首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

The endothelin B receptor (ETBR) promotes tumorigenesis and melanoma progression through activation by endothelin (ET)-1, thus representing a promising therapeutic target. The stability of hypoxia-inducible factor (HIF)-1α is essential for melanomagenesis and progression, and is controlled by site-specific hydroxylation carried out by HIF-prolyl hydroxylase domain (PHD) and subsequent proteosomal degradation.

Principal Findings

Here we found that in melanoma cells ET-1, ET-2, and ET-3 through ETBR, enhance the expression and activity of HIF-1α and HIF-2α that in turn regulate the expression of vascular endothelial growth factor (VEGF) in response to ETs or hypoxia. Under normoxic conditions, ET-1 controls HIF-α stability by inhibiting its degradation, as determined by impaired degradation of a reporter gene containing the HIF-1α oxygen-dependent degradation domain encompassing the PHD-targeted prolines. In particular, ETs through ETBR markedly decrease PHD2 mRNA and protein levels and promoter activity. In addition, activation of phosphatidylinositol 3-kinase (PI3K)-dependent integrin linked kinase (ILK)-AKT-mammalian target of rapamycin (mTOR) pathway is required for ETBR-mediated PHD2 inhibition, HIF-1α, HIF-2α, and VEGF expression. At functional level, PHD2 knockdown does not further increase ETs-induced in vitro tube formation of endothelial cells and melanoma cell invasiveness, demonstrating that these processes are regulated in a PHD2-dependent manner. In human primary and metastatic melanoma tissues as well as in cell lines, that express high levels of HIF-1α, ETBR expression is associated with low PHD2 levels. In melanoma xenografts, ETBR blockade by ETBR antagonist results in a concomitant reduction of tumor growth, angiogenesis, HIF-1α, and HIF-2α expression, and an increase in PHD2 levels.

Conclusions

In this study we identified the underlying mechanism by which ET-1, through the regulation of PHD2, controls HIF-1α stability and thereby regulates angiogenesis and melanoma cell invasion. These results further indicate that targeting ETBR may represent a potential therapeutic treatment of melanoma by impairing HIF-1α stability.  相似文献   

2.
3.
4.
It has been well established that inflammation plays a critical role in cancer. Chronic inflammation promotes tumorgenesis and metastasis, which suggests that anti-inflammation drugs could act as a tumor suppressor. It is known that the peroxisome proliferator-activated receptor γ (PPARγ) has been implicated in anti-inflammatory responses; however, the anti-tumor effects of PPARγ have not been intensively investigated. In this study, we examined the effects of PPARγ in cancer. We show that the activation of PPARγ by its agonist rosiglitazone (RGZ) reduces cell proliferation rate in inflammatory and tumor-derived U937 cells. Treatment of RGZ suppresses the expression Toll-like receptor 4 (TLR4) and decreases the production of TNF-α in LPS treated U937 cells. This suggests that NF-κB signaling may be involved in anti-tumor effect of RGZ. Our results demonstrate a role of PPARγ in regulation of NF-κB signaling by modulating TLR4 expression and TNF-α production.  相似文献   

5.
6.
7.
GM1 gangliosidosis is a progressive neurodegenerative disease caused by deficiencies in lysosomal acid beta-galactosidase (beta-gal) and involves accumulation and storage of ganglioside GM1 and its asialo form (GA1) in brain and visceral tissues. Similar to the infantile/juvenile human disease forms, B6/129Sv beta-gal knockout (ko) mice express residual tissue beta-gal activity and significant elevations of brain GM1, GA1, and total gangliosides. Previous studies suggested that inbred DBA/2J (D2) mice may model a mild form of the human disease since total brain ganglioside and GM1 concentration is higher while beta-gal specific activity is lower (by 70-80%) in D2 mice than in inbred C57BL/6J (B6) mice and other mouse strains. A developmental genetic analysis was conducted to determine if the genes encoding beta-gal (Bgl) in the D2 and the ko mice were functionally allelic and if the reduced brain beta-gal activity in D2 mice could account for elevations in total brain gangliosides and GM1. Crosses were made between D2 mice homozygous for the Bgld allele (d/d), and either B6/129Sv mice heterozygous for the Bgl+ allele (+/-) or homozygous for the ko Bgl- allele (-/-) to generate d/+ and d/- mice. Specific beta-gal activity (nmol/mg protein/h) showed additive inheritance in brain, liver, and kidney at juvenile (21 days) and adult (255 days) ages with the d/- mice having only about 16% of the beta-gal activity as that in the +/+ mice. These results indicate that the Bgl genes in the D2 and the ko mice are noncomplementing functional alleles. However, the d/- mice did not express GA1 and had total brain ganglioside and GM1 concentrations similar to those in the d/+ and +/+ mice. These results suggest that the reduced brain beta-gal activity alone cannot account for the elevation of total brain gangliosides and GM1 in the D2 mice.  相似文献   

8.
9.
10.
Epithelial cells provide an initial line of defense against damage and pathogens in barrier tissues such as the skin; however this balance is disrupted in obesity and metabolic disease. Skin γδ T cells recognize epithelial damage, and release cytokines and growth factors that facilitate wound repair. We report here that hyperglycemia results in impaired skin γδ T cell proliferation due to altered STAT5 signaling, ultimately resulting in half the number of γδ T cells populating the epidermis. Skin γδ T cells that overcome this hyperglycemic state are unresponsive to epithelial cell damage due to chronic inflammatory mediators, including TNFα. Cytokine and growth factor production at the site of tissue damage was partially restored by administering neutralizing TNFα antibodies in vivo. Thus, metabolic disease negatively impacts homeostasis and functionality of skin γδ T cells, rendering host defense mechanisms vulnerable to injury and infection.  相似文献   

11.
The stress-activated protein kinase Gcn2 regulates protein synthesis by phosphorylation of translation initiation factor eIF2α, from yeast to mammals. The Gcn2 kinase domain (KD) is inherently inactive and requires allosteric stimulation by adjoining regulatory domains. Gcn2 contains a pseudokinase domain (YKD) required for high-level eIF2α phosphorylation in amino acid starved yeast cells; however, the role of the YKD in KD activation was unknown. We isolated substitutions of evolutionarily conserved YKD amino acids that impair Gcn2 activation without reducing binding of the activating ligand, uncharged tRNA, to the histidyl-tRNA synthetase-related domain of Gcn2. Several such Gcn substitutions cluster in predicted helices E and I (αE and αI) of the YKD. We also identified Gcd substitutions, evoking constitutive activation of Gcn2, mapping in αI of the YKD. Interestingly, αI Gcd substitutions enhance YKD-KD interactions in vitro, whereas Gcn substitutions in αE and αI suppress both this effect and the constitutive activation of Gcn2 conferred by YKD Gcd substitutions. These findings indicate that the YKD interacts directly with the KD for activation of kinase function and identify likely sites of direct YKD-KD contact. We propose that tRNA binding to the HisRS domain evokes a conformational change that increases access of the YKD to sites of allosteric activation in the adjoining KD.  相似文献   

12.
《Cell metabolism》2014,19(1):109-121
  1. Download : Download high-res image (211KB)
  2. Download : Download full-size image
  相似文献   

13.
α-Synuclein plays a key role in the pathological neurodegeneration in Parkinson’s disease. Although its contribution to normal physiology remains elusive, the selective degeneration of α-synuclein-containing dopaminergic neurons in Parkinson’s disease may be linked to abnormal α-synuclein induced toxicity. In the present study, a complex of α-synuclein and vesicular monoamine transporter-2 was identified by GST-Pull Down experiment. In wild-type α-synuclein stably transfected SH-SY5Y cell lines, the activity of vesicular monoamine transporter-2 decreased by 31% as determined by [3H] dopamine uptake, and its expression also decreased in both protein and mRNA levels using western and northern blot analysis. Overexpression of wild-type α-synuclein did not induce cell death or apoptosis, but significantly enhanced the intracellular reactive oxygen species level as assayed by flow cytometry. These data suggest that Up-regulated α-synuclein expression inhibits the activity of vesicular monoamine transporter-2, thereby interrupting dopamine homeostasis and resulting in dopaminergic neuron injury in Parkinson’s disease.  相似文献   

14.
To examine the possible role of basic fibroblast growth factor (FGF) in regulating the effects of TNF, we tested the effect of FGF on TNF-mediated PGE2 production and TNF receptor expression in human fibroblasts. We found that, while FGF alone had no effect on PGE2 production, it enhanced the amount of PGE2 produced in response to TNF between 3 and 11-fold. FGF stimulated TNF-induced PGE2 production independent of potential TNF-mediated IL-1 production, as neither anti-IL-1 mAbs nor IL-1 receptor antagonist protein (IRAP) inhibited TNF induced-PGE2 production or the stimulatory effect of FGF. A one minute exposure of cells to FGF prior to removal was sufficient to significantly enhance TNF-induced PGE2 production; the maximal FGF effect was reached after a 6 h preincubation. We also found that FGF significantly enhanced TNF receptor expression. Untreated fibroblasts expressed 3,900 receptors/cell, while cells treated with FGF for 6h expressed 9,500 receptors/cell, a 2.4-fold increase in receptor number; there was no apparent change in affinity for TNF (Kd 3.8×10–11 M). The FGF-mediated increase in TNF receptor expression and TNF-mediated PGE2 production could be abolished by FGF mAbs, indicating a specific FGF effect. These results show that FGF increases TNF receptor expression and suggest that this may account, at least in part, for the ability of FGF to enhance TNF-mediated PGE2 production in human fibroblasts.  相似文献   

15.
16.
17.
Endothelial cells participate in inflammatory events leading to atherogenesis by regulating endothelial cell permeability via the expression of VE-Cadherin and β-catenin and leukocyte recruitment via the expression of E-Selectins and other adhesion molecules. The protein p66Shc acts as a sensor/inducer of oxidative stress and may promote vascular dysfunction. The objective of this study was to investigate the role of p66Shc in tumor necrosis factor TNFα-induced E-Selectin expression and function in human umbilical vein endothelial cells (HUVEC). Exposure of HUVEC to 50 ng/ml TNFα resulted in increased leukocyte transmigration through the endothelial monolayer and E-Selectin expression, in association with augmented phosphorylation of both p66Shc on Ser36 and the stress kinase c-Jun NH2-terminal protein kinase (JNK)-1/2, and higher intracellular reactive oxygen species (ROS) levels. Overexpression of p66Shc in HUVEC resulted in enhanced p66Shc phosphorylation on Ser36, increased ROS and E-Selectin levels, and amplified endothelial cell permeability and leukocyte transmigration through the HUVEC monolayer. Conversely, overexpression of a phosphorylation-defective p66Shc protein, in which Ser36 was replaced by Ala, did not augment ROS and E-Selectin levels, nor modify cell permeability or leukocyte transmigration beyond those found in wild-type cells. Moreover, siRNA-mediated silencing of p66Shc resulted in marked reduction of E-Selectin expression and leukocyte transmigration. In conclusion, p66Shc acts as a novel intermediate in the TNFα pathway mediating endothelial dysfunction, and its action requires JNK-dependent phosphorylation of p66Shc on Ser36.  相似文献   

18.
Tumor necrosis factor (TNF) receptor-associated factor-2 (TRAF2) binds to cIAP1 and cIAP2 (cIAP1/2) and recruits them to the cytoplasmic domain of several members of the TNF receptor (TNFR) superfamily, including the TNF-TNFR1 ligand-receptor complex. Here, we define a cIAP1/2-interacting motif (CIM) within the TRAF-N domain of TRAF2, and we use TRAF2 CIM mutants to determine the role of TRAF2 and cIAP1/2 individually, and the TRAF2-cIAP1/2 interaction, in TNFR1-dependent signaling. We show that both the TRAF2 RING domain and the TRAF2 CIM are required to regulate NF-κB-inducing kinase stability and suppress constitutive noncanonical NF-κB activation. Conversely, following TNFR1 stimulation, cells bearing a CIM-mutated TRAF2 showed reduced canonical NF-κB activation and TNF-induced RIPK1 ubiquitylation. Remarkably, the RING domain of TRAF2 was dispensable for these functions. However, like the TRAF2 CIM, the RING domain of TRAF2 was required for protection against TNF-induced apoptosis. These results show that TRAF2 has anti-apoptotic signaling roles in addition to promoting NF-κB signaling and that efficient activation of NF-κB by TNFR1 requires the recruitment of cIAP1/2 by TRAF2.  相似文献   

19.
The anti-inflammatory peptide annexin-1 binds to formyl peptide receptors (FPR) but little is known about its mechanism of action in the vasculature. Here we investigate the effect of annexin peptide Ac2-26 on NADPH oxidase activity induced by tumour necrosis factor alpha (TNFα) in human endothelial cells. Superoxide release and intracellular reactive oxygen species (ROS) production from NADPH oxidase was measured with lucigenin-enhanced chemiluminescence and 2′,7′-dichlorodihydrofluorescein diacetate, respectively. Expression of NADPH oxidase subunits and intracellular cell adhesion molecule (ICAM-1) and vascular cell adhesion molecule (VCAM-1) were determined by real-time PCR and Western blot analysis. Promoter activity of nuclear factor kappa B (NFκB) was measured by luciferase activity assay. TNFα stimulated NADPH-dependent superoxide release, total ROS formation and expression of ICAM-1and VCAM-1. Pre-treatment with N-terminal peptide of annexin-1 (Ac2-26, 0.5–1.5 µM) reduced all these effects, and the inhibition was blocked by the FPRL-1 antagonist WRW4. Furthermore, TNFα-induced NFκB promoter activity was attenuated by both Ac2-26 and NADPH oxidase inhibitor diphenyliodonium (DPI). Surprisingly, Nox4 gene expression was reduced by TNFα whilst expression of Nox2, p22phox and p67phox remained unchanged. Inhibition of NADPH oxidase activity by either dominant negative Rac1 (N17Rac1) or DPI significantly attenuated TNFα-induced ICAM-1and VCAM-1 expression. Ac2-26 failed to suppress further TNFα-induced expression of ICAM-1 and VCAM-1 in N17Rac1-transfected cells. Thus, Ac2-26 peptide inhibits TNFα-activated, Rac1-dependent NADPH oxidase derived ROS formation, attenuates NFκB pathways and ICAM-1 and VCAM-1 expression in endothelial cells. This suggests that Ac2-26 peptide blocks NADPH oxidase activity and has anti-inflammatory properties in the vasculature which contributes to modulate in reperfusion injury inflammation and vascular disease.  相似文献   

20.
Cyclooxygenase-2 (COX-2) activity has been implicated in the pathogenesis of cerebral ischemia. To determine whether COX-2 activity within the neuron itself exacerbates hypoxic neuronal injury, neuron-enriched cultures were subjected to anoxia. Treatment with COX-2 selective antagonists decreased cell death. Neurons cultured from homozygous COX-2 gene disrupted mice were resistant to hypoxia compared to those of heterozygotes. Infection of primary neurons with AAV expressing COX-2 exacerbated cell death compared to neurons infected with enhanced green fluorescent protein (EGFP) control vector. Addition of PGE2, PGD2 or PGF2α to the medium exacerbated injury, suggesting that the deleterious effects of COX-2 overexpression in hypoxia could be mediated by direct receptor mediated effects of prostaglandins. Overexpression of COX-2 did not increase expression of cyclin D1 or phosphoretinoblastoma protein (pRb), or cleavage of caspase 3 suggesting that this cell cycle mechanism does not mediate COX-2 toxicity in this model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号