首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiprotein complexes that carry out RNA degradation and processing functions are found in cells from all domains of life. In Escherichia coli, the RNA degradosome, a four-protein complex, is required for normal RNA degradation and processing. In addition to the degradosome complex, the cell contains other ribonucleases that also play important roles in RNA processing and/or degradation. Whether the other ribonucleases are associated with the degradosome or function independently is not known. In the present work, IP (immunoprecipitation) studies from cell extracts showed that the major hydrolytic exoribonuclease RNase II is associated with the known degradosome components RNaseE (endoribonuclease E), RhlB (RNA helicase B), PNPase (polynucleotide phosphorylase) and Eno (enolase). Further evidence for the RNase II-degradosome association came from the binding of RNase II to purified RNaseE in far western affinity blot experiments. Formation of the RNase II–degradosome complex required the degradosomal proteins RhlB and PNPase as well as a C-terminal domain of RNaseE that contains binding sites for the other degradosomal proteins. This shows that the RNase II is a component of the RNA degradosome complex, a previously unrecognized association that is likely to play a role in coupling and coordinating the multiple elements of the RNA degradation pathways.  相似文献   

2.
We report an analysis in vivo of the RNA degradosome assembly of Escherichia coli. Employing fluorescence microscopy imaging and fluorescence energy transfer (FRET) measurements, we present evidence for in vivo pairwise interactions between RNase E–PNPase (polynucleotide phosphorylase), and RNase E–Enolase. These interactions are absent in a mutant strain with genomically encoded RNase E that lacks the C-terminal half, supporting the role of the carboxy-end domain as the scaffold for the degradosome. We also present evidence for in vivo proximity of Enolase–PNPase and Enolase–RhlB. The data support a model for the RNA degradosome (RNAD), in which the RNase E carboxy-end is proximal to PNPase, more distant to Enolase, and more than 10 nm from RhlB helicase. Our measurements were made in strains with mono-copy chromosomal fusions of the RNAD enzymes with fluorescent proteins, allowing measurement of the expression of the different proteins under different growth and stress conditions.  相似文献   

3.
The endoribonuclease RNase E is a key enzyme in RNA metabolism for many bacterial species. In Escherichia coli, RNase E contributes to the majority of RNA turnover and processing events, and the enzyme has been extensively characterized as the central component of the RNA degradosome assembly. A similar RNA degradosome assembly has been described in the α-proteobacterium Caulobacter crescentus, with the interacting partners of RNase E identified as the Kreb''s cycle enzyme aconitase, a DEAD-box RNA helicase RhlB and the exoribonuclease polynucleotide phosphorylase. Here we report that an additional degradosome component is the essential exoribonuclease RNase D, and its recognition site within RNase E is identified. We show that, unlike its E. coli counterpart, C. crescentus RhlB interacts directly with a segment of the N-terminal catalytic domain of RNase E. The crystal structure of a portion of C. crescentus RNase E encompassing the helicase-binding region is reported. This structure reveals that an inserted segment in the S1 domain adopts an α-helical conformation, despite being predicted to be natively unstructured. We discuss the implications of these findings for the organization and mechanisms of the RNA degradosome.  相似文献   

4.
5.
Polynucleotide phosphorylase (PNPase) is an exoribonuclease that cleaves single-stranded RNA substrates with 3'-5' directionality and processive behaviour. Its ring-like, trimeric architecture creates a central channel where phosphorolytic active sites reside. One face of the ring is decorated with RNA-binding K-homology (KH) and S1 domains, but exactly how these domains help to direct the 3' end of single-stranded RNA substrates towards the active sites is an unsolved puzzle. Insight into this process is provided by our crystal structures of RNA-bound and apo Caulobacter crescentus PNPase. In the RNA-free form, the S1 domains adopt a 'splayed' conformation that may facilitate capture of RNA substrates. In the RNA-bound structure, the three KH domains collectively close upon the RNA and direct the 3' end towards a constricted aperture at the entrance of the central channel. The KH domains make non-equivalent interactions with the RNA, and there is a marked asymmetry within the catalytic core of the enzyme. On the basis of these data, we propose that structural non-equivalence, induced upon RNA binding, helps to channel substrate to the active sites through mechanical ratcheting. Structural and biochemical analyses also reveal the basis for PNPase association with RNase E in the multi-enzyme RNA degradosome assembly of the α-proteobacteria.  相似文献   

6.
7.
8.
Erce MA  Low JK  Wilkins MR 《The FEBS journal》2010,277(24):5161-5173
The RNA degradosome is built on the C-terminal half of ribonuclease E (RNase E) which shows high sequence variation, even amongst closely related species. This is intriguing given its central role in RNA processing and mRNA decay. Previously, we have identified RhlB (ATP-dependent DEAD-box RNA helicase)-binding, PNPase (polynucleotide phosphorylase)-binding and enolase-binding microdomains in the C-terminal half of Vibrio angustum S14 RNase E, and have shown through two-hybrid analysis that the PNPase and enolase-binding microdomains have protein-binding function. We suggest that the RhlB-binding, enolase-binding and PNPase-binding microdomains may be interchangeable between Escherichia coli and V. angustum S14 RNase E. In this study, we used two-hybrid techniques to show that the putative RhlB-binding microdomain can bind RhlB. We then used Blue Native-PAGE, a technique commonly employed in the separation of membrane protein complexes, in a study of the first of its kind to purify and analyse the RNA degradosome. We showed that the V. angustum S14 RNA degradosome comprises at least RNase E, RhlB, enolase and PNPase. Based on the results obtained from sequence analyses, two-hybrid assays, immunoprecipitation experiments and Blue Native-PAGE separation, we present a model for the V. angustum S14 RNA degradosome. We discuss the benefits of using Blue Native-PAGE as a tool to analyse the RNA degradosome, and the implications of microdomain-mediated RNase E interaction specificity.  相似文献   

9.
The RNA degradosome is a bacterial protein machine devoted to RNA degradation and processing. In Escherichia coli it is typically composed of the endoribonuclease RNase E, which also serves as a scaffold for the other components, the exoribonuclease PNPase, the RNA helicase RhlB, and enolase. Several other proteins have been found associated to the core complex. However, it remains unclear in most cases whether such proteins are occasional contaminants or specific components, and which is their function. To facilitate the analysis of the RNA degradosome composition under different physiological and genetic conditions we set up a simplified preparation procedure based on the affinity purification of FLAG epitope-tagged RNase E coupled to Multidimensional Protein Identification Technology (MudPIT) for the rapid and quantitative identification of the different components. By this proteomic approach, we show that the chaperone protein DnaK, previously identified as a "minor component" of the degradosome, associates with abnormal complexes under stressful conditions such as overexpression of RNase E, low temperature, and in the absence of PNPase; however, DnaK does not seem to be essential for RNA degradosome structure nor for its assembly. In addition, we show that normalized score values obtain by MudPIT analysis may be taken as quantitative estimates of the relative protein abundance in different degradosome preparations.  相似文献   

10.
11.
The Escherichia coli RNA degradosome is a multicomponent ribonucleolytic complex consisting of three major proteins that assemble on a scaffold provided by the C-terminal region of the endonuclease, RNase E. Using an E. coli two-hybrid system, together with BIAcore apparatus, we investigated the ability of three proteins, polynucleotide phosphorylase (PNPase), RhlB RNA helicase, and enolase, a glycolytic protein, to interact physically and functionally independently of RNase E. Here we report that Rh1B can physically bind to PNPase, both in vitro and in vivo, and can also form homodimers with itself. However, binding of RhlB or PNPase to enolase was not detected under the same conditions. BIAcore analysis revealed real-time, direct binding for bimolecular interactions between Rh1B units and for the RhlB interaction with PNPase. Furthermore, in the absence of RNase E, purified RhlB can carry out ATP-dependent unwinding of double-stranded RNA and consequently modulate degradation of double-stranded RNA together with the exonuclease activity of PNPase. These results provide evidence for the first time that both functional and physical interactions of individual degradosome protein components can occur in the absence of RNase E and raise the prospect that the RNase E-independent complexes of RhlB RNA helicase and PNPase, detected in vivo, may constitute mini-machines that assist in the degradation of duplex RNA in structures physically distinct from multicomponent RNA degradosomes.  相似文献   

12.
RNase E initiates the decay of Escherichia coli RNAs by cutting them internally near their 5′-end and is a component of the RNA degradosome complex, which also contains the 3′-exonuclease PNPase. Recently, RNase E has been shown to be able to remove poly(A) tails by what has been described as an exonucleolytic process that can be blocked by the presence of a phosphate group on the 3′-end of the RNA. We show here, however, that poly(A) tail removal by RNase E is in fact an endonucleolytic process that is regulated by the phosphorylation status at the 5′- but not the 3′-end of RNA. The rate of poly(A) tail removal by RNase E was found to be 30-fold greater when the 5′-terminus of RNA substrates was converted from a triphosphate to monophosphate group. This finding prompted us to re-analyse the contributions of the ribonucleolytic activities within the degradosome to 3′ attack since previous studies had only used substrates that had a triphosphate group on their 5′-end. Our results indicate that RNase E associated with the degradosome may contribute to the removal of poly(A) tails from 5′-monophosphorylated RNAs, but this is only likely to be significant should their attack by PNPase be blocked.  相似文献   

13.
The Escherichia coli protein RhlB is an ATP-dependent motor that unfolds structured RNA for destruction by partner ribonucleases. In E. coli, and probably many other related gamma-proteobacteria, RhlB associates with the essential endoribonuclease RNase E as part of the multi-enzyme RNA degradosome assembly. The interaction with RNase E boosts RhlB's ATPase activity by an order of magnitude. Here, we examine the origins and implications of this effect. The location of the interaction sites on both RNase E and RhlB are refined and analysed using limited protease digestion, domain cross-linking and homology modelling. These data indicate that RhlB's carboxy-terminal RecA-like domain engages a segment of RNase E that is no greater than 64 residues. The interaction between RhlB and RNase E has two important consequences: first, the interaction itself stimulates the unwinding and ATPase activities of RhlB; second, RhlB gains proximity to two RNA-binding sites on RNase E, with which it cooperates to unwind RNA. Our homology model identifies a pattern of residues in RhlB that may be key for recognition of RNase E and which may communicate the activating effects. Our data also suggest that the association with RNase E may partially repress the RNA-binding activity of RhlB. This repression may in fact permit the interplay of the helicase and adjacent RNA binding segments as part of a process that steers substrates to either processing or destruction, depending on context, within the RNA degradosome assembly.  相似文献   

14.
RNase E, a central component involved in bacterial RNA metabolism, usually has a highly conserved N-terminal catalytic domain but an extremely divergent C-terminal domain. While the C-terminal domain of RNase E in Escherichia coli recruits other components to form an RNA degradation complex, it is unknown if a similar function can be found for RNase E in other organisms due to the divergent feature of this domain. Here, we provide evidence showing that RNase E forms a complex with another essential ribonuclease—the polynucleotide phosphorylase (PNPase)—in cyanobacteria, a group of ecologically important and phylogenetically ancient organisms. Sequence alignment for all cyanobacterial RNase E proteins revealed several conserved and variable subregions in their noncatalytic domains. One such subregion, an extremely conserved nonapeptide (RRRRRRSSA) located near the very end of RNase E, serves as the PNPase recognition site in both the filamentous cyanobacterium Anabaena PCC7120 and the unicellular cyanobacterium Synechocystis PCC6803. These results indicate that RNase E and PNPase form a ribonuclease complex via a common mechanism in cyanobacteria. The PNPase-recognition motif in cyanobacterial RNase E is distinct from those previously identified in Proteobacteria, implying a mechanism of coevolution for PNPase and RNase E in different organisms.  相似文献   

15.
Tang J  Luo M  Niu S  Zhou H  Cai X  Zhang W  Hu Y  Yin Y  Huang A  Wang D 《The protein journal》2010,29(8):583-590
RNase E functions as the rate-limiting enzyme in the global mRNA metabolism as well as in the maturation of functional RNAs. The endoribonuclease, binding to the PNPase trimer, the RhlB monomer, and the enolase dimer, assembles into an RNA degradosome necessary for effective RNA metabolism. The RNase E processing is found to be negatively regulated by the protein modulator RraA which appears to work by interacting with the non-catalytic region of the endoribonuclease and significantly reduce the interaction between RNase E and PNPase, RhlB and enolase of the RNA degradosome. Here we report the crystal structure of RraA from P. aeruginosa to a resolution of 2.0 ?. The overall architecture of RraA is very similar to other known RraAs, which are highly structurally conserved. Gel filtration and dynamic light scattering experiments suggest that the protein regulator is arranged as a hexamer, consistent with the crystal packing of "a dimer of trimer" arrangement. Structure and sequence conservation analysis suggests that the hexamer RraA contains six putative charged protein-protein interaction sites which may serve as binding sites for RNase E.  相似文献   

16.
The RNA degradosome is a multi-enzyme assembly that contributes to key processes of RNA metabolism, and it engages numerous partners in serving its varied functional roles. Small domains within the assembly recognize collectively a diverse range of macromolecules, including the core protein components, the cytoplasmic lipid membrane, mRNAs, non-coding regulatory RNAs and precursors of structured RNAs. We present evidence that the degradosome can form a stable complex with the 70S ribosome and polysomes, and we demonstrate the proximity in vivo of ribosomal proteins and the scaffold of the degradosome, RNase E. The principal interactions are mapped to two, independent, RNA-binding domains from RNase E. RhlB, the RNA helicase component of the degradosome, also contributes to ribosome binding, and this is favoured through an activating interaction with RNase E. The catalytic activity of RNase E for processing 9S RNA (the ribosomal 5S RNA precursor) is repressed in the presence of the ribosome, whereas there is little affect on the cleavage of single-stranded substrates mediated by non-coding RNA, suggestings that the enzyme retains capacity to cleave unstructured substrates when associated with the ribosome. We propose that polysomes may act as antennae that enhance the rates of capture of the limited number of degradosomes, so that they become recruited to sites of active translation to act on mRNAs as they become exposed or tagged for degradation.  相似文献   

17.
Running rings around RNA: a superfamily of phosphate-dependent RNases.   总被引:18,自引:0,他引:18  
The exosome of Saccharomyces cerevisiae and the degradosome of Escherichia coli are multienzyme complexes involved in the degradation of mRNA. Both contain enzymes that are similar to the phosphate-dependent exoribonuclease RNase PH. These enzymes are phosphorylases that degrade RNA from the 3'-end. A recent X-ray crystallographic study of the polynucleotide phosphorylase (PNPase) from Streptomyces antibioticus reveals, for the first time, the atomic structure of a member of the RNase PH superfamily. Here, information from the structure of PNPase is used to address two related issues. First, the structure supports the idea that PNPase, which is a trimer of multidomain subunits, arose by duplication of a gene encoding an RNase PH-like enzyme. Second, the structure might explain how RNase PH-like enzymes associate into oligomeric rings that degrade RNA in a processive reaction.  相似文献   

18.
Ribonuclease E (RNase E) is a component of the Escherichia coli RNA degradosome, a multiprotein complex that also includes RNA helicase B (RhlB), polynucleotide phosphorylase (PNPase) and enolase. The degradosome plays a key role in RNA processing and degradation. The degradosomal proteins are organized as a cytoskeletal-like structure within the cell that has been thought to be associated with the cytoplasmic membrane. The article by Khemici et al. in the current issue of Molecular Microbiology reports that RNase E can directly interact with membrane phospholipids in vitro. The RNase E-membrane interaction is likely to play an important role in the membrane association of the degradosome system. These findings shed light on important but largely unexplored aspects of cellular structure and function, including the organization of the RNA processing machinery of the cell and of bacterial cytoskeletal elements in general.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号