共查询到20条相似文献,搜索用时 14 毫秒
1.
Collin M. Dyer 《Journal of molecular biology》2009,388(1):71-17176
The high-resolution structures of nearly all the proteins that comprise the bacterial flagellar motor switch complex have been solved; yet a clear picture of the switching mechanism has not emerged. Here, we used NMR to characterize the interaction modes and solution properties of a number of these proteins, including several soluble fragments of the flagellar motor proteins FliM and FliG, and the response-regulator CheY. We find that activated CheY, the switch signal, binds to a previously unidentified region of FliM, adjacent to the FliM-FliM interface. We also find that activated CheY and FliG bind with mutual exclusivity to this site on FliM, because their respective binding surfaces partially overlap. These data support a model of CheY-driven motor switching wherein the binding of activated CheY to FliM displaces the carboxy-terminal domain of FliG (FliGC) from FliM, modulating the FliGC-MotA interaction, and causing the motor to switch rotational sense as required for chemotaxis. 相似文献
2.
Richard W. Branch Michael N. SayeghChong Shen Vedavalli S.J. Nathan Howard C. Berg 《Journal of molecular biology》2014,426(19):3314-3324
Sensory adaptation in the Escherichia coli chemosensory pathway has been the subject of interest for decades, with investigation focusing on the receptors that process extracellular inputs. Recent studies demonstrate that the flagellar motors responsible for cell locomotion also play a role, adding or subtracting FliM subunits to maximise sensitivity to pathway signals. It is difficult to reconcile this FliM remodelling with the observation that partner FliN subunits are relatively static fixtures in the motor. By fusing a fluorescent protein internally to FliN, we show that there is in fact significant FliN remodelling. The kinetics and stoichiometry of FliN in steady state and in adapting motors are investigated and found to match the behaviour of FliM in all respects except for timescale where FliN rates are about 4 times slower. We notice that motor adaptation is slower in the presence of the fluorescent protein, indicating a possible source for the difference. The behaviour of FliM and FliN is consistent with a kinetic and stoichiometric model that contradicts the traditional view of a packed, rigid motor architecture. 相似文献
3.
The bacterial flagellar motor is a rotary motor driven by the electrochemical potentials of specific ions across the cell membrane. Direct interactions between the rotor protein FliG and the stator protein MotA are thought to generate the rotational torque. Here, we used total internal reflection fluorescent microscopy to observe the localization of green fluorescent protein (GFP)-fused FliG in Escherichia coli cells. We identified three types of fluorescent punctate signals: immobile dots, mobile dots that exhibited simple diffusion, and mobile dots that exhibited restricted diffusion. When GFP-FliG was expressed in a DeltafliG background, most of the cells were not mobile. When the cells were tethered to a glass side, however, rotating cells were commonly observed and a single fluorescent dot was always observed at the rotational center of the tethered cell. These fluorescent dots were likely positions at which functional GFP-FliG had been incorporated into a flagellar motor. Our results suggest that flagellar basal bodies diffuse in the cytoplasmic membrane until the axial structure and/or other structures assemble. 相似文献
4.
Junhua Yuan 《Biophysical journal》2010,98(10):2121-2126
In Escherichia coli, the behavior of the flagellar rotary motor near zero load can be studied by scattering light from nanogold spheres attached to proximal hooks of cells lacking flagellar filaments. We used this method to monitor changes in speed when cells were subjected to changes in temperature or shifted from a medium made with H2O to one made with D2O. In H2O, the speed increased with temperature in a near-exponential manner, with an activation enthalpy of 52 ± 4 kJ/mol (12.0 ± 1.0 kcal/mol). In D2O, the speed increased in a similar manner, with an activation enthalpy of 50 ± 4 kJ/mol. The speed in H2O was higher than that in D2O by a factor of 1.53 ± 0.14. We performed comparison studies of variations in temperature and solvent isotope, using motors operating at high loads. The variations were small, consistent with previous observations. The implications of these results for proton translocation are discussed. 相似文献
5.
The MotA and MotB proteins of Escherichia coli serve two functions. The MotA4MotB2 complex attaches to the cell wall via MotB to form the stator of the flagellar motor. The complex also couples the flow of hydrogen ions across the cell membrane to movement of the rotor. The TM3 and TM4 transmembrane helices of MotA and the single TM of MotB comprise the proton channel, which is inactive until the complex assembles into a motor. Here, we identify a segment of the MotB protein that acts as a plug to prevent premature proton flow. The plug is in the periplasm just C-terminal to the MotB TM. It consists of an amphipathic alpha helix flanked by Pro52 and Pro65. When MotA is over-expressed with MotB deleted for residues 51-70, a massive influx of protons acidifies the cytoplasm without significantly depleting the proton motive force. Either that acidification or some sequela thereof, such as potassium or water efflux from the cells, inhibits growth. The Pro residues and Ile58, Tyr61, and Phe62 are essential for plug function. Cys-substituted MotB proteins form a disulfide bond between the two plugs that hold the channels open, and the plugs function intrans within the MotA4MotB2 complex. We present a model in which the MotA4MotB2 complex forms in the bulk membrane. Before association with a motor, we propose the plugs insert into the cell membrane parallel with its periplasmic face and interfere with channel formation. When a complex incorporates into a motor, the plugs leave the membrane and associate with each other via their hydrophobic faces to hold the proton channel open. 相似文献
6.
The bacterial flagellar motor is a highly efficient rotary machine used by many bacteria to propel themselves. It has recently been shown that at low speeds its rotation proceeds in steps. Here we propose a simple physical model, based on the storage of energy in protein springs, that accounts for this stepping behavior as a random walk in a tilted corrugated potential that combines torque and contact forces. We argue that the absolute angular position of the rotor is crucial for understanding step properties and show this hypothesis to be consistent with the available data, in particular the observation that backward steps are smaller on average than forward steps. We also predict a sublinear speed versus torque relationship for fixed load at low torque, and a peak in rotor diffusion as a function of torque. Our model provides a comprehensive framework for understanding and analyzing stepping behavior in the bacterial flagellar motor and proposes novel, testable predictions. More broadly, the storage of energy in protein springs by the flagellar motor may provide useful general insights into the design of highly efficient molecular machines. 相似文献
7.
The bacterial flagellar motor is one of the most complex and sophisticated nanomachineries in nature. A duty ratio D is a fraction of time that the stator and the rotor interact and is a fundamental property to characterize the motor but remains to be determined. It is known that the stator units of the motor bind to and dissociate from the motor dynamically to control the motor torque depending on the load on the motor. At low load, at which the kinetics such as proton translocation speed limits the rotation rate, the dependency of the rotation rate on the number of stator units N implies D: the dependency becomes larger for smaller D. Contradicting observations supporting both the small and large D have been reported. A dilemma is that it is difficult to explore a broad range of N at low load because the stator units easily dissociate, and N is limited to one or two at vanishing load. Here, we develop an electrorotation method to dynamically control the load on the flagellar motor of Salmonella with a calibrated magnitude of the torque. By instantly reducing the load for keeping N high, we observed that the speed at low load depends on N, implying a small duty ratio. We recovered the torque-speed curves of individual motors and evaluated the duty ratio to be 0.14 ± 0.04 from the correlation between the torque at high load and the rotation rate at low load. 相似文献
8.
Morphology, function and isolation of halobacterial flagella 总被引:20,自引:0,他引:20
Halobacterium halobium has right-handed helical flagella. During the logarithmic phase of growth, cells are predominantly monopolar, whereas in the stationary phase they are mostly bipolarly flagellated. The flagellar bundle consists of several filaments. Halobacteria swim forward by clockwise and backwards by counterclockwise rotation of their flagella. The flagellar bundle does not fly apart when the sense of rotation changes. In addition to the flagella attached to the cells, large amounts of loose flagella, which aggregate into thick super-flagella, can be observed at all phases of growth. During stationary phase, the production of these super-flagella, which are generally 10 to 20 times longer than the cell body, is significantly higher. Dissociation and association by high temperature and differential centrifugation allow the isolation of pure flagella. Three different protein bands, of 23,500, 26,500 and 31,500 apparent molecular weights, are seen on sodium dodecyl sulphate/polyacrylamide gels. Antibodies against halobacterial flagella were produced in chicken; these antibodies interact with the flagella even in 4 M-NaCl. Rotation of tethered cells demonstrates that Halobacteria move due to the rotation of the flagella. 相似文献
9.
Regulation of Switching Frequency and Bias of the Bacterial Flagellar Motor by CheY and Fumarate 总被引:4,自引:1,他引:4 下载免费PDF全文
Marco Montrone Michael Eisenbach Dieter Oesterhelt Wolfgang Marwan 《Journal of bacteriology》1998,180(13):3375-3380
The effect of CheY and fumarate on switching frequency and rotational bias of the bacterial flagellar motor was analyzed by computer-aided tracking of tethered Escherichia coli. Plots of cells overexpressing CheY in a gutted background showed a bell-shaped correlation curve of switching frequency and bias centering at about 50% clockwise rotation. Gutted cells (i.e., with cheA to cheZ deleted) with a low CheY level but a high cytoplasmic fumarate concentration displayed the same correlation of switching frequency and bias as cells overexpressing CheY at the wild-type fumarate level. Hence, a high fumarate level can phenotypically mimic CheY overexpression by simultaneously changing the switching frequency and the bias. A linear correlation of cytoplasmic fumarate concentration and clockwise rotation bias was found and predicts exclusively counterclockwise rotation without switching when fumarate is absent. This suggests that (i) fumarate is essential for clockwise rotation in vivo and (ii) any metabolically induced fluctuation of its cytoplasmic concentration will result in a transient change in bias and switching probability. A high fumarate level resulted in a dose-response curve linking bias and cytoplasmic CheY concentration that was offset but with a slope similar to that for a low fumarate level. It is concluded that fumarate and CheY act additively presumably at different reaction steps in the conformational transition of the switch complex from counterclockwise to clockwise motor rotation. 相似文献
10.
细菌鞭毛马达——一种卓越的分子机器 总被引:1,自引:0,他引:1
鞭毛马达(flagellar motor)是一种分子旋转马达,它在细菌鞭毛的结构与功能中起着中心作用.鞭毛马达的结构已基本清楚,主要由Mot A、Mot B、Fli G、Fli M和Fli N 5种蛋白组成定子(stator)和转子(rotor),其驱动力来自于跨膜的H+或Na+流.目前对鞭毛马达的旋转动力学及旋转力矩产生机制已有初步的了解.鞭毛马达可作为研究分子旋转马达的理想模型,对其深入研究将有助于认识生物能量转化利用及细胞运动的机制并具有广泛的生物学意义. 相似文献
11.
Shuichi Nakamura Nobunori Kami-ike Jun-ichi P. Yokota Seishi Kudo Keiichi Namba 《Journal of molecular biology》2009,386(2):332-338
Bacterial flagella responsible for motility are driven by rotary motors powered by the electrochemical potential difference of specific ions across the cytoplasmic membrane. The stator of proton-driven flagellar motor converts proton influx into mechanical work. However, the energy conversion mechanism remains unclear. Here, we show that the motor is sensitive to intracellular proton concentration for high-speed rotation at low load, which was considerably impaired by lowering intracellular pH, while zero-speed torque was not affected. The change in extracellular pH did not show any effect. These results suggest that a high intracellular proton concentration decreases the rate of proton translocation and therefore that of the mechanochemical reaction cycle of the motor but not the actual torque generation step within the cycle by the stator-rotor interactions. 相似文献
12.
《Journal of molecular biology》1996,261(2):209-221
Among the many proteins needed for the assembly and function of bacterial flagella, only five have been suggested to be involved in torque generation. These are MotA, MotB, FliG, FliM and FliN. In this study, we have probed binding interactions among these proteins, by using protein fusions to glutathioneS-transferase or to oligo-histidine, in conjunction with co-isolation assays. The results show that FliG, FliM and FliN all bind to each other, and that each also self-associates. MotA and MotB also bind to each other, and MotA interacts, but only weakly, with FliG and FliM. Taken together with previous genetic, physiological and ultrastructural studies, these results provide strong support for the view that FliG, FliM and FliN function together in a complex on the rotor of the flagellar motor, whereas MotA and MotB form a distinct complex that functions as the stator. Torque generation in the flagellar motor is thus likely to involve interactions between these two protein complexes. 相似文献
13.
Binding of the chemotaxis response regulator CheY-P promotes switching between rotational states in flagellar motors of the bacterium Escherichia coli. Here, we induced switching in the absence of CheY-P by introducing copies of a mutant FliG locked in the clockwise (CW) conformation (FliGCW). The composition of the mixed FliG ring was estimated via fluorescence imaging, and the probability of CW rotation (CWbias) was determined from the rotation of tethered cells. The results were interpreted in the framework of a 1D Ising model. The data could be fit by assuming that mutant subunits are more stable in the CW conformation than in the counterclockwise conformation. We found that CWbias varies depending on the spatial arrangement of the assembled subunits in the FliG ring. This offers a possible explanation for a previous observation of hysteresis in the switch function in analogous mixed FliM motors—in motors containing identical fractions of mutant FliMCW in otherwise wild-type motors, the CWbias differed depending on whether mutant subunits were expressed in strains with native motors or native subunits were expressed in strains with mutant motors. 相似文献
14.
15.
Armand S. Vartanian Aviv Paz Emily A. Fortgang Jeff Abramson Frederick W. Dahlquist 《The Journal of biological chemistry》2012,287(43):35779-35783
The flagellar motor is one type of propulsion device of motile bacteria. The cytoplasmic ring (C-ring) of the motor interacts with the stator to generate torque in clockwise and counterclockwise directions. The C-ring is composed of three proteins, FliM, FliN, and FliG. Together they form the “switch complex” and regulate switching and torque generation. Here we report the crystal structure of the middle domain of FliM in complex with the middle and C-terminal domains of FliG that shows the interaction surface and orientations of the proteins. In the complex, FliG assumes a compact conformation in which the middle and C-terminal domains (FliGMC) collapse and stack together similarly to the recently published structure of a mutant of FliGMC with a clockwise rotational bias. This intramolecular stacking of the domains is distinct from the intermolecular stacking seen in other structures of FliG. We fit the complex structure into the three-dimensional reconstructions of the motor and propose that the cytoplasmic ring is assembled from 34 FliG and FliM molecules in a 1:1 fashion. 相似文献
16.
The current study investigated the accident rates across morning, late, and night shifts in rotating shift-workers employed in two different shift rotations at the same steel work factory. A retrospective analysis has been performed of accident data (N = 578) over a 5-year period (2003 through 2007) of 730 male shift-workers employed in either a clockwise (mean age of the workers 38.1 ± SD 9.8 years) or counterclockwise rotation (mean age 38.0 ± SD 10.1 years) with comparable work conditions. The overall accident rate across the 24-h day was not significantly different between clockwise and counterclockwise shift rotation. In both shift-work rotations, morning shifts as opposed to night shifts exhibited a significantly higher accident rate. There was no significant difference between late shifts and morning or night shifts in either shift rotation. The increased accident rate in the morning shift at this steel factory could be related to the early starting time of the shift and to this shift being more labor intensive in both shift rotations. These findings suggest that work-related factors must be considered in addition to shift-work schedules when investigating accident rates in rotating shift-workers. 相似文献
17.
Yuichi Inoue Matthew A.B. Baker Hajime Fukuoka Hiroto Takahashi Richard M. Berry Akihiko Ishijima 《Biophysical journal》2013
In their natural habitats bacteria are frequently exposed to sudden changes in temperature that have been shown to affect their swimming. With our believed to be new methods of rapid temperature control for single-molecule microscopy, we measured here the thermal response of the Na+-driven chimeric motor expressed in Escherichia coli cells. Motor torque at low load (0.35 μm bead) increased linearly with temperature, twofold between 15°C and 40°C, and torque at high load (1.0 μm bead) was independent of temperature, as reported for the H+-driven motor. Single cell membrane voltages were measured by fluorescence imaging and these were almost constant (∼120 mV) over the same temperature range. When the motor was heated above 40°C for 1–2 min the torque at high load dropped reversibly, recovering upon cooling below 40°C. This response was repeatable over as many as 10 heating cycles. Both increases and decreases in torque showed stepwise torque changes with unitary size ∼150 pN nm, close to the torque of a single stator at room temperature (∼180 pN nm), indicating that dynamic stator dissociation occurs at high temperature, with rebinding upon cooling. Our results suggest that the temperature-dependent assembly of stators is a general feature of flagellar motors. 相似文献
18.
Yuichi Inoue Matthew?A.B. Baker Hajime Fukuoka Hiroto Takahashi Richard?M. Berry Akihiko Ishijima 《Biophysical journal》2013,105(12):2801-2810
In their natural habitats bacteria are frequently exposed to sudden changes in temperature that have been shown to affect their swimming. With our believed to be new methods of rapid temperature control for single-molecule microscopy, we measured here the thermal response of the Na+-driven chimeric motor expressed in Escherichia coli cells. Motor torque at low load (0.35 μm bead) increased linearly with temperature, twofold between 15°C and 40°C, and torque at high load (1.0 μm bead) was independent of temperature, as reported for the H+-driven motor. Single cell membrane voltages were measured by fluorescence imaging and these were almost constant (∼120 mV) over the same temperature range. When the motor was heated above 40°C for 1–2 min the torque at high load dropped reversibly, recovering upon cooling below 40°C. This response was repeatable over as many as 10 heating cycles. Both increases and decreases in torque showed stepwise torque changes with unitary size ∼150 pN nm, close to the torque of a single stator at room temperature (∼180 pN nm), indicating that dynamic stator dissociation occurs at high temperature, with rebinding upon cooling. Our results suggest that the temperature-dependent assembly of stators is a general feature of flagellar motors. 相似文献
19.
Measurement of the Internal Frictional Drag of the Bacterial Flagellar Motor by Fluctuation Analysis
《Biophysical journal》2020,118(11):2718-2725
The bacterial flagellar motor generates the torque that drives the rotation of bacterial flagellar filaments. The torque it generates depends sensitively on the frictional viscous drag on the motor, which includes the frictional viscous drag on the filaments (external load) and the internal frictional viscous drag on the rotor (internal load). The internal load was roughly estimated previously by modeling it as a sphere of a radius of 20 nm rotating in a lipid of viscosity of 100 cp but was never measured experimentally. Here, we measured the internal load by fluctuation analysis of the motor velocity traces. A similar approach should be applicable to other molecular motors. 相似文献