首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used two monoclonal antibodies (Mab) to the L3T4 antigen to reexplore the role of this molecule in the process of T cell activation. Both Mab (Gk1.5 and 2B6) were capable of inhibiting Con A-induced IL 2 production by a number of antigen-specific T cell hybridomas in an assay system that was free of major histocompatibility complex (MHC) class II antigen-bearing cells. The inhibition produced by the anti-L3T4 Mab was specific, because other Mab to cell surface antigens expressed on the hybridomas were without inhibitory effects. These studies rule out the possibility that the mechanism of inhibition by anti-L3T4 in this model is mediated by blocking interaction of L3T4 with MHC class II products. Taken together, these results and those of other groups of investigators, are most compatible with a dual function for L3T4 in T cell activation. L3T4 might first interact with MHC class II molecules or other molecules on target or accessory cells; L3T4 would subsequently transmit a signal that would regulate the activation process. Mab to L3T4 might exert inhibitory effects at one or both of these steps.  相似文献   

2.
Confluent rabbit corneal endothelial cells incubated in the absence of serum do not produce fibrinogen. When exogenous fibronectin is added to these cultures, fibrinogen production is observed. Fibronectin concentrations stimulate fibrinogen synthesis by endothelial cells in a dose-response fashion. This direct interaction of fibronectin and fibrinogen may be important in both wound healing processes and pathological states.  相似文献   

3.
As T cells actively extravasate from blood, they adhere to endothelium and then migrate out of the vessel with a locomotive activity. Although both adhesion and locomotion are properties associated with activated T cells, the two processes are not necessarily associated with identical activation states. Using human endothelial cells (EC) cultured to confluence on collagen gel, we examined the activation state of human peripheral blood T cells that adhere to and migrate through EC monolayers with three different methods: flow cytometric analysis of cell surface activation-related molecules, incorporation of tritiated nucleotide, and cell cycle analysis. The results were as follows. 1) Although expression of very late activation Ag integrins VLA-2 and VLA-3 by the initial blood T cell population (unseparated cells) and of adherent T cells was minimal, 40 to 45% of migrating cells were positive for VLA-2 and VLA-3. 2) The percentage of IL-2R+ cells in both unseparated and adherent cells was below 5% whereas the percentage of IL-2R+ cells among the migrating cells was 22 +/- 9% (range, 12 to 31%, n = 6). 3) Migrating cells expressed the highest CD26, whereas CD26 of adherent (nonmigrating) cells was divided into negative and high expression; in contrast, leukocyte adhesion molecule-1 (L-selectin) of both adherent and migrating cells was mostly low or negative. 4) [3H]Uridine incorporation of migrating and adherent cells was 2.1- to 2.5-fold and 1.4- to 1.7-fold higher, respectively, than that of unseparated cells, indicating that RNA synthesis of migrating cells as well as adherent cells was enhanced. 5) Cell cycle analysis showed that 23.5% of migrating cells appeared to enter the G1 phase but not S or G2 + M phases whereas 2.2% of unseparated cells and 8.0% of adherent cells that did not migrate had an RNA content consistent with entry into G1. These results suggest that cells migrating from normal human blood through unactivated EC have been activated recently as well as showing evidence of long term activation. The activation state of migrating cells is consistent with the hypothesis that previous in vivo activation is required for cells to migrate through EC in this system.  相似文献   

4.
Using the cornea of macaque monkey, we demonstrated the relationship between cell density and growth of endothelial cells in vitro. Corneal endothelial cells in a cell sheet grow most actively in regions with cell density of 1000 to 1800 cells/mm2, in explant cultures and cell sheets and in concentrated inocula dissociated cells. Cell morphology was well sustained in these cultures. Cells cultured at a higher cell density retained their potential to proliferate actively, showing clear contrast to cells cultured at a density lower than 200 cells/mm2. When dissociated cells were cultured at a low density and maintained for more than 4 weeks, they gradually lost their growth potential, altered into polymorphonuclear giant cells and eventually dedifferentiated. In addition, cells with no contact with each other did not express growth potential. Density dependent growth was confirmed by measuring the mitotic index against the cell density per square mm from the center to the peripheral regions in cultured explants. It is concluded that the growth pattern of corneal endothelial cells is closely related to cell density, and that growth of these cells might be regulated through intercellular communications.  相似文献   

5.
Summary Bovine aortic endothelial cells retain the ability to undergo histotypic morphogenetic interactions in vitro as evidenced by a) the reversible expression of a sprouting cell phenotype and b) the patterned self-association of these sprouting cells into three-dimensional meshworks and tubule-like structures. These morphogenetic events are inhibited by xylosides in a dose-dependent manner. Two types of beta-xylosides (p-nitrophenyl-beta-d-xylopyranoside and 4-methylumbelliferyl-beta-d-xylopyranoside) and one alpha-xyloside (p-nitrophenyl-alpha-d-xylopyranoside) were tested. Beta-xylosides are well characterized acceptors of glycosaminoglycan chains, whereas alpha-xylosides do not function in this capacity and have been extensively used as negative controls when studying the effects of beta-xylosides. Both alpha-and beta-xylosides inhibited endothelial morphogenetic interactions. This inhibition was slowly reversed during the 6- to 7-d period following removal of the xyloside. Inhibition of morphogenetic interactions by xylosides occurred at concentrations (0.5 to 2.0 mM) that had no demonstrable effects on cell proliferation, migration, or adhesion to 2-D plastic or collagen substrata. The xylosides seemed to inhibit cell spreading on a 3-D environment, they also inhibited the incorporation of [3H]-proline and Na2 35SO4 into the extracellular matrix deposited by the cells, suggesting that the inhibition of morphogenesis may be related to the inhibition of matrix deposition. Endothelial morphogenetic interactions were not inhibited by the extracellular matrix or by the conditioned medium produced by cells cultured in the presence of xylosides.  相似文献   

6.
Using a heterotopic model of transplantation, we investigated the role of T cell activation in vivo during allograft rejection in I-kappaB(DeltaN)-transgenic mice that express a transdominant inhibitor of NF-kappaB in T cells. Our results show indefinite prolongation of graft survival in the I-kappaB(DeltaN)-transgenic recipients. Interestingly, at the time of rejection of grafts in wild-type recipients, histology of grafts in the I-kappaB(DeltaN)-transgenic recipients showed moderate rejection; nevertheless, grafts in the I-kappaB(DeltaN) recipients survived >100 days. Analysis of acute phase cytokines, chemokine, chemokine receptors, and immune responses shows that the blockade of NF-kappaB activation in T cells inhibits up-regulation of many of these parameters. Interestingly, our data also suggest that the T cell component of the immune response exerted positive feedback regulation on the expression of multiple chemokines that are produced predominantly by non-T cells. In conclusion, our studies indicate NF-kappaB activation in T cells is necessary for acute allograft rejection.  相似文献   

7.
Endothelioma cells expressing the polyoma virus middle T oncogene induced hemangiomas in mice by the recruitment of nonproliferating endothelial cells from host blood vessels (Williams et al. 1989). I now report that SPARC, a Ca(2+)-binding glycoprotein that perturbs cell-matrix interactions and inhibits the endothelial cell cycle, is produced by endothelioma cells and is in part responsible for the alterations in the morphology and growth that occur when nontransformed bovine aortic endothelial cells are cocultured with endothelioma cells. Normal endothelial cells cocultured with two different middle T-positive endothelial cell lines, termed End cells, exhibited changes in shape that were accompanied by the formation of cell clusters. Media conditioned by End cells repressed proliferation of normal endothelial cells, but enhanced that of an established line of murine capillary endothelium. Radiolabeling studies revealed no apparent differences in the profile of proteins secreted by aortic or capillary cells cultured in End cell conditioned media. Characterization of proteins produced by End cells led to the identification of type IV collagen, laminin, entactin, and SPARC as major secreted products. Although SPARC did not affect the morphology of End or capillary cells, it was associated with overt changes in the shape of aortic endothelial cells. Moreover, SPARC and a synthetic peptide from SPARC domain II inhibited the incorporation of [3H]thymidine by aortic cells, but had minimal to no effect on the capillary endothelial cell line. The inhibition of growth exhibited by aortic endothelial cells cultured in End cell conditioned media could be partially reversed by antibodies specific for SPARC and SPARC peptides. These studies indicate a potential role for SPARC in the generation of hemangiomas by End cells in vivo, a process that requires normal (host) endothelial cells to disengage from the extracellular matrix, withdraw from the cell cycle, migrate, and reassociate into the disorganized cellular networks that comprise cavernous and capillary hemangiomas.  相似文献   

8.
Bovine corneal endothelial cells deposit an extracellular matrix in short-term cultures, which contains various morphologically distinct structures when analysed by electron microscopy after negative staining. Amongst these were long-spacing fibers with a 150 nm periodicity, which appeared also to be assembled into more complex hexagonal lattices. Another structure was fine filaments, 10-40 nm in diameter, which occasionally exhibited 67 nm periodic cross-striation. Non-striated 10-20 nm filaments sometimes formed radially oriented bundles arranged in networks and fuzzy granular material was associated with the filaments in the bundles. Often, these bundles extended into solitary filaments, 10-20 nm in diameter, with a smooth surface. In addition, amorphous patches were seen, which contained dense aggregates of fibrillar and granular material. In longer-term cultures, some of the structures coalesced to form large fibrillar bundles. By using specific antibodies to various extracellular matrix components and immunolabeling with gold some of these structures could be identified as to their protein composition. Whereas fibronectin antibodies labeled a variety of structures--fine filaments with granular materials, radially oriented bundles, patchy amorphous aggregates and small granular material scattered throughout the background--type III collagen antibody predominantly labeled filaments with periodic banding (10-40 nm in diameter). A small amount of type III specific labeling was also observed over the networks of radially oriented fibrils and fine filaments associated with granular material. Type IV collagen and laminin antibodies localized in areas of the patchy amorphous aggregates. Type VI collagen antibodies, on the other hand, labeled fine filaments and the gold particles showed a pattern of 100 nm periodicity. Many of the fine 10-20 nm filaments exhibited a tubular appearance on cross-section, but they were not reactive with any of the antibodies used. Also negative were the long-spacing fibers and assemblies--including hexagonal lattices--containing this structural element.  相似文献   

9.
10.
Imaging early steps of human T cell activation by antigen-presenting cells.   总被引:1,自引:0,他引:1  
In this work the Ca2+ response and the morphological changes elicited by Ag in human CD4+ T cells are described at the single cell level. The APC used to present the diphtheria toxoid Ag to a human diphtheria toxoid-specific T cell clone were murine L cell fibroblast transfectants expressing MHC class II molecules. The increase of the intracellular Ca2+ concentration, [Ca2+]i, which is one of the earliest steps of the response to TCR stimulation, was followed by fluorimetry with fura-2 on an imaging system. This response was a specific consequence of successful Ag presentation, because it only took place when fibroblasts expressed both class II MHC molecules and Ag. CD4 molecules were also involved in this intercellular interaction, because the Ca2+ response could be inhibited by preincubating the T cells with an anti-CD4 antibody. The response induced by APC started after a delay of at least 6 min, after which large Ca2+ oscillations took place, with a pseudo period of 100 s at 35 degrees C. The frequency of these oscillations decreased with temperature. The oscillations became progressively more damped during the first 30 to 40 min of cell-to-cell interaction, after which they completely stopped; however, [Ca2+]i remained well above its resting level for more than 1 h after the contact. The Ca2+ oscillations were entirely dependent on Ca2+ influx because they immediately disappeared when external calcium was removed. Similar oscillations were observed when the cells were stimulated with an anti-CD3 antibody. After stimulation with APC, many T cells abandoned their spherical shape and tended to flatten and elongate. This aspect of the T cell response was not observed after stimulation with an anti-CD3 antibody. In the presence of cytochalasin B, the morphologic changes elicited by the APC were blocked, whereas the Ca2+ response was slightly enhanced. However, when T cells were loaded with the Ca2+ chelator BAPTA, both Ca2+ and morphologic changes were inhibited, suggesting that the Ca2+ response plays a permissive role for the morphologic changes.  相似文献   

11.
Mi P  Gregerson DS  Kawashima H 《Cytokine》2000,12(3):253-264
Corneal endothelial cells (CE cells) inhibit antigen- and mitogen-activated lymphocyte proliferation assays, although interleukin 2 receptor (IL-2R) expression and responsiveness to exogenous IL-2 are unaffected. To examine this activity further, co-cultures of CE cells and T cell clones were studied. CE cells inhibited IL-2 and IL-4 production by T cells stimulated with Ag and APC, but not IL-5 or IL-6 production. CE cells also inhibited NFAT-driven lacZ reporter gene production following Ag stimulation of transfected KZO T hybridoma cells. Conversely, stimulation of IL-2 production by ionomycin, with or without PMA, was unaffected by the CE cells. Preincubation of KZO hybridoma or Jurkat cells with CE cells, or CE cell-conditioned culture supernatant, inhibited the intracellular calcium ([Ca(2+)](i)) increase induced by TCR ligation, but not the [Ca(2+)](i)increase induced by ionomycin or thapsigargin. The inhibitory effect was independent of APC and did not act by blocking costimulation, since IL-2 production stimulated by immobilized anti-CD3 alone was also inhibited by CE cells. The supernatant factor was heat labile. This novel activity is unlike other immunoregulatory molecules, including transforming growth factor beta (TGF-beta) and may contribute to local immune privilege.  相似文献   

12.
13.
A double Rose chamber technique is described for simultaneously separating the endothelial and epithelial cells from the corneas of a variety of animals. Endothelial cells, although few in number at harvest, quickly grew into thriving cultures. Epithelial cells, although obtained in large numbers from the corneas, were more difficult to establish and grow. These two types of cells from one tissue differ greatly in culture and are useful materials for various comparative studies. Cells from X-irradiated animals produced multinucleated gaint cells and abnormal fibroblastic cells.  相似文献   

14.
Previous studies in this and other laboratories have demonstrated that IL-1, lymphotoxin (LT), and TNF rapidly stimulate a number of proinflammatory properties in cultured endothelial cells (EC) including cell-surface procoagulant activity and increased adhesivity for lymphocytes, monocytes, and polymorphonuclear leukocytes. In addition, we have demonstrated that LT and TNF, but not IL-1, stimulate increases in EC RNA synthesis, protein synthesis, and cellular volumes, changes which may correspond to the hypertrophy of EC seen at sites of inflammation in vivo. It is reported here that both human rIL-1 alpha and rIL-1 beta totally inhibit the increases in EC RNA synthesis, protein synthesis, and cell volumes induced by either TNF or LT. As little as 0.1 ng/ml of either IL-1 was sufficient to totally block the activation of EC induced by 100-fold higher concentrations (10 ng/ml) of either LT or TNF. The relevance of these findings to the regulation of inflammatory responses is discussed.  相似文献   

15.
Regulation of the immune response is critical to homeostasis. While innate immunity can influence the development of adaptive immune responses, its role in regulation is less well understood. Recently, NK cells have been implicated in the control of experimental autoimmune encephalomyelitis, an animal model for multiple sclerosis. In this report, we show that rat bone marrow-derived NK cells exhibited potent inhibitory effects on T cell proliferation to both Con A as well as the central nervous system Ag myelin basic protein. There was also a significant decrease in both IFN-gamma and IL-10 production in vitro, whereas levels of the beta-chemokine monocyte chemoattractant protein-1 were significantly elevated. Flow cytometry studies suggest that the NK cells may play an important role in regulating both normal and autoimmune T cell responses by exerting a direct effect on activated, autoantigen-specific T cells.  相似文献   

16.
Proteolysis mediated by the ubiquitin-proteasome system has been implicated in the regulation of programmed cell death. Here we investigated the differential effects of proteasomal inhibitors on the viability of proliferating and quiescent primary endothelial cells in vitro and in vivo. Subconfluent, proliferating cells underwent carbobenzoxy-L-isoleucyl-gamma-t-butyl-L-glutamyl-L-alanyl-L-leucinal (PSI) -induced apoptosis at low concentrations (EC(50)=24 nM), whereas at least 340-fold higher concentrations of PSI were necessary to obtain the same effect in confluent, contact-inhibited cells. PSI-mediated cell death could be blocked by a caspase-3 inhibitor (Ac-DEVD-H), but not by a caspase-1 inhibitor (Ac-YVAD-H), suggesting that a caspase-3-like enzyme is activated during PSI-induced apoptosis. When applied to the embryonic chick chorioallantoic membrane, a rapidly expanding tissue, PSI induced massive apoptosis also in vivo. PSI treatment of the CAM led to the formation of areas devoid of blood flow due to the induction of apoptosis in endothelial and other cells and to the collapse of capillaries and first order vessels. Our results demonstrate that proteasomal inhibitors such as PSI may prove effective as novel anti-angiogenic and anti-neoplastic substances.  相似文献   

17.
The ability of activated T cells to suppress ongoing IgE synthesis in vitro was assessed using U266--a human myeloma cell line spontaneously producing IgE. T cells were able to inhibit U266 IgE synthesis in the presence of 10 micrograms/ml of Con A by 41.8% (p less than 0.01). T cells preincubated with 10 or 50 micrograms/ml of Con A and washed extensively were still able to inhibit U266 IgE synthesis in the absence of Con A by 41 and 46% (p less than 0.05 and p less than 0.02, respectively). The decrease in IgE measured was due to inhibition of newly formed IgE by U266, as shown by control experiments with cycloheximide. The inhibition was not due to the simple depletion of nutrient growth factors by the activated T cells, as it did not occur with MOLT-4, T cells that are very active metabolically; nor could it be reversed with medium containing IL 2 and B cell growth factors. Culture supernatants of Con A-activated T cells were also able to suppress IgE synthesis by U266 (21%; p less than 0.01), which suggests that upon appropriate activation, T cells secrete material(s) with inhibitory properties for IgE synthesis. Activation of T cells by mixed lymphocyte culture using puromycin-treated lymphoblastoid cell lines as stimulators also generated T cells that had suppressive activity for IgE synthesis. T cells activated with Con A and subsequently incubated with IgE demonstrated a diminished ability to suppress IgE synthesis. This observation is in agreement with the finding that patients with high levels of IgE may lack isotype-specific suppressor T cells for spontaneous IgE secretion. However, T cells from such patients have so far shown variable loss of IgE suppressive function. These results suggest that human IgE synthesis is susceptible to inhibition at a very differentiated stage, and this may be important in expression of allergic diseases.  相似文献   

18.
BACKGROUND: vascular endothelial cell activation and dysfunction are observed in patients with severe heart failure and may contribute to systemic manifestations of this syndrome. It remains unknown whether inflammatory activation of these cells occurs in these patients because of increased circulating proinflammatory mediators. Aim: to determine whether the serum from patients with heart failure possesses a net proinflammatory bioactivity to active proinflammatory pathways in cultured endothelial cells. METHODS: serum was obtained from stable patients with end-stage heart failure undergoing elective cardiac transplantation (Tx) and severely decompensated patients with heart failure requiring emergency left ventricular assist device (LVAD) implantation. Net proinflammatory bioactivity of serum was investigated by monitoring IkappaBalpha degradation and E-selectin expression in cultured human pulmonary artery endothelial cells (HPAEC) following incubation with serum samples. Serum cytokine concentrations were measured by ELISA and neutralizing antibodies were used to determine the role of specific factors in the observed bioactivity. RESULT: serum from both patient groups induced HPAEC IkappaBalpha degradation. Low basal HPAEC E-selectin expression significantly increased following treatment with Tx but not LVAD serum. Serum tumor necrosis factor-alpha (TNF-alpha) and IL-10 concentrations were higher in patients with LVAD than those with Tx, and soluble TNF-alpha receptor expression was high in both groups. Neither TNF-alpha nor IL-10 blocking experiments altered either bioassay result. CONCLUSION: activation of a specific profile of pro- and anti-inflammatory mediators is associated with heart failure resulting in HPAEC nuclear factor (NF)-kappaB activation. However, E-selectin expression is further regulated by unidentified factors. TNF-alpha is upregulated but appears to play no part in NFkappaB activation in these patients. These findings could have important therapeutic implications.  相似文献   

19.
Morphological studies of developing capillaries and observations of alterations in capillaries associated with pathologic neovascularization indicate that pericytes may act as suppressors of endothelial cell (EC) growth. We have developed systems that enable us to investigate this possibility in vitro. Two models were used: a co-culture system that allowed direct contact between pericytes and ECs and a co-culture system that prevented physical contact but allowed diffusion of soluble factors. For these studies, co-cultures were established between bovine capillary ECs and the following growth-arrested cells (hereafter referred to as modulating cells): pericytes, smooth muscle cells (SMCs), fibroblasts, epithelial cells, and 3T3 cells. The modulating cell type was growth arrested by treatment with mitomycin C before co-culture with ECs. In experiments where cells were co-cultured directly, the effect of co-culture on EC growth was determined by comparing the mean number of cells in the co-cultures to the mean for each cell type (EC and modulating cell) cultured separately. Since pericytes and other modulating cells were growth arrested, any cell number change in co-cultures was due to EC growth. In the co-cultures, pericytes inhibited all EC proliferation throughout the 14-d time course; similar levels of EC inhibition were observed in SMC-EC co-cultures. Co-culture of ECs with fibroblasts, epithelial cells, and 3T3 cells significantly stimulated EC growth over the same time course (30-192% as compared to EC cultured alone). To determine if cell contact was required for inhibition, cells were co-cultured using Millicell chambers (Millipore Corp., Bedford, MA), which separated the cell types by 1-2 mm but allowed the exchange of diffusible materials. There was no inhibition of EC proliferation by pericytes or SMCs in this co-culture system. The influence of the cell ratios on observed inhibition was assessed by co-culturing the cells at EC/pericyte ratios of 1:1, 2:1, 5:1, 10:1, and 20:1. Comparable levels of EC inhibition were observed at ratios from 1:1 to 10:1. When the cells were co-cultured at a ratio of 20 ECs to 1 pericyte, inhibition of EC growth at 3 d was similar to that observed at other ratios. However, at higher ratios, the inhibition diminished so that by the end of the time course the co-cultured ECs were growing at the same rate as the controls. These results suggest that pericytes and SMCs can modulate EC growth by a mechanism that requires contact or proximity. We postulate that similar interactions may operate to modulate vascular growth in vivo.  相似文献   

20.
Experimentally induced and naturally occurring inflammatory diseases of the central nervous system (CNS) are often associated with a breakdown of the blood-brain barrier and edema within the CNS itself. CD4+ T cells are now clearly implicated in the pathogenesis of the induced CNS disease, experimental autoimmune encephalomyelitis, and previous in vivo experiments had indicated that these cells may be capable of directly damaging the CNS vasculature. To assess the capacity of CD4+ T cells to damage brain vascular endothelial cells (EC) in vitro, two lines with specificity for myelin basic protein and OVA were prepared and added to cultures of EC. We show here that both lines, when added in a resting state, severely disrupt the EC monolayers in an Ag-specific manner. The interaction is dependent on the recognition of Ag in the context of MHC class II and is blocked in the presence of mAb specific for CD4. Addition of T cell lines preactivated on irradiated thymocyte APC caused a high level of Ag nonspecific damage to the EC, which was not blocked by the addition of anti-CD4 mAb. Supernatants derived from these latter cells did not alone damage the EC monolayers despite the presence of TNF activity suggesting that T cell-EC contact may be required for these cell lines to mediate their effector function. Both resting and preactivated lines adhered strongly to the EC in the absence of Ag. The capacity of CD4+ T cells to strongly adhere to, and disrupt the integrity of, brain vascular EC may be important in the early stages of CNS disease mediated by this cell type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号