首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The Escherichia coli YidC protein belongs to the Oxa1 family of membrane proteins that have been suggested to facilitate the insertion and assembly of membrane proteins either in cooperation with the Sec translocase or as a separate entity. Recently, we have shown that depletion of YidC causes a specific defect in the functional assembly of F1F0 ATP synthase and cytochrome o oxidase. We now demonstrate that the insertion of in vitro-synthesized F1F0 ATP synthase subunit c (F0c) into inner membrane vesicles requires YidC. Insertion is independent of the proton motive force, and proteoliposomes containing only YidC catalyze the membrane insertion of F0c in its native transmembrane topology whereupon it assembles into large oligomers. Co-reconstituted SecYEG has no significant effect on the insertion efficiency. Remarkably, signal recognition particle and its membrane-bound receptor FtsY are not required for the membrane insertion of F0c. In conclusion, a novel membrane protein insertion pathway in E. coli is described in which YidC plays an exclusive role.  相似文献   

2.
A homodimer of b subunits constitutes the peripheral stalk linking the F1 and F0 sectors of the Escherichia coli ATP synthase. Each b subunit has a single-membrane domain. The constraints on the membrane domain have been studied by systematic mutagenesis. Replacement of a segment proximal to the cytoplasmic side of the membrane had minimal impact on F1F0 ATP synthase. However, multiple substitutions on the periplasmic side resulted in defects in assembly of the enzyme complex. These mutants had insufficient oxidative phosphorylation to support growth, and biochemical studies showed little F1F0 ATPase and no detectable ATP-driven proton pumping activity. Expression of the b N2A,T6A,Q10A subunit was also oxidative phosphorylation deficient, but the b N2A,T6A,Q10A protein was incorporated into an F1F0 complex. Single amino acid substitutions had minimal reductions in F1F0 ATP synthase function. The evidence suggests that the b subunit membrane domain has several sites of interaction contributing to assembly of F0, and that these interactions are strongest on the periplasmic side of the bilayer.  相似文献   

3.
H+-FOF1-ATP synthase couples proton flow through its membrane portion, FO, to the synthesis of ATP in its headpiece, F1. Upon reversal of the reaction the enzyme functions as a proton pumping ATPase. Even in the simplest bacterial enzyme the ATPase activity is regulated by several mechanisms, involving inhibition by MgADP, conformational transitions of the ε subunit, and activation by protonmotive force. Here we report that the Met23Lys mutation in the γ subunit of the Rhodobacter capsulatus ATP synthase significantly impaired the activation of ATP hydrolysis by protonmotive force. The impairment in the mutant was due to faster enzyme deactivation that was particularly evident at low ATP/ADP ratio. We suggest that the electrostatic interaction of the introduced γLys23 with the DELSEED region of subunit β stabilized the ADP-inhibited state of the enzyme by hindering the rotation of subunit γ rotation which is necessary for the activation.  相似文献   

4.
The FoF1 synthase produces ATP from ADP and inorganic phosphate. The γ subunit of FoF1 ATP synthase in photosynthetic organisms, which is the rotor subunit of this enzyme, contains a characteristic β-hairpin structure. This structure is formed from an insertion sequence that has been conserved only in phototrophs. Using recombinant subcomplexes, we previously demonstrated that this region plays an essential role in the regulation of ATP hydrolysis activity, thereby functioning in controlling intracellular ATP levels in response to changes in the light environment. However, the role of this region in ATP synthesis has long remained an open question because its analysis requires the preparation of the whole FoF1 complex and a transmembrane proton-motive force. In this study, we successfully prepared proteoliposomes containing the entire FoF1 ATP synthase from a cyanobacterium, Synechocystis sp. PCC 6803, and measured ATP synthesis/hydrolysis and proton-translocating activities. The relatively simple genetic manipulation of Synechocystis enabled the biochemical investigation of the role of the β-hairpin structure of FoF1 ATP synthase and its activities. We further performed physiological analyses of Synechocystis mutant strains lacking the β-hairpin structure, which provided novel insights into the regulatory mechanisms of FoF1 ATP synthase in cyanobacteria via the phototroph-specific region of the γ subunit. Our results indicated that this structure critically contributes to ATP synthesis and suppresses ATP hydrolysis.  相似文献   

5.
Mitochondrial F1Fo-ATP synthase catalyzes the formation of ATP from ADP and inorganic phosphate. The enzyme is found in monomeric, dimeric and higher oligomeric forms in the inner mitochondrial membrane. Dimerization of ATP synthase complexes is a prerequisite for the generation of larger oligomers that promote membrane bending and formation of tubular cristae membranes. Two small proteins of the membrane-embedded Fo-domain, subunit e (Su e; Atp21) and Su g (Atp20), were identified as dimer-specific subunits of yeast ATP synthase and shown to be required for stabilization of the dimers. We have identified two distinct monomeric forms of yeast ATP synthase. Su e and Su g are present not only in the dimer but also in one of the monomeric forms. We demonstrate that Su e and Su g sequentially assemble with monomeric ATP synthase to form a dimerization-competent primed monomer. We conclude that association of Su e and Su g with monomeric F1Fo-ATP synthase represents an initial step of oligomer formation.  相似文献   

6.
The F0 sector of the ATP synthase complex facilitates proton translocation through the membrane, and via interaction with the F1 sector, couples proton transport to ATP synthesis. The molecular mechanism of function is being probed by a combination of mutant analysis and structural biochemistry, and recent progress on theEscherichia coli F0 sector is reviewed here. TheE. coli F0 is composed of three types of subunits (a, b, andc) and current information on their folding and organization in F0 is reviewed. The structure of purified subunitc in chloroform-methanol-H2O resembles that in native F0, and progress in determining the structure by NMR methods is reviewed. Genetic experiments suggest that the two helices of subunitc must interact as a functional unit around an essential carboxyl group as protons are transported. In addition, a unique class of suppressor mutations identify a transmembrane helix of subunita that is proposed to interact with the bihelical unit of subunitc during proton transport. The role of multiple units of subunitc in coupling proton translocation to ATP synthesis is considered. The special roles of Asp61 of subunitc and Arg210 of subunita in proton translocation are also discussed.  相似文献   

7.
Extracellular ATP formation from ADP and inorganic phosphate, attributed to the activity of a cell surface ATP synthase, has so far only been reported in cultures of some proliferating and tumoral cell lines. We now provide evidence showing the presence of a functionally active ecto-FoF1-ATP synthase on the plasma membrane of normal tissue cells, i.e. isolated rat hepatocytes. Both confocal microscopy and flow cytometry analysis show the presence of subunits of F1 (α/β and γ) and Fo (FoI-PVP(b) and OSCP) moieties of ATP synthase at the surface of rat hepatocytes. This finding is confirmed by immunoblotting analysis of the hepatocyte plasma membrane fraction. The presence of the inhibitor protein IF1 is also detected on the hepatocyte surface. Activity assays show that the ectopic-ATP synthase can work both in the direction of ATP synthesis and hydrolysis. A proton translocation assay shows that both these mechanisms are accompanied by a transient flux of H+ and are inhibited by F1 and Fo-targeting inhibitors. We hypothesise that ecto-FoF1-ATP synthase may control the extracellular ADP/ATP ratio, thus contributing to intracellular pH homeostasis.  相似文献   

8.

Background

F1FO ATP synthases catalyze the synthesis of ATP from ADP and inorganic phosphate driven by ion motive forces across the membrane. A number of ATP synthases have been characterized to date. The one from the hyperthermophilic bacterium Aquifex aeolicus presents unique features, i.e. a putative heterodimeric stalk. To complement previous work on the native form of this enzyme, we produced it heterologously in Escherichia coli.

Methods

We designed an artificial operon combining the nine genes of A. aeolicus ATP synthase, which are split into four clusters in the A. aeolicus genome. We expressed the genes and purified the enzyme complex by affinity and size-exclusion chromatography. We characterized the complex by native gel electrophoresis, Western blot, and mass spectrometry. We studied its activity by enzymatic assays and we visualized its structure by single-particle electron microscopy.

Results

We show that the heterologously produced complex has the same enzymatic activity and the same structure as the native ATP synthase complex extracted from A. aeolicus cells. We used our expression system to confirm that A. aeolicus ATP synthase possesses a heterodimeric peripheral stalk unique among non-photosynthetic bacterial F1FO ATP synthases.

Conclusions

Our system now allows performing previously impossible structural and functional studies on A. aeolicus F1FO ATP synthase.

General significance

More broadly, our work provides a valuable platform to characterize many other membrane protein complexes with complicated stoichiometry, i.e. other respiratory complexes, the nuclear pore complex, or transporter systems.  相似文献   

9.
The peripheral stalk of F1F0 ATP synthase is composed of a parallel homodimer of b subunits that extends across the cytoplasmic membrane in F0 to the top of the F1 sector. The stalk serves as the stator necessary for holding F1 against movement of the rotor. A series of insertions and deletions have been engineered into the hydrophilic domain that interacts with F1. Only the hydrophobic segment from {val-121} to {ala-132} and the extreme carboxyl terminus proved to be highly sensitive to mutation. Deletions in either site apparently abolished enzyme function as a result of defects is assembly of the F1F0 complex. Other mutations manipulating the length of the sequence between these two areas had only limited effects on enzyme function. Expression of a b subunit with insertions with as few as two amino acids into the hydrophobic segment also resulted in loss of F1F0 ATP synthase. However, a fully defective b subunit with seven additional amino acids could be stabilized in a heterodimeric peripheral stalk within a functional F1F0 complex by a normal b subunit.  相似文献   

10.
Inverted membrane vesicles of Gram-positive actinobacteria Streptomyces fradiae, S. lividans, and S. avermitilis have been prepared and membrane-bound F0F1 ATP synthase has been biochemically characterized. It has been shown that the ATPase activity of membrane-bound F0F1 complex is Mg2+-dependent and moderately stimulated by high concentrations of Ca2+ ions (10–20 mM). The ATPase activity is inhibited by N,N′-dicyclohexylcarbodiimide and oligomycin A, typical F0F1 ATPase inhibitors that react with the membrane-bound F0 complex. The assay of biochemical properties of the F0F1 ATPases of Streptomycetes in all cases showed the presence of ATPase populations highly susceptible and insensitive to oligomycin A. The in vitro labeling and inhibitory assay showed that the inverted phospholipid vesicles of S. fradiae contained active membrane-bound Ser/Thr protein kinase(s) phosphorylating the proteins of the F0F1 complex. Inhibition of phosphorylation leads to decrease of the ATPase activity and increase of its susceptibility to oligomycin. The in vivo assay confirmed the enhancement of actinobacteria cell sensitivity to oligomycin after inhibition of endogenous phosphorylation. The sequencing of the S. fradiae genes encoding oligomycin-binding A and C subunits of F0F1 ATP synthase revealed their close phylogenetic relation to the genes of S. lividans and S. avermitilis.  相似文献   

11.
In eukaryotic and prokaryotic cells, F-ATP synthases provide energy through the synthesis of ATP. The chloroplast F-ATP synthase (CF1FO-ATP synthase) of plants is integrated into the thylakoid membrane via its FO-domain subunits a, b, b’ and c. Subunit c with a stoichiometry of 14 and subunit a form the gate for H+-pumping, enabling the coupling of electrochemical energy with ATP synthesis in the F1 sector.Here we report the crystallization and structure determination of the c14-ring of subunit c of the CF1FO-ATP synthase from spinach chloroplasts. The crystals belonged to space group C2, with unit-cell parameters a=144.420, b=99.295, c=123.51 Å, and β=104.34° and diffracted to 4.5 Å resolution. Each c-ring contains 14 monomers in the asymmetric unit. The length of the c-ring is 60.32 Å, with an outer ring diameter 52.30 Å and an inner ring width of 40 Å.  相似文献   

12.
The classical view of oxidative phosphorylation is that a proton motive force (PMF) generated by the respiratory chain complexes fuels ATP synthesis via ATP synthase. Yet, under glycolytic conditions, ATP synthase in its reverse mode also can contribute to the PMF. Here, we dissected these two functions of ATP synthase and the role of its inhibitory factor 1 (IF1) under different metabolic conditions. pH profiles of mitochondrial sub‐compartments were recorded with high spatial resolution in live mammalian cells by positioning a pH sensor directly at ATP synthase’s F1 and FO subunits, complex IV and in the matrix. Our results clearly show that ATP synthase activity substantially controls the PMF and that IF1 is essential under OXPHOS conditions to prevent reverse ATP synthase activity due to an almost negligible ΔpH. In addition, we show how this changes lateral, transmembrane, and radial pH gradients in glycolytic and respiratory cells.  相似文献   

13.
Interactions between subunit a and oligomeric subunit c are essential for the coupling of proton translocation to rotary motion in the ATP synthase. A pair of previously described mutants, R210Q/Q252R and P204T/R210Q/Q252R [L.P. Hatch, G.B. Cox and S.M. Howitt, The essential arginine residue at position 210 in the a subunit of the Escherichia coli ATP synthase can be transferred to position 252 with partial retention of activity, J. Biol. Chem. 270 (1995) 29407-29412] has been constructed and further analyzed. These mutants, in which the essential arginine of subunit a, R210, was switched with a conserved glutamine residue, Q252, are shown here to be capable of both ATP synthesis by oxidative phosphorylation, and ATP-driven proton translocation. In addition, lysine can replace the arginine at position 252 with partial retention of both activities. The pH dependence of ATP-driven proton translocation was determined after purification of mutant enzymes, and reconstitution into liposomes. Proton translocation by the lysine mutant, and to a lesser extent the arginine mutant, dropped off sharply above pH 7.5, consistent with the requirement for a positive charge during function. Finally, the rates of ATP synthesis and of ATP-driven proton translocation were completely inhibited by treatment with DCCD (N,N′-dicyclohexylcarbodiimide), while rates of ATP hydrolysis by the mutants were not significantly affected, indicating that DCCD modification disrupts the F1-Fo interface. The results suggest that minimal requirements for proton translocation by the ATP synthase include a positive charge in subunit a and a weak interface between subunit a and oligomeric subunit c.  相似文献   

14.
The a and b subunits constitute the stator elements in the F0 sector of F1F0-ATP synthase.Both subunits have been difficult to study by physical means, so most of the information onstructure and function relationships in the a and b subunits has been obtained using mutagenesisin combination with biochemical methods. These approaches were used to demonstrate thatthe a subunit in association with the ring of c subunits houses the proton channel throughF1F0-ATP synthase. The map of the amino acids contributing to the proton channel is probablycomplete. The two b subunits dimerize, forming an extended flexible unit in the peripheralstalk linking the F1 and F0 sectors. The unique characteristics of specific amino acid substitutionsaffecting the a and b subunits suggested differential effects on rotation during F1F0-ATPaseactivity.  相似文献   

15.
ATP synthesis by oxidative phosphorylation and photophosphorylation, catalyzed by F1F0-ATP synthase, is the fundamental means of cell energy production. Earlier mutagenesis studies had gone some way to describing the mechanism. More recently, several X-ray structures at atomic resolution have pictured the catalytic sites, and real-time video recordings of subunit rotation have left no doubt of the nature of energy coupling between the transmembrane proton gradient and the catalytic sites in this extraordinary molecular motor. Nonetheless, the molecular events that are required to accomplish the chemical synthesis of ATP remain undefined. In this review we summarize current state of knowledge and present a hypothesis for the molecular mechanism of ATP synthesis.  相似文献   

16.
In Escherichia coli, the F1FO ATP synthase b subunits house a conserved arginine in the tether domain at position 36 where the subunit emerges from the membrane. Previous experiments showed that substitution of isoleucine or glutamate result in a loss of enzyme activity. Double mutants have been constructed in an attempt to achieve an intragenic suppressor of the b arg36→ile and the b arg36→glu mutations. The b arg36→ile mutation could not be suppressed. In contrast, the phenotypic defect resulting from the b arg36→glu mutation was largely suppressed in the b arg36→glu,glu39→arg double mutant. E. coli expressing the b arg36→glu,glu39→arg subunit grew well on succinate-based medium. F1FO ATP synthase complexes were more efficiently assembled and ATP driven proton pumping activity was improved. The evidence suggests that efficient coupling in F1FO ATP synthase is dependent upon a basic amino acid located at the base of the peripheral stalk.  相似文献   

17.
Summary The atp operon from the extreme alkaliphile Bacillus firmus OF4 was cloned and sequenced, and shown to contain genes for the eight structural subunits of the ATP synthase, preceded by a ninth gene predicted to encode a 14 kDa hydrophobic protein. The arrangement of genes is identical to that of the atp operons from Escherichia coli, Bacillus megaterium, and thermophilic Bacillus PS3. The deduced amino acid sequences of the subunits of the enzyme are also similar to their homologs in other ATP synthases, except for several unusual substitutions, particularly in the a and c subunits. These substitutions are in domains that have been implicated in the mechanism of proton translocation through F0-ATPase, and therefore could contribute to the gating properties of the alkaliphile ATP synthase or its capacity for proton capture.  相似文献   

18.
A method has been developed to allow the level of F0F1ATP synthase capacity and the quantity of IF1 bound to this enzyme be measured in single biopsy samples of goat heart. ATP synthase capacity was determined from the maximal mitochondrial ATP hydrolysis rate and IF1 content was determined by detergent extraction followed by blue native gel electrophoresis, two-dimensional SDS-PAGE and immunoblotting with anti-IF1 antibodies.Anaesthetized open-chest goats were subjected to ischemic preconditioning and/or sudden increases of coronary blood flow (CBF) (reactive hyperemia). When hyperemia was induced before ischemic preconditioning, a steep increase in synthase capacity, followed by a deep decrease, was observed. In contrast, hyperemia did not affect synthase capacity when applied after ischemic preconditioning. Similar effects could be produced in vitro by treatment of heart biopsy samples with anoxia (down-regulation of the ATP synthase) or high-salt or high-pH buffers (up-regulation). We show that both in vitro and in vivo the same close inverse correlation exists between enzyme activity and IF1 content, demonstrating that under all conditions tested the only significant modulator of the enzyme activity was IF1. In addition, both in vivo and in vitro, 1.3-1.4 mol of IF1 was predicted to fully inactivate 1 mol of synthase, thus excluding the existence of significant numbers of non-inhibitory binding sites for IF1 in the F0 sector.  相似文献   

19.
Membrane-bound ATP synthases (F1F0) catalyze the synthesis of ATP via a rotary catalyticmechanism utilizing the energy of an electrochemical ion gradient. The transmembrane potentialis supposed to propel rotation of a subunit c ring of F0 together with subunits and of F1,hereby forming the rotor part of the enzyme, whereas the remainder of the F1F0 complexfunctions as a stator for compensation of the torque generated during rotation. This reviewfocuses on our recent work on the stator part of the F0 complex, e.g., subunits a and b. Usingepitope insertion and antibody binding, subunit a was shown to comprise six transmembranehelixes with both the N- and C-terminus oriented toward the cytoplasm. By use of circulardichroism (CD) spectroscopy, the secondary structure of subunit b incorporated intoproteoliposomes was determined to be 80% -helical together with 14% turn conformation, providingflexibility to the second stalk. Reconstituted subunit b together with isolated ac subcomplexwas shown to be active in proton translocation and functional F1 binding revealing the nativeconformation of the polypeptide chain. Chemical crosslinking in everted membrane vesiclesled to the formation of subunit b homodimers around residues bQ37 to bL65, whereas bA32Ccould be crosslinked to subunit a, indicating a close proximity of subunits a and b near themembrane. Further evidence for the proposed direct interaction between subunits a and b wasobtained by purification of a stable ab 2 subcomplex via affinity chromatography using Histags fused to subunit a or b. This ab 2 subcomplex was shown to be active in proton translocationand F1 binding, when coreconstituted with subunit c. Consequences of crosslink formationand subunit interaction within the F1F0 complex are discussed.  相似文献   

20.
For functional characterization, we isolated the F1FO-ATP synthase of the thermophilic cyanobacterium Thermosynechococcus elongatus. Because of the high content of phycobilisomes, a combination of dye-ligand chromatography and anion exchange chromatography was necessary to yield highly pure ATP synthase. All nine single F1FO subunits were identified by mass spectrometry. Western blotting revealed the SDS stable oligomer of subunits c in T. elongatus. In contrast to the mass archived in the database (10,141 Da), MALDI-TOF-MS revealed a mass of the subunit c monomer of only 8238 Da. A notable feature of the ATP synthase was its ability to synthesize ATP in a wide temperature range and its stability against chaotropic reagents. After reconstitution of F1FO into liposomes, ATP synthesis energized by an applied electrochemical proton gradient demonstrated functional integrity. The highest ATP synthesis rate was determined at the natural growth temperature of 55 °C, but even at 95 °C ATP production occurred. In contrast to other prokaryotic and eukaryotic ATP synthases which can be disassembled with Coomassie dye into the membrane integral and the hydrophilic part, the F1FO-ATP synthase possessed a particular stability. Also with the chaotropic reagents sodium bromide and guanidine thiocyanate, significantly harsher conditions were required for disassembly of the thermophilic ATP synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号