renin inhibitors in which an unprecedented phenyl ring filling the S1 site is attached to the phenyl ring filling the S3 pocket. Optimization for several parameters including potency in the presence of human plasma, selectivity against CYP3A4 inhibition and improved rat oral bioavailability led to the identification of 8d which demonstrated antihypertensive efficacy in a transgenic rat model of human hypertension.  相似文献   

15.
Halosalicylamide derivatives were identified from high-throughput screening as potent inhibitors of HCV NS5B polymerase. The subsequent structure and activity relationship revealed the absolute requirement of the salicylamide moiety for optimum activity. Methylation of either the hydroxyl group or the amide group of the salicylamide moiety abolished the activity while the substitutions on both phenyl rings are acceptable. The halosalicylamide derivatives were shown to be non-competitive with respect to elongation nucleotide and demonstrated broad genotype activity against genotype 1-3 HCV NS5B polymerases. Inhibitor competition studies indicated an additive binding mode to the initiation pocket that is occupied by the thiadiazine class of compounds and an additive binding mode to the elongation pocket that is occupied by diketoacids, but a mutually exclusive binding mode with respect to the allosteric thumb pocket that is occupied by the benzimidazole class of inhibitors. Therefore, halosalicylamides represent a novel class of allosteric inhibitors of HCV NS5B polymerase.  相似文献   

16.
The crystal structure of a novel sulfonyl-pyridazinone inhibitor in complex with aldose reductase, the first enzyme of the polyol pathway, has been determined to 1.43 angstroms and 0.95 angstroms resolution. The ternary complex of inhibitor, cofactor and enzyme has been obtained by soaking of preformed crystals. Supposedly due to low solubility in the crystallisation buffer, in both structures the inhibitor shows reduced occupancy of 74% and 46% population, respectively. The pyridazinone head group of the inhibitor occupies the catalytic site, whereas the chloro-benzofuran moiety penetrates into the opened specificity pocket. The high-resolution structure provides some evidence that the pyridazinone group binds in a negatively charged deprotonated state, whereas the neighbouring His110 residue most likely adopts a neutral uncharged status. Since the latter structure is populated by the ligand to only 46%, a second conformation of the C-terminal ligand-binding region can be detected. This conformation corresponds to the closed state of the specificity pocket when no or only small ligands are bound to aldose reductase. The two conformational states are in good agreement with frames observed along a molecular dynamics trajectory describing the transition from closed to open situation. Accordingly, both geometries, superimposed in the averaged crystal structure, correspond to snapshots of the ligand-bound and the unbound state. Isothermal titration calorimetry has been applied to determine the binding constants of the investigated pyridazinone in comparison to the hydantoin sorbinil and the carboxylate-type inhibitors IDD 594 and tolrestat. The pyridazinone exhibits a binding affinity similar to those of tolrestat and sorbinil, and shows slightly reduced affinity compared to IDD 594. These studies elucidating the binding mode and providing information about protonation states of protein side-chains involved in binding of this novel class of inhibitors establish the platform for further structure-based drug design.  相似文献   

17.
Substrate-related potent inhibitors of brain metalloendopeptidase   总被引:10,自引:0,他引:10  
Rat brain metalloendopeptidase (EC 3.4.24.15) generates Leu- and Met-enkephalin from several larger opioid peptides and is capable of degrading a number of neuropeptides. Substrate-related N-(1-carboxy-3-phenylpropyl) peptide derivatives were synthesized and tested for enzyme inhibition. The best of these derivatives, N-[1(RS)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-aminobenzoate, inhibited the enzyme in a competitive manner with a Ki of 16 nM. The data indicate that the carboxyl group of the N-(1-carboxy-3-phenylpropyl) moiety coordinates with the active site zinc atom and that the remaining part of the inhibitor is necessary for interaction with the substrate recognition site of the enzyme. Replacement of the 1-carboxy-3-phenylpropyl group by a carboxymethyl group decreased the inhibitory potency by more than 3 orders of magnitude, emphasizing the importance of the hydrophobic phenyl group for inhibitor binding to a hydrophobic pocket at the S1 subsite. Replacement of the Tyr residue by an Ala residue decreased the inhibitory potency by more than 20-fold. Changes in the structure of the residue interacting with the S1' subsite could cause a more than 60-fold change in inhibition. The inhibitors were either ineffective or only weakly inhibitory against membrane-bound metalloendopeptidase ("enkephalinase", EC 3.4.24.11), an enzyme highly active in rabbit kidney but also present in brain. The data indicate the presence of an extended binding site in the enzyme with residues interacting with S1, S1', and S3' subsites largely determining inhibitor binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Human macrophage elastase (MMP-12) plays an important role in inflammatory processes and has been implicated in diseases such as emphysema and chronic obstructive pulmonary disease (COPD). It is therefore an attractive target for therapeutic agents.As part of a structure-based drug design programme to find new inhibitors of MMP-12, the crystal structures of the MMP-12 catalytic domain (residues 106-268) complexed to three different non-peptidic small molecule inhibitors have been determined. The structures reveal that all three ligands bind in the S1′ pocket but show varying degrees of interaction with the Zn atom. The structures of the complexes with inhibitors CP-271485 and PF-00356231 reveal that their central morpholinone and thiophene rings, respectively, sit over the Zn atom at a distance of approximately 5 Å, locating the inhibitors halfway down the S1′ pocket. In both of these structures, an acetohydroxamate anion, an artefact of the crystallisation solution, chelates the zinc atom. By contrast, the acetohydroxamate anion is displaced by the ligand in the structure of MMP-12 complexed to PD-0359601 (Bayer), a potent zinc chelating N-substituted biaryl butyric acid, used as a reference compound for crystallisation. Although a racemate was used for the crystallisation, the S enantiomer only is bound in the crystal. Important hydrophobic interactions between the inhibitors and residues from the S1′ pocket are observed in all of the structures. The relative selectivity displayed by these ligands for MMP-12 over other MMP family members is discussed.  相似文献   

19.
A series of pyrazole-based thioethers were prepared and found to be potent cathepsin S inhibitors. A crystal structure of 13 suggests that the thioether moiety may bind to the S3 pocket of the enzyme. Additional optimization led to the discovery of aminoethylthioethers with improved enzymatic activity and submicromolar cellular potency.  相似文献   

20.
Peptide deformylase proteins (PDFs) participate in the N-terminal methionine excision pathway of newly synthesized peptides. We show that the human PDF (HsPDF) can deformylate its putative substrates derived from mitochondrial DNA-encoded proteins. The first structural model of a mammalian PDF (1.7 Å), HsPDF, shows a dimer with conserved topology of the catalytic residues and fold as non-mammalian PDFs. The HsPDF C-terminus topology and the presence of a helical loop (H2 and H3), however, shape a characteristic active site entrance. The structure of HsPDF bound to the peptidomimetic inhibitor actinonin (1.7 Å) identified the substrate-binding site. A defined S1′ pocket, but no S2′ or S3′ substrate-binding pockets, exists. A conservation of PDF-actinonin interaction across PDFs was observed. Despite the lack of true S2′ and S3′ binding pockets, confirmed through peptide binding modeling, enzyme kinetics suggest a combined contribution from P2′and P3′ positions of a formylated peptide substrate to turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号