共查询到8条相似文献,搜索用时 15 毫秒
1.
Kida H Sugano Y Iizuka R Fujihashi M Yohda M Miki K 《Journal of molecular biology》2008,383(3):465-474
Prefoldin (PFD) is a heterohexameric molecular chaperone that is found in eukaryotic cytosol and archaea. PFD is composed of α and β subunits and forms a “jellyfish-like” structure. PFD binds and stabilizes nascent polypeptide chains and transfers them to group II chaperonins for completion of their folding. Recently, the whole genome of Thermococcus kodakaraensis KOD1 was reported and shown to contain the genes of two α and two β subunits of PFD. The genome of Thermococcus strain KS-1 also possesses two sets of α (α1 and α2) and β subunits (β1 and β2) of PFD (TsPFD). However, the functions and roles of each of these PFD subunits have not been investigated in detail. Here, we report the crystal structure of the TsPFD β1 subunit at 1.9 Å resolution and its functional analysis. TsPFD β1 subunits form a tetramer with four coiled-coil tentacles resembling the jellyfish-like structure of heterohexameric PFD. The β hairpin linkers of β1 subunits assemble to form a β barrel “body” around a central fourfold axis. Size-exclusion chromatography and multi-angle light-scattering analyses show that the β1 subunits form a tetramer at pH 8.0 and a dimer of tetramers at pH 6.8. The tetrameric β1 subunits can protect against aggregation of relatively small proteins, insulin or lysozyme. The structural and biochemical analyses imply that PFD β1 subunits act as molecular chaperones in living cells of some archaea. 相似文献
2.
Yu Hirano Makoto Higuchi Hirozo Oh-oka Zheng-Yu Wang 《Journal of molecular biology》2010,397(5):1175-1187
In green sulfur photosynthetic bacteria, the cytochrome cz (cyt cz) subunit in the reaction center complex mediates electron transfer mainly from menaquinol/cytochrome c oxidoreductase to the special pair (P840) of the reaction center. The cyt cz subunit consists of an N-terminal transmembrane domain and a C-terminal soluble domain that binds a single heme group. The periplasmic soluble domain has been proposed to be highly mobile and to fluctuate between oxidoreductase and P840 during photosynthetic electron transfer. We have determined the crystal structure of the oxidized form of the C-terminal functional domain of the cyt cz subunit (C-cyt cz) from thermophilic green sulfur bacterium Chlorobium tepidum at 1.3-Å resolution. The overall fold of C-cyt cz consists of four α-helices and is similar to that of class I cytochrome c proteins despite the low similarity in their amino acid sequences. The N-terminal structure of C-cyt cz supports the swinging mechanism previously proposed in relation with electron transfer, and the surface properties provide useful information on possible interaction sites with its electron transfer partners. Several characteristic features are observed for the heme environment: These include orientation of the axial ligands with respect to the heme plane, surface-exposed area of the heme, positions of water molecules, and hydrogen-bond network involving heme propionate groups. These structural features are essential for elucidating the mechanism for regulating the redox state of cyt cz. 相似文献
3.
4.
Chmelar J Calvo E Pedra JH Francischetti IM Kotsyfakis M 《Journal of Proteomics》2012,75(13):3842-3854
Ticks are mostly obligatory blood feeding ectoparasites that have an impact on human and animal health. In addition to direct damage due to feeding, some tick species serve as the vectors for the causative agents of several diseases, such as the spirochetes of the genus Borrelia causing Lyme disease, the virus of tick-borne encephalitis, various Rickettsial pathogens or even protozoan parasites like Babesia spp. Hard ticks are unique among bloodfeeders because of their prolonged feeding period that may last up to two weeks. During such a long period of blood uptake, the host develops a wide range of mechanisms to prevent blood loss. The arthropod ectoparasite, in turn, secretes saliva in the sites of bite that assists blood feeding. Indeed, tick saliva represents a rich source of proteins with potent pharmacologic action that target different mechanisms of coagulation, platelet aggregation and vasoconstriction. Tick adaptation to their vertebrate hosts led to the inclusion of a powerful protein armamentarium in their salivary secretion that has been investigated by high-throughput methods. The resulting knowledge can be exploited for the isolation of novel antihemostatic agents. Here we review the tick salivary antihemostatics and their characterized functions at the molecular and cellular levels. 相似文献
5.
A homodimeric GrpE protein functions as a nucleotide exchange factor of the eubacterium DnaK molecular chaperone system. The co-chaperone GrpE accelerates ADP dissociation from, and promotes ATP binding to, DnaK, which cooperatively facilitates the DnaK chaperone cycle with another co-chaperone, DnaJ. GrpE characteristically undergoes two-step conformational changes in response to elevation of the environmental temperature. In the first transition at heat-shock temperatures, a fully reversible and functionally deficient structural alteration takes place in GrpE, and then the higher temperatures lead to the irreversible dissociation of the GrpE dimer into monomers as the second transition. GrpE is also thought to be a thermosensor of the DnaK system, since it is the only member of the DnaK system that changes its structure reversibly and loses its function at heat-shock temperatures of various organisms. We here report the crystal structure of GrpE from Thermus thermophilus HB8 (GrpETth) at 3.23 Å resolution. The resolved structure is compared with that of GrpE from mesophilic Escherichia coli (GrpEEco), revealing structural similarities, particularly in the DnaK interaction regions, and structural characteristics for the thermal stability of GrpETth. In addition, the structure analysis raised the possibility that the polypeptide chain in the reported GrpEEco structure was misinterpreted. Comparison of these two GrpE structures combined with the results of limited proteolysis experiments provides insight into the protein dynamics of GrpETth correlated with the shift of temperature, and also suggests that the localized and partial unfolding at the plausible DnaK interaction sites of GrpETth causes functional deficiency of nucleotide exchange factor in response to the heat shock. 相似文献
6.
Timothy M. Allison Jeffrey A. Yeoman Richard D. Hutton Fiona C. Cochrane Geoffrey B. Jameson Emily J. Parker 《Biochimica et Biophysica Acta - Proteins and Proteomics》2010,1804(7):1526-1536
3-Deoxy-d-manno-octulosonate 8-phosphate synthase (KDO8PS) catalyzes the reaction between phosphoenol pyruvate and d-arabinose 5-phosphate to generate KDO8P. This reaction is part of the biosynthetic pathway to 3-deoxy-d-manno-octulosonate, a component of the lipopolysaccharide of the Gram-negative bacterial cell wall. Two distinct groups of KDO8PSs exist, differing by the absolute requirement of a divalent metal ion. In this study Acidithiobacillus ferrooxidans KDO8PS has been expressed and purified and shown to require a divalent metal ion, with Mn2+, Co2+ and Cd2+ (in decreasing order) being able to restore activity to metal-free enzyme. Cd2+ significantly enhanced the stability of the enzyme, raising the Tm by 14 °C. d-Glucose 6-phosphate and d-erythrose 4-phosphate were not substrates for A. ferrooxidans KDO8PS, whereas 2-deoxy-d-ribose 5-phosphate was a poor substrate and there was negligible activity with d-ribose 5-phosphate. The 243AspGlyPro245 motif is absolutely conserved in the metal-independent group of synthases, but the Gly and Pro sites are variable in the metal-dependent enzymes. Substitution of the putative metal-binding Asp243 to Ala in A. ferrooxidans KDO8PS gave inactive enzyme, whereas substitutions Asp243Glu or Pro245Ala produced active enzymes with altered metal-dependency profiles. Prior studies indicated that exchange of a metal-binding Cys for Asn converts metal-dependent KDO8P synthase into a metal-independent form. Unexpectedly, this mutation in A. ferrooxidans KDO8P synthase (Cys21Asn) gave inactive enzyme. This finding, together with modest activity towards 2-deoxy-d-ribose 5-phosphate suggests similarities between the A. ferrooxidans KDO8PS and the related metal-dependent 3-deoxy-d-arabino-heptulosonate phosphate synthase, and highlights the importance of the AspGlyPro loop in positioning the substrate for effective catalysis in all KDO8P synthases. 相似文献
7.
8.
Horst Joachim Schirra Rosemary F. Guarino David J. Craik 《Journal of molecular biology》2010,395(3):609-626
The 53-amino-acid trypsin inhibitor 1 from Nicotiana alata (T1) belongs to the potato type II family also known as the PinII family of proteinase inhibitors, one of the major families of canonical proteinase inhibitors. T1 contains four disulfide bonds, two of which (C4-C41 and C8-C37) stabilize the reactive-site loop. To investigate the influence of these two disulfide bonds on the structure and function of potato II inhibitors, we constructed two variants of T1, C4A/C41A-T1 and C8A/C37A-T1, in which these two disulfide bonds were individually removed and replaced by alanine residues. Trypsin inhibition assays show that wild-type T1 has a Ki of < 5 nM, C4A/C41A-T1 has a weaker Ki of ∼ 350 nM, and the potency of the C8A/C37A variant is further decreased to a Ki of ∼ 1.8 μM. To assess the influence of the disulfide bonds on the structure of T1, we determined the structure and dynamics of both disulfide variants by NMR spectroscopy. The structure of C4A/C41A-T1 and the amplitude of intrinsic flexibility in the reactive-site loop resemble that of the wild-type protein closely, despite the lack of the C4-C41 disulfide bond, whereas the timescale of motions is markedly decreased. The rescue of the structure despite loss of a disulfide bond is due to a previously unrecognized network of interactions, which stabilizes the structure of the reactive-site loop in the region of the missing disulfide bond, while allowing intrinsic motions on a fast (picosecond-nanosecond) timescale. In contrast, no comparable interactions are present around the C8-C37 disulfide bond. Consequently, the reactive-site loop becomes disordered and highly flexible in the structure of C8A/C37A-T1, making it unable to bind to trypsin. Thus, the reactive-site loop of T1 is stabilized differently by the C8-C37 and C4-C41 disulfide bonds. The C8-C37 disulfide bond is essential for the inhibitory activity of T1, whereas the C4-C41 disulfide bond is not as critical for maintaining the three-dimensional structure and function of the molecule but is responsible for maintaining flexibility of the reactive-site loop on a microsecond-nanosecond timescale. 相似文献