首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Most bacteria have developed a hemoprotein degradation system to acquire iron from their hosts. Bacillus subtilis HmoB, a heme monooxygenase, is involved in the degradation of heme and subsequent release of iron. HmoB contains a C-terminal ABM domain, which is similar in sequence and structure to other heme monooxygenases. Heme degradation assay showed that highly conserved residues (N70, W128, and H138) near the heme-binding site were critical for activity of HmoB. However, HmoB was shown to be different from other bacterial heme oxygenases due to its longer N-terminal region and formation of a biological monomer instead of a dimer. The degradation product of B. subtilis HmoB was identified as staphylobilin from mass spectrometric analysis of the product and release of formaldehyde during degradation reaction.  相似文献   

3.
The AAA + (ATPases associated with a variety of cellular activities) superfamily protein ClpC is a key regulator of cell development in Bacillus subtilis. As part of a large oligomeric complex, ClpC controls an array of cellular processes by recognizing, unfolding, and providing misfolded and aggregated proteins as substrates for the ClpP peptidase. ClpC is unique compared to other HSP100/Clp proteins, as it requires an adaptor protein for all fundamental activities. The NMR solution structure of the N-terminal repeat domain of ClpC (N-ClpCR) comprises two structural repeats of a four-helix motif. NMR experiments used to map the MecA adaptor protein interaction surface of N-ClpCR reveal that regions involved in the interaction possess conformational flexibility and conformational exchange on the microsecond-to-millisecond timescale. The electrostatic surface of N-ClpCR differs substantially from the N-domain of Escherichia coli ClpA and ClpB, suggesting that the electrostatic surface characteristics of HSP100/Clp N-domains may play a role in adaptor protein and substrate interaction specificity, and perhaps contribute to the unique adaptor protein requirement of ClpC.  相似文献   

4.
The SCO protein from the aerobic bacterium Bacillus subtilis (BsSCO) is involved in the assembly of the cytochrome c oxidase complex, and specifically with the CuA center. BsSCO has been proposed to play various roles in CuA assembly including, the direct delivery of copper ions to the CuA site, and/or maintaining the appropriate redox state of the cysteine ligands during formation of CuA. BsSCO binds copper in both Cu(II) and Cu(I) redox states, but has a million-fold higher affinity for Cu(II). As a prerequisite to kinetic studies, we measured equilibrium stability of oxidized, reduced and Cu(II)-bound BsSCO by chemical and thermal induced denaturation. Oxidized and reduced apo-BsSCO exhibit two-state behavior in both chemical- and thermal-induced unfolding. However, the Cu(II) complex of BsSCO is stable in up to nine molar urea. Thermal or guanidinium-induced unfolding of BsSCO-Cu(II) ensues only as the Cu(II) species is lost. The effect of copper (II) on the folding of BsSCO is complicated by a rapid redox reaction between copper and reduced, denatured BsSCO. When denatured apo-BsSCO is refolded in the presence of copper (II) some of the population is recovered as the BsSCO-Cu(II) complex and some is oxidized indicating that refolding and oxidation are competing processes. The proposed functional roles for BsSCO in vivo require that its cysteine residues are reduced and the presence of copper during folding may be detrimental to BsSCO attaining its functional state.  相似文献   

5.
Membrane fluidity adaptation to the low growth temperature in Bacillus subtilis involves two distinct mechanisms: (1) long-term adaptation accomplished by increasing the ratio of anteiso- to iso-branched fatty acids and (2) rapid desaturation of fatty acid chains in existing phospholipids by induction of fatty acid desaturase after cold shock. In this work we studied the effect of medium composition on cold adaptation of membrane fluidity. Bacillus subtilis was cultivated at optimum (40 °C) and low (20 °C) temperatures in complex medium with glucose or in mineral medium with either glucose or glycerol. Cold adaptation was characterized by fatty acid analysis and by measuring the midpoint of phospholipid phase transition Tm (differential scanning calorimetry) and membrane fluidity (DPH fluorescence polarization). Cells cultured and measured at 40 °C displayed the same membrane fluidity in all three media despite a markedly different fatty acid composition. The Tm was surprisingly the highest in the case of a culture grown in complex medium. On the contrary, cultivation at 20 °C in the complex medium gave rise to the highest membrane fluidity with concomitant decrease of Tm by 10.5 °C. In mineral media at 20 °C the corresponding changes of Tm were almost negligible. After a temperature shift from 40 to 20 °C, the cultures from all three media displayed the same adaptive induction of fatty acid desaturase despite their different membrane fluidity values immediately after cold shock.  相似文献   

6.
The transmembrane topology of the Acr3 family arsenite transporter Acr3 from Bacillus subtilis was analysed experimentally using translational fusions with alkaline phosphatase and green fluorescent protein and in silico by topology modelling. Initial topology prediction resulted in two models with 9 and 10 TM helices respectively. 32 fusion constructs were made between truncated forms of acr3 and the reporter genes at 17 different sites throughout the acr3 sequence to discriminate between these models. Nine strong reporter protein signals provided information about the majority of the locations of the cytoplasmic and extracellular loops of Acr3 and showed that both the N- and the C-termini are located in the cytoplasm. Two ambiguous data points indicated the possibility of an alternative 8 helix topology. This possibility was investigated using another 10 fusion variants, but no experimental support for the 8 TM topology was obtained. We therefore conclude that Acr3 has 10 transmembrane helices. Overall, the loops which connect the membrane spanning segments are short, with cytoplasmic loops being somewhat longer than the extracellular loops. The study provides the first ever experimentally derived structural information on a protein of the Acr3 family which constitutes one of the largest classes of arsenite transporters.  相似文献   

7.
Bacterial histidine kinases (HKs) play a critical role in signal transduction for cellular adaptation to environmental conditions and stresses. YbdK from Bacillus subtilis is a 320-residue intra-membrane sensing HK characterized by a short input domain consisting of two transmembrane helices without an extracytoplasmic domain. While the cytoplasmic domains of HKs have been studied in detail, the intra-membrane sensing domain systems are still uncharacterized due to difficulties in handling the transmembrane domain. Here, we successfully obtained pure recombinant transmembrane domain of YbdK (YbdK-TM) from E. coli and analyzed the characteristics of YbdK-TM using nuclear magnetic resonance (NMR) and other biophysical methods. YbdK-TM was found to form homo-dimers in DPC micelles based on cross-linking assays and analytical ultracentrifugation analyses. We estimated the size of the YbdK-TM DPC complex to be 46 kDa using solution state NMR T1/T2 relaxation analyses in DPC micelles. These results provide information that will allow functional and structural studies of intra-membrane sensing HKs to begin.  相似文献   

8.
Regulating gene expression directly at the mRNA level represents a novel approach to control cellular processes in all organisms. In this respect, an RNA-binding protein plays a key role by targeting the mRNA to regulate the expression by attenuation or an anti-termination mechanism only in the presence of their cognate ligands. Although many proteins are known to use these mechanisms to regulate the gene expression, no structural insights have been revealed to date to explain how these proteins trigger the conformation for the recognition of RNA. This review describes the activated conformation of HutP, brought by the coordination of L-histidine and Mg2+ ions, based on our recently solved crystal structures [uncomplexed HutP, HutP–Mg2+, HutP–L-histidine, HutP–Mg2+–L-histidine, HutP–Mg2+–L-histidine-RNA]. Once the HutP is activated, the protein binds specifically to bases within the terminator region, without undergoing further structural rearrangement. Also, a high resolution (1.48 Å) crystal structure of the quaternary complex containing the three GAG motifs is presented. This analysis clearly demonstrates that the first base in the UAG motifs is not important for the function and is consistent with our previous observations.  相似文献   

9.
10.
11.
12.
Herbicides that inhibit branched chain amino acid biosynthesis induce aerobic fermentation. The role of fermentation in the mode of action of these herbicides is not known, nor is the importance of this physiological response in the growth inhibition and the lethality caused by them. Metabolic profiling was used to compare the effects of the herbicide imazethapyr (IM) on pea plants with two other treatments that also induce fermentation: hypoxia and the exogenous supply pyruvate for seven days. While hypoxic roots did not show internal anoxia, feeding pyruvate or applying IM to the roots led to internal anoxia, probably related to the respiratory burst detected. The three treatments induced ethanol fermentation, but fermentation induced following herbicide treatment was earlier than that following pyruvate supply and was not associated with a decrease in the energy status. No striking changes were detected in the metabolic profiling of hypoxic roots, indicating that metabolism was only slightly impaired. Feeding pyruvate resulted in marked succinate accumulation and a general amino acid accumulation. IM-treated roots showed a general accumulation of glycolytic metabolites upstream of pyruvate, a decrease in some TCA intermediates and an increase in the free amino acid pool sizes. All treatments caused GABA and putrescine accumulation. Our results indicate that IM supply impairs carbon/nitrogen metabolism and this impaired metabolism is likely to be related to the growth arrest detected. As growth is arrested, carbohydrates and glycolytic intermediates accumulate and energy becomes more available.  相似文献   

13.
Wang YP  Qi ML  Li TT  Zhao YJ 《Gene》2012,498(1):112-115
Maple syrup urine disease (MSUD) is an autosomal recessive metabolic disorder that is caused by mutations in the subunits of the branched-chain α-ketoacid dehydrogenase (BCKD) complex. BCKD is a mitochondrial complex encoded by four nuclear genes (BCKDHA, BCKDHB, DBT, and DLD) and is involved in the metabolism of branched-chain amino acids (BCAAs). In this study, we investigated the DNA sequences of BCKDHA, BCKDHB and DBT genes for mutations in a Chinese newborn with the classic form of MSUD and predicted the associated conformational changes using molecular modeling. We identified two previously unreported mutations in the BCKDHB gene, R170H (c.509G>A) in exon 5 and Q346R (c.1037 A>G) in exon 9. In silico analysis of the two novel missense mutations revealed that the mutation R170H-β alters the spatial orientation with both Y195-β' and S206-α, which results in unstable β-β' assembly and an unstable K(+) ion binding loop of the α subunit, respectively; The Q346R mutation is predicted to disrupt the spatial conformation between Q346-β and I357-β', which reduces the affinity of the β-β' subunits. These results indicate that R170-β and Q346-β are crucial for the activity of the E1 component. These two novel mutations, R170H and Q346R result in the patient's clinical manifestation of the classic form of MSUD.  相似文献   

14.
Increased susceptibility of Manduca sexta to commercial formulations of the microbial insecticide, Bacillus thuringiensis, as evidenced by lower LD50 and LT50 values, was observed when M. sexta were reared on an artificial diet supplemented with a sublethal concentration (2.5 mm) of l-canavanine. At several dosages of B. thuringiensis, which were administered either by diet contamination or by per os forced feeding, a greater than 70% reduction (P < 0.05) occurred in the LT50 response with canavanine-treated larvae. The LD50 values also were lowered by canavanine treatment. This constitutes the first report of a plant allelochemical enhancing the effect of B. thuringiensis in vivo. It is suggested that canavanine enhances the effect of B. thuringiensis on gut permeability and active transport.  相似文献   

15.
Carbohydrate polymers are medically and industrially important. The S-layer of many Gram-positive organisms comprises protein and carbohydrate polymers and forms an almost paracrystalline array on the cell surface. Not only is this array important for the bacteria but it has potential application in the manufacture of commercially important polysaccharides and glycoconjugates as well. The S-layer glycoprotein glycan from Geobacillus stearothermophilus NRS 2004/3a is mainly composed of repeating units of three rhamnose sugars linked by α-1,3-, α-1,2-, and β-1,2-linkages. The formation of the β-1,2-linkage is catalysed by the enzyme WsaF. The rational use of this system is hampered by the fact that WsaF and other enzymes in the pathway share very little homology to other enzymes. We report the structural and biochemical characterisation of WsaF, the first such rhamnosyltransferase to be characterised. Structural work was aided by the surface entropy reduction method. The enzyme has two domains, the N-terminal domain, which binds the acceptor (the growing rhamnan chain), and the C-terminal domain, which binds the substrate (dTDP-β-l-rhamnose). The structure of WsaF bound to dTDP and dTDP-β-l-rhamnose coupled to biochemical analysis identifies the residues that underlie catalysis and substrate recognition. We have constructed and tested by site-directed mutagenesis a model for acceptor recognition.  相似文献   

16.
The Cu,Zn superoxide dismutase from Haemophilus ducreyi is characterized by the unique ability to bind heme at its dimer interface. Here we report the high-resolution crystal structures of this protein in the heme-loaded (holo) and heme-free (apo) forms. Heme is asymmetrically bound between the two enzyme subunits, where heme iron is coordinated by two histidine residues, His64 and His 124, provided by the two subunits. Moreover, the binding of heme to the protein is ensured by stabilizing contacts between the prosthetic group and a limited number of other residues, most of which are not present in other bacterial enzyme variants. We show that the introduction of only three mutations at the dimer interface of the enzyme from Haemophilus parainfluenzae, a closely related bacterial species, is sufficient to induce heme-binding ability by this enzyme variant. Heme binding does not alter protein activity. Moreover, the binding of the prosthetic group does not induce any significant structural perturbation at the subunit level and requires only limited local structural rearrangements that widen the cleft at the dimer interface and cause a limited shift in the relative orientation between the subunits. The presence of a preformed heme-binding pocket and the significant solvent exposure of the cofactor to the solvent are compatible with the suggested protective role of the enzyme against heme toxicity or with its involvement in heme trafficking in the periplasmic space.  相似文献   

17.
Many bacteria can move chemotactically to a variety of compounds and the recognition of chemoeffectors by the chemoreceptor ligand binding domain (LBD) defines the specificity of response. Many chemoreceptors were found to recognize different amino and organic acids, but the McpU chemoreceptor from Pseudomonas putida was identified as the first chemoreceptor that bound specifically polyamines. We report here the three-dimensional structure of McpU-LBD in complex with putrescine at a resolution of 2.4 Å, which fitted well a solution structure generated by small-angle X-ray scattering. Putrescine bound to a negatively charged pocket in the membrane distal module of McpU-LBD. Similarities exist in the binding of putrescine to McpU-LBD and taurine to the LBD of the Mlp37 chemoreceptor of Vibrio cholerae. In both structures, the primary amino group of the respective ligand is recognized by hydrogen bonds established by two aspartate and a tyrosine side chain. This feature may be used to predict the ligands of chemoreceptors with unknown function. Analytical ultracentrifugation revealed that McpU-LBD is monomeric in solution and that ligand binding does not alter this oligomeric state. This sensing mode thus differs from that of the well-characterised four-helix bundle domains where ligands bind to two sites at the LBD dimer interface. Although there appear to be different sensing modes, results are discussed in the context of data, indicating that chemoreceptors employ the same mechanism of transmembrane signaling. This work enhances our understanding of CACHE domains, which are the most abundant sensor domains in bacterial chemoreceptors and sensor kinases.  相似文献   

18.
The HIV-1 transactivation response (TAR) element-Tat interaction is a potentially valuable target for treating HIV infection, but efforts to develop TAR-binding antiviral drugs have not yet yielded a successful candidate for clinical development. In this work, we describe a novel approach toward screening fragments against RNA that uses a chemical probe to target the Tat-binding region of TAR. This probe fulfills two critical roles in the screen: by locking the RNA into a conformation capable of binding other fragments, it simultaneously allows the identification of proximal binding fragments by ligand-based NMR. Using this approach, we have discovered six novel TAR-binding fragments, three of which were docked relative to the probe-RNA structure using experimental NMR restraints. The consistent orientations of functional groups in our data-driven docked structures and common electrostatic properties across all fragment leads reveal a surprising level of selectivity by our fragment-sized screening hits. These models further suggest linking strategies for the development of higher-affinity lead compounds for the inhibition of the TAR-Tat interaction.  相似文献   

19.
The Deleted in Azoospermia (DAZ) family of RNA binding proteins consists of highly conserved genes boule, daz and daz-like (dazl) essential for germ cell development. boule is known for its unisexual meiotic expression in invertebrates and mammals, but meiotic-specific female expression plus meiosis-preferential male expression in trout, and meiosis-preferential bisexual expression in medaka. dazl shows highly conserved bisexual expression throughout gametogenesis in diverse species. Here we report the cloning and expression of boule and dazl in the Nile tilapia (Oreochromis niloticus), an important aquaculture fish. Molecular cloning and sequence analysis led to the identification of tilapia boule and dazl cDNAs. The predicted partial Boule contains a conserved RRM motif and Dazl has the C-terminal sequence. On a phylogenetic tree, tilapia Boule and Dazl are in separate clades of Boule and Dazl homologs from other species, indicating their divergence during early vertebrate evolution. By RT-PCR analysis, boule and dazl showed bisexual gonad-specific expression. By in situ hybridization analysis, both boule and dazl RNAs were restricted to female and male germ cells of adult gonads but absent in gonadal soma. In the ovary, boule and dazl RNAs were abundant in oocytes. In the testis, boule and dazl RNAs were prominent in meiotic spermatocytes but barely detectable in meiotic products. These data show that boule and dazl are expressed bisexually in germ cells and provide useful markers to study gametogenesis in the adult tilapia.  相似文献   

20.
DEAD box proteins consist of a common helicase core formed by two globular RecA domains that are separated by a cleft. The helicase core acts as a nucleotide-dependent switch that alternates between open and closed conformations during the catalytic cycle of duplex separation, thereby providing basic helicase activity. Flanking domains can direct the helicase core to a specific RNA substrate by mediating high-affinity or high-specificity RNA binding. In addition, they may position RNA for the helicase core or may directly contribute to unwinding. While structures of different helicase cores have been determined previously, little is known about the orientation of flanking domains relative to the helicase core.YxiN is a DEAD box protein that consists of a helicase core and a C-terminal RNA binding domain (RBD) that mediates specific binding to hairpin 92 in 23S rRNA. To provide a framework for understanding the functional cooperation of the YxiN helicase core and the RBD, we mapped the orientation of the RBD in single-molecule fluorescence resonance energy transfer experiments. We present a model for the global conformation of YxiN in which the RBD lies above a slightly concave patch that is formed by flexible loops on the surface of the C-terminal RecA domain. The orientation of the RBD is different from the orientations of flanking domains in the Thermus thermophilus DEAD box protein Hera and in Saccharomyces cerevisiae Mss116p, in line with the different functions of these DEAD box proteins and of their RBDs. Interestingly, the corresponding patch on the C-terminal RecA domain that is covered by the YxiN RBD is also part of the interface between the translation factors eIF4A and eIF4G. Possibly, this region constitutes an adaptable interface that generally allows for the interaction of the helicase core with additional domains or interacting factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号