首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell cycle checkpoints provide surveillance mechanisms to activate the DNA damage response, thus preserving genomic integrity. The heterotrimeric Rad9–Rad1–Hus1 (9–1–1) clamp is a DNA damage response sensor and can be loaded onto DNA. 9–1–1 is involved in base excision repair (BER) by interacting with nearly every enzyme in BER. Here, we show that individual 9–1–1 components play distinct roles in BER directed by MYH DNA glycosylase. Analyses of Hus1 deletion mutants revealed that the interdomain connecting loop (residues 134–155) is a key determinant of MYH binding. Both the N-(residues 1–146) and C-terminal (residues 147–280) halves of Hus1, which share structural similarity, can interact with and stimulate MYH. The Hus1K136A mutant retains physical interaction with MYH but cannot stimulate MYH glycosylase activity. The N-terminal domain, but not the C-terminal half of Hus1 can also bind DNA with moderate affinity. Intact Rad9 expressed in bacteria binds to and stimulates MYH weakly. However, Rad91−266 (C-terminal truncated Rad9) can stimulate MYH activity and bind DNA with high affinity, close to that displayed by heterotrimeric 91−266–1–1 complexes. Conversely, Rad1 has minimal roles in stimulating MYH activity or binding to DNA. Finally, we show that preferential recruitment of 91−266–1–1 to 5′-recessed DNA substrates is an intrinsic property of this complex and is dependent on complex formation. Together, our findings provide a mechanistic rationale for unique contributions by individual 9–1–1 subunits to MYH-directed BER based on subunit asymmetry in protein–protein interactions and DNA binding events.  相似文献   

2.
The DNA glycosylase MutY homologue (MYH or MUTYH) removes adenines misincorporated opposite 8-oxoguanine as part of the base excision repair pathway. Importantly, defects in human MYH (hMYH) activity cause the inherited colorectal cancer syndrome MYH-associated polyposis. A key feature of MYH activity is its coordination with cell cycle checkpoint via interaction with the Rad9-Rad1-Hus1 (9-1-1) complex. The 9-1-1 complex facilitates cell cycle checkpoint activity and coordinates this activity with ongoing DNA repair. The interdomain connector (IDC, residues 295-350) between the catalytic domain and the 8-oxoguanine recognition domain of hMYH is a critical element that maintains interactions with the 9-1-1 complex. We report the first crystal structure of a eukaryotic MutY protein, a fragment of hMYH (residues 65-350) that consists of the catalytic domain and the IDC. Our structure reveals that the IDC adopts a stabilized conformation projecting away from the catalytic domain to form a docking scaffold for 9-1-1. We further examined the role of the IDC using Schizosaccharomyces pombe MYH as model system. In vitro studies of S. pombe MYH identified residues I261 and E262 of the IDC (equivalent to V315 and E316 of the hMYH IDC) as critical for maintaining the MYH/9-1-1 interaction. We determined that the eukaryotic IDC is also required for DNA damage selection and robust enzymatic activity. Our studies also provide the first evidence that disruption of the MYH/9-1-1 interaction diminishes the repair of oxidative DNA damage in vivo. Thus, preserving the MYH/9-1-1 interaction contributes significantly to minimizing the mutagenic potential of oxidative DNA damage.  相似文献   

3.
Rad17, Rad1, Hus1, and Rad9 are key participants in checkpoint signaling pathways that block cell cycle progression in response to genotoxins. Biochemical and molecular modeling data predict that Rad9, Hus1, and Rad1 form a heterotrimeric complex, dubbed 9-1-1, which is loaded onto chromatin by a complex of Rad17 and the four small replication factor C (RFC) subunits (Rad17-RFC) in response to DNA damage. It is unclear what checkpoint proteins or checkpoint signaling events regulate the association of the 9-1-1 complex with DNA. Here we show that genotoxin-induced chromatin binding of 9-1-1 does not require the Rad9-inducible phosphorylation site (Ser-272). Although we found that Rad9 undergoes an additional phosphatidylinositol 3-kinase-related kinase (PIKK)-dependent posttranslational modification, we also show that genotoxin-triggered 9-1-1 chromatin binding does not depend on the catalytic activity of the PIKKs ataxia telangiectasia-mutated (ATM), ataxia telangiectasia and Rad3-related (ATR), or DNA-PK. Additionally, 9-1-1 chromatin binding does not require DNA replication, suggesting that the complex can be loaded onto DNA in response to DNA structures other than stalled DNA replication forks. Collectively, these studies demonstrate that 9-1-1 chromatin binding is a proximal event in the checkpoint signaling cascade.  相似文献   

4.
Cellular DNA lesions are efficiently countered by DNA repair in conjunction with delays in cell cycle progression. Previous studies have demonstrated that Rad9, Hus1, and Rad1 can form a heterotrimeric complex (the 9-1-1 complex) that plays dual roles in cell cycle checkpoint activation and DNA repair in eukaryotic cells. Although the 9-1-1 complex has been proposed to form a toroidal structure similar to proliferating cell nuclear antigen (PCNA), which plays essential roles in DNA replication and repair, the structural basis by which it performs different functions has not been elucidated. Here we report the crystal structure of the human 9-1-1 complex at 3.2 Å resolution. The crystal structure, together with biochemical assays, reveals that the interdomain connecting loops (IDC loop) of hRad9, hHus1, and hRad1 are largely divergent, and further cocrystallization study indicates that a PCNA-interacting box (PIP box)-containing peptide derived from hFen1 binds tightly to the interdomain connecting loop of hRad1, providing the molecular basis for the damage repair-specific activity of the 9-1-1 complex in contrast to PCNA. Furthermore, structural comparison with PCNA reveals other unique structural features of the 9-1-1 complex that are proposed to contribute to DNA damage recognition.Cellular DNA damage triggers the activation of the cell cycle checkpoint, leading to a delay or arrest in cell cycle progression to prevent replication and inducing DNA damage repair (1, 2). In response to DNA damage, the 9-1-13 complex can be loaded onto DNA lesion sites by Rad17-RFC2–5 (which consists of one large subunit, Rad17, and four small subunits, RFC2–5), where it triggers the activation of the cell cycle checkpoint (3, 4). Moreover, the 9-1-1 complex can also directly participate in DNA repair via physical association with many factors involved in base excision repair (BER), translesion synthesis, homologous recombination, and mismatch repair pathways (59).Although both the 9-1-1 and the PCNA complexes perform critical functions in eukaryotic cells with predicted similar structures (10), their specific roles are distinct. First, the 9-1-1 complex is a DNA damage sensor in the cell cycle checkpoint but does not function as a scaffold for the major DNA replication factors; however, PCNA plays exactly the opposite role (1, 11). Second, although both the complexes function in DNA repair, their specific activities are different. Previous observations indicated that some BER enzymes, such as MYH (MutY glycosylate homolog) (12), TDG (thymine DNA glycosylate) (7), and NEIL (Nei-like glycosylate) (8), interact with the 9-1-1 complex via motifs that are located outside the conserved PCNA-interacting box (the PIP box), implying that the 9-1-1 complex functions as a damage repair-specific clamp, in contrast to PCNA. However, the structural basis for this hypothesis remains unclear. Another important unresolved issue concerns the damage-sensing mechanism of the 9-1-1 complex. During the DNA replication process, the PCNA·RFC clamp·clamp loader specifically recognizes the primer-template junction (13). However, the molecular basis by which the 9-1-1·Rad17-RFC2–5 clamp·clamp loader specifically recognizes the damaged DNA is little known. To address these questions, we performed structural and biochemical studies on the 9-1-1 complex.  相似文献   

5.
一组在进化上(从酵母到人)保守的基因Rad9、Rad1Hus1在细胞周期监控点调控和DNA损伤修复中发挥重要作用.这三个蛋白可以形成环形异源三聚体,即9-1-1蛋白复合体.9-1-1复合体被认为是Rad9、Rad1和Hus1行使功能的主要形式.到目前为止,没有一个好的抗Rad1的抗体,严重阻碍了对Rad1和9-1-1复合体的研究.在本研究中,我们成功地制备了一株小鼠抗Rad1蛋白的单克隆抗体.这个抗体能够有效地检测小鼠和人的内源Rad1蛋白,可以用于酶联免疫吸附、蛋白质免疫印迹、免疫共沉淀和免疫荧光等实验.利用该抗体,我们发现在DNA损伤剂羟基脲(HU)的诱导下,小鼠Rad1蛋白在Rad9+/+小鼠胚胎干细胞中表达明显增加,而在Rad9-/-的小鼠胚胎干细胞中没有观察到该现象,这表明Rad9对Rad1的蛋白表达有调控作用.此外,内源的Rad1蛋白主要分布在细胞质中,在HU处理后并没有迁移进入细胞核的现象,这与先前广泛被人们所接受的在DNA损伤压力下Rad1和Hus1能够迁移进入细胞核并与Rad9形成9-1-1蛋白复合体的说法相矛盾.综合看来,Rad1和9-1-1蛋白复合体的分子作用机制比预期的要复杂,我们成功制备的Rad1单克隆抗体将成为研究Rad1以及9-1-1蛋白复合体的强有力的工具.  相似文献   

6.
In eukaryotic cells, checkpoints are activated in response to DNA damage. This requires the action of DNA damage sensors such as the Rad family proteins. The three human proteins Rad9, Rad1 and Hus1 form a heterotrimeric complex (called the 9-1-1 complex) that is recruited onto DNA upon damage. DNA damage also triggers the recruitment of DNA repair proteins at the lesion, including specialized DNA polymerases. In this work, we showed that the 9-1-1 complex can physically interact with DNA polymerase β in vitro. Functional analysis revealed that the 9-1-1 complex had a stimulatory effect on DNA polymerase β activity. However, the presence of 9-1-1 complex neither affected DNA polymerase λ, another X family DNA polymerase, nor the two replicative DNA polymerases α and δ. DNA polymerase β stimulation resulted from an increase in its affinity for the primer–template and the interaction with the 9-1-1 complex stimulated deoxyribonucleotides misincorporation by DNA polymerase β. In addition, the 9-1-1 complex enhanced DNA strand displacement synthesis by DNA polymerase β on a 1 nt gap DNA substrate. Our data raise the possibility that the 9-1-1 complex might attract DNA polymerase β to DNA damage sites, thus connecting directly checkpoints and DNA repair.  相似文献   

7.
Proton-pumping nicotinamide nucleotide transhydrogenase from Escherichia coli contains an α and a β subunit of 54 and 49 kDa, respectively, and is made up of three domains. Domain I (dI) and III (dIII) are hydrophilic and contain the NAD(H)- and NADP(H)-binding sites, respectively, whereas the hydrophobic domain II (dII) contains 13 transmembrane α-helices and harbours the proton channel. Using a cysteine-free transhydrogenase, the organization of dII and helix-helix distances were investigated by the introduction of one or two cysteines in helix-helix loops on the periplasmic side. Mutants were subsequently cross-linked in the absence and presence of diamide and the bifunctional maleimide cross-linker o-PDM (6 Å), and visualized by SDS-PAGE.In the α2β2 tetramer, αβ cross-links were obtained with the αG476C-βS2C, αG476C-βT54C and αG476C-βS183C double mutants. Significant αα cross-links were obtained with the αG476C single mutant in the loop connecting helix 3 and 4, whereas ββ cross-links were obtained with the βS2C, βT54C and βS183C single mutants in the beginning of helix 6, the loop between helix 7 and 8 and the loop connecting helix 11 and 12, respectively. In a model based on 13 mutants, the interface between the α and β subunits in the dimer is lined along an axis formed by helices 3 and 4 from the α subunit and helices 6, 7 and 8 from the β subunit. In addition, helices 2 and 4 in the α subunit together with helices 6 and 12 in the β subunit interact with their counterparts in the α2β2 tetramer. Each β subunit in the α2β2 tetramer was concluded to contain a proton channel composed of the highly conserved helices 9, 10, 13 and 14.  相似文献   

8.
Exo1 is a nuclease involved in mismatch repair, DSB repair, stalled replication fork processing and in the DNA damage response triggered by dysfunctional telomeres. In budding yeast and mice, Exo1 creates single-stranded DNA (ssDNA) at uncapped telomeres. This ssDNA accumulation activates the checkpoint response resulting in cell cycle arrest. Here, we demonstrate that Exo1 is phosphorylated when telomeres are uncapped in cdc13-1 and yku70Delta yeast cells, and in response to the induction of DNA damage. After telomere uncapping, Exo1 phosphorylation depends on components of the checkpoint machinery such as Rad24, Rad17, Rad9, Rad53 and Mec1, but is largely independent of Chk1, Tel1 and Dun1. Serines S372, S567, S587 and S692 of Exo1 were identified as targets for phosphorylation. Furthermore, mutation of these Exo1 residues altered the DNA damage response to uncapped telomeres and camptothecin treatment, in a manner that suggests Exo1 phosphorylation inhibits its activity. We propose that Rad53-dependent Exo1 phosphorylation is involved in a negative feedback loop to limit ssDNA accumulation and DNA damage checkpoint activation.  相似文献   

9.
In eukaryotic cells, the cell cycle checkpoint proteins Rad9, Rad1, and Hus1 form the 9-1-1 complex which is structurally similar to the proliferating cell nuclear antigen (PCNA) sliding clamp. hMSH2/hMSH6 (hMutSα) and hMSH2/hMSH3 (hMutSβ) are the mismatch recognition factors of the mismatch repair pathway. hMutSα has been shown to physically and functionally interact with PCNA. Moreover, DNA methylating agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) treatment induces the G2/M cell cycle arrest that is dependent on the presence of hMutSα and hMutLα. In this study, we show that each subunit of the human 9-1-1 complex physically interacts with hMSH2, hMSH3, and hMSH6. The 9-1-1 complex from both humans and Schizosaccharomyces pombe can stimulate hMutSα binding with G/T-containing DNA. Rad9, Rad1, and Hus1 individual subunits can also stimulate the DNA binding activity of hMutSα. Human Rad9 and hMSH6 colocalize to nuclear foci of HeLa cells after exposure to MNNG. However, Rad9 does not form foci in MSH6 defective cells following MNNG treatment. In Rad9 knockdown untreated cells, the majority of the MSH6 is in cytoplasm. Following MNNG treatment, Rad9 knockdown cells has abnormal nuclear morphology and MSH6 is distributed around nuclear envelop. Our findings suggest that the 9-1-1 complex is a component of the mismatch repair involved in MNNG-induced damage response.  相似文献   

10.
The proliferating cell nuclear antigen (PCNA) is a key component of the eukaryotic DNA replication machinery. It also plays an important role in DNA repair mechanisms. Despite the intense scientific research on yeast and human PCNA, information describing the function of this protein in plants is still very limited. In the previous study Arabidopsis PCNA2 but not PCNA1 was proposed to be functionally important in DNA polymerase η-dependent postreplication repair. In addition to the above study, PCNA2 but not PCNA1 was also shown to be necessary for Arabidopsis DNA polymerase λ-dependent oxidative DNA damage bypass. Taking into account the reported differences between PCNA1 and PCNA2, we tested the idea of a possible cooperation between PCNA1 and PCNA2 in the plant cell. In a bimolecular fluorescence complementation assay an interaction between PCNA1 and PCNA2 was observed in the nucleus, as well as in the cytoplasm. This finding, together with our previous results, indicates that PCNA1 and PCNA2 may cooperate in planta by forming homo- and heterotrimeric rings. The observed interaction might be relevant when distinct functions for PCNA1 and PCNA2 are considered.  相似文献   

11.
The repair of damaged DNA is coupled to the completion of DNA replication by several cell cycle checkpoint proteins, including, for example, in fission yeast Rad1Sp, Hus1Sp, Rad9Sp and Rad17Sp. We have found that these four proteins are conserved with protein sequences throughout eukaryotic evolution. Using computational techniques, including fold recognition, comparative modeling and generalized sequence profiles, we have made high confidence structure predictions for the each of the Rad1, Hus1 and Rad9 protein families (Rad17Sc, Mec3Sc and Ddc1Sc in budding yeast, respectively). Each of these families was found to share a common protein fold with that of PCNA, the sliding clamp protein that tethers DNA polymerase to its template. We used previously reported genetic and biochemical data for these proteins from yeast and human cells to predict a heterotrimeric PCNA-like ring structure for the functional Rad1/Rad9/Hus1 complex and to determine their exact order within it. In addition, for each individual protein family, contact regions with neighbors within the PCNA-like ring were identified. Based on a molecular model for Rad17Sp, we concluded that members of this family, similar to the subunits of the RFC clamp-loading complex, are capable of coupling ATP binding with conformational changes required to load a sliding clamp onto DNA. This model substantiates previous findings regarding the behavior of Rad17 family proteins upon DNA damage and within the RFC complex of clamp-loading proteins.  相似文献   

12.
Dial 9-1-1 for DNA damage: the Rad9-Hus1-Rad1 (9-1-1) clamp complex   总被引:9,自引:0,他引:9  
Genotoxic stress activates checkpoint signaling pathways that block cell cycle progression, trigger apoptosis, and regulate DNA repair. Studies in yeast and humans have shown that Rad9, Hus1, Rad1, and Rad17 play key roles in checkpoint activation. Three of these proteins-Rad9, Hus1, and Rad1-interact in a heterotrimeric complex (dubbed the 9-1-1 complex), which resembles a PCNA-like sliding clamp, whereas Rad17 is part of a clamp-loading complex that is related to the PCNA clamp loader, replication factor-C (RFC). In response to genotoxic damage, the 9-1-1 complex is loaded around DNA by the Rad17-containing clamp loader. The DNA-bound 9-1-1 complex then facilitates ATR-mediated phosphorylation and activation of Chk1, a protein kinase that regulates S-phase progression, G2/M arrest, and replication fork stabilization. In addition to its role in checkpoint activation, accumulating evidence suggests that the 9-1-1 complex also participates in DNA repair. Taken together, these findings suggest that the 9-1-1 clamp is a multifunctional complex that is loaded onto DNA at sites of damage, where it coordinates checkpoint activation and DNA repair.  相似文献   

13.
The human Rad9 checkpoint protein is a subunit of the heterotrimeric Rad9-Rad1-Hus1 (9-1-1) complex that plays a role as a damage sensor in the DNA damage checkpoint response. Rad9 has been found to interact with several other proteins outside the context of the 9-1-1 complex with no obvious checkpoint functions. During our studies on the 9-1-1 complex, we found that Rad9 immunoprecipitates contained a 240 kDa protein that was identified as carbamoyl phosphate synthetase/aspartate transcarbamoylase/dihydroorotase (CAD), a multienzymatic protein required for the de novo synthesis of pyrimidine nucleotides and cell growth. Further investigations revealed that only free Rad9, but not Rad9 within the 9-1-1 complex, bound to CAD. The rate-limiting step in de novo pyrimidine nucleotide synthesis is catalyzed by the carbamoyl phosphate synthetase II (CPSase) domain of CAD. We find that Rad9 binds to the CPSase domain, and, moreover, this binding results in a 2-fold stimulation of the CPSase activity of CAD. Similar results were also obtained with an N-terminal Rad9 fragment. These findings suggest that Rad9 may play a role in ribonucleotide biosynthesis.  相似文献   

14.
The least understood components of the DNA damage checkpoint are the DNA damage sensors. Genetic studies of Schizosaccharomyces pombe identified six yeast genes, Rad3, Rad17, Rad9, Rad1, Hus1, and Rad26, which encode proteins thought to sense DNA damage and activate the checkpoint-signaling cascade. It has been suggested that Rad9, Rad1 and Hus1 make a heterotrimeric complex forming a PCNA-like structure. In order to carry out structural and biophysical studies of the complex and its associated proteins, the cDNAs encoding full length human Rad9, Rad1 and Hus1 were cloned together into the pET28a vector using a one-step ligation procedure. Here we report successful tri-cistronic cloning, overexpression and purification of this three-protein complex using a single hexa-histidine tag. The trimeric protein complex of Rad9, Rad1 and Hus1 was purified to near homogeneity, yielding approximately 10mg of protein from one liter of Escherichia coli culture.  相似文献   

15.
The DNA replication machinery stalls at damaged sites on templates, but normally restarts by switching to a specialized DNA polymerase(s) that carries out translesion DNA synthesis (TLS). In human cells, DNA polymerase eta (poleta) accumulates at stalling sites as nuclear foci, and is involved in ultraviolet (UV)-induced TLS. Here we show that poleta does not form nuclear foci in RAD18(-/-) cells after UV irradiation. Both Rad18 and Rad6 are required for poleta focus formation. In wild-type cells, UV irradiation induces relocalization of Rad18 in the nucleus, thereby stimulating colocalization with proliferating cell nuclear antigen (PCNA), and Rad18/Rad6-dependent PCNA monoubiquitination. Purified Rad18 and Rad6B monoubiquitinate PCNA in vitro. Rad18 associates with poleta constitutively through domains on their C-terminal regions, and this complex accumulates at the foci after UV irradiation. Furthermore, poleta interacts preferentially with monoubiquitinated PCNA, but poldelta does not. These results suggest that Rad18 is crucial for recruitment of poleta to the damaged site through protein-protein interaction and PCNA monoubiquitination.  相似文献   

16.
DNA damage leads to activation of several mechanisms such as DNA repair and cell-cycle checkpoints. It is evident that these different cellular mechanisms have to be finely co-ordinated. Growing evidence suggests that the Rad9/Rad1/Hus1 cell-cycle checkpoint complex (9-1-1 complex), which is recruited to DNA lesion upon DNA damage, plays a major role in DNA repair. This complex has been shown to interact with and stimulate several proteins involved in long-patch base excision repair. On the other hand, the well-characterised DNA clamp-proliferating cell nuclear antigen (PCNA) also interacts with and stimulates several of these factors. In this work, we compared the effects of the 9-1-1 complex and PCNA on flap endonuclease 1 (Fen1). Our data suggest that PCNA and the 9-1-1 complex can independently bind to and activate Fen1. Finally, acetylation of Fen1 by p300-HAT abolished the stimulatory effect of the 9-1-1 complex but not that of PCNA, suggesting a possible mechanism of regulation of this important repair pathway.  相似文献   

17.
The participation of the DNA ligase (hLigI) encoded by the human LIG1 gene in DNA replication and repair is mediated by an interaction with proliferating cell nuclear antigen (PCNA), a homotrimeric DNA sliding clamp. Interestingly, the catalytic fragment of hLigI encircles a DNA nick forming a ring that is similar in size and shape to the PCNA ring. Here we show that the DNA binding domain (DBD) within the hLigI catalytic fragment interacts with both PCNA and the heterotrimeric cell-cycle checkpoint clamp, hRad9-hRad1-hHus1 (9-1-1). The DBD preferentially binds to trimeric PCNA and the hRad1 subunit of 9-1-1. Unlike the majority of PCNA interacting proteins, the DBD does not interact with the interdomain connector loop region of PCNA but instead appears to interact with regions adjacent to the intersubunit interfaces within the PCNA trimer. Notably, the DBD not only binds specifically to DNA nicks but also mediates the formation of DNA protein complexes with PCNA. Based on these results, we suggest that the interface between the DBD and PCNA acts as a pivot facilitating the transition of the hLigI catalytic region fragment from an extended conformation to a ring structure when it engages a DNA nick.  相似文献   

18.
The DNA glycosylase MutY homolog (Myh1) excises adenines misincorporated opposite guanines or 7,8-dihydro-8-oxo-guanines on DNA by base excision repair thereby preventing G:C to T:A mutations. Schizosaccharomyces pombe (Sp) Hst4 is an NAD+-dependent histone/protein deacetylase involved in gene silencing and maintaining genomic integrity. Hst4 regulates deacetylation of histone 3 Lys56 at the entry and exit points of the nucleosome core particle. Here, we demonstrate that the hst4 mutant is more sensitive to H2O2 than wild-type cells. H2O2 treatment results in an SpMyh1-dependent decrease in SpHst4 protein level and hyperacetylation of histone 3 Lys56. Furthermore, SpHst4 interacts with SpMyh1 and the cell cycle checkpoint Rad9-Rad1-Hus1 (9-1-1) complex. SpHst4, SpMyh1, and SpHus1 are physically bound to telomeres. Following oxidative stress, there is an increase in the telomeric association of SpMyh1. Conversely, the telomeric association of spHst4 is decreased. Deletion of SpMyh1 strongly abrogated telomeric association of SpHst4 and SpHus1. However, telomeric association of SpMyh1 is enhanced in hst4Δ cells in the presence of chronic DNA damage. These results suggest that SpMyh1 repair regulates the functions of SpHst4 and the 9-1-1 complex in maintaining genomic stability.  相似文献   

19.
Dicyclohexylcarbodiimide (DCCD) binds covalently to an acidic amino acid located in the cd loop connecting membrane-spanning helices C and D of cytochrome b resulting in an inhibition of proton translocation in the cytochrome bc 1 complex with minimal effects on the steady state rate of electron transfer. Single turnover studies performed with the yeast cytochrome bc 1 complex indicated that the initial phase of cytochrome b reduction was inhibited 25–45% in the DCCD-treated cytochrome bc 1 complex, while the rate of cytochrome c 1 reduction was unaffected. Simulations by molecular modeling predict that binding of DCCD to glutamate 163 located in the cd2 loop of cytochrome b of chicken liver mitochondria results in major conformational changes in the protein. The conformation of the cd loop and the end of helix C appeared twisted with a concomitant rearrangement of the amino acid residues of both cd1 and cd2 loops. The predicted rearrangement of the amino acid residues of the cd loop results in disruptions of the hydrogen bonds predicted to form between amino acid residues of the cd and ef loops. Simultaneously, two new hydrogen bonds are predicted to form between glutamate 272 and two residues, aspartate 253 and tyrosine 272. Formation of these new hydrogen bonds would restrict the rotation and protonation of glutamate 272, which may be necessary for the release of the second electrogenic proton obtained during ubiquinol oxidation in the bc1 complex.  相似文献   

20.
Upon genotoxic stress and during normal S phase, ATM phosphorylates the checkpoint clamp protein Rad9 in a manner that depends on Ser272. Ser272 is the only known ATM-dependent phosphorylation site in human Rad9. However, Ser272 phosphorylation is not required for survival or checkpoint activation after DNA damage. The physiological function of Ser272 remains elusive. Here, we show that ATM-dependent Rad9Ser272 phosphorylation requires the MRN complex and controls repair pathways. Furthermore, the mutant cells accumulate large numbers of chromosome breaks and induce gross chromosomal rearrangements. Our findings establish a new and unexpected role for ATM: it phosphorylates the checkpoint clamp in order to control repair pathways, thereby maintaining genomic integrity during unperturbed cell cycle and upon DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号