首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adjuvant treatment of cancer by chemotherapy is associated with cognitive impairment in some cancer survivors. Breast cancer patients are frequently also receiving endocrine therapy with selective estrogen receptor modulators (SERMs) and/or aromatase inhibitors (AIs) to suppress the growth of estradiol sensitive breast tumors. Estrogens are well-known, however, to target brain areas involved in the regulation of cognitive behavior. In this review clinical and basic preclinical research is reviewed on the actions of estradiol, SERMs and AIs on brain and cognitive functioning to see if endocrine therapy potentially induces cognitive impairment and in that respect may contribute to the detrimental effects of chemotherapy on cognitive performance in breast cancer patients. Although many clinical studies may be underpowered to detect changes in cognitive function, current basic and clinical reports suggest that there is little evidence that AIs may have a lasting detrimental effect on cognitive performance in breast cancer patients. The clinical data on SERMs are not conclusive, but some studies do suggest that tamoxifen administration may form a risk for cognitive functioning particularly in older women. An explanation may come from basic preclinical research which indicates that tamoxifen often acts agonistic in the absence of estradiol but antagonistic in the presence of endogenous estradiol. It could be hypothesized that the negative effects of tamoxifen in older women is related to the so-called window of opportunity for estrogen. Administration of SERMs beyond this so-called window of opportunity may not be effective or might even have detrimental effects similar to estradiol.  相似文献   

2.
Estrogen receptors (ERs) are widely held to mediate the ability of 17 beta-estradiol (estradiol) to attenuate injury-induced proliferation of vascular smooth muscle cells (VSMCs) leading to vascular lesions. However, recent findings that estradiol prevents injury-induced vascular lesion formation in knock-out mice lacking either ER alpha or ER beta seriously challenge this concept. Here we report that the local metabolism of estradiol to methoxyestradiols, endogenous metabolites of estradiol with no affinity for ERs, is responsible for the ER-independent inhibitory effects of locally applied estradiol on rat VSMC growth. These finding imply that local vascular estradiol metabolism may be an important determinant of the cardiovascular protective effects of circulating estradiol. Thus, interindividual differences, either genetic or acquired, in the vascular metabolism of estradiol may define a given female's risk of cardiovascular disease and influence the cardiovascular benefit she receives from estradiol replacement therapy in the postmenopausal state. These findings also imply that nonfeminizing estradiol metabolites may confer cardiovascular protection in both women and men.  相似文献   

3.
4.
The estradiol metabolism may be of clinical relevance in the pathophysiology of various diseases; the increase in D-ring metabolites over A-ring metabolites in breast cancer patients is of special interest. Since estrogen therapy has been blamed for increasing the risk of breast cancer, the effects of hormonal replacement therapy (HRT) and oral contraception were investigated on the ratio of the main D-ring metabolite, 16alpha-hydroxyestrone (16-OHE1), to the main A-ring metabolite, 2-hydroxyestrone (2-OHE1). In our study, hormone replacement therapy (HRT) in postmenopausal women consisted of administration of estradiol valerate either with or without addition of the progestin dienogest. In the second part of the study, women of reproductive age received ethinylestradiol plus dienogest or ethinylestradiol plus norethisterone acetate as oral contraceptives (OC). 2-OHE1 and 16-OHE1 were measured by enzyme immunoassay in 8 h night-urine collected before and after 3 months of hormone administration. With HRT, that is, estradiol valerate or estradiol valerate plus dienogest, the ratios before treatment were 0.47 and 0.60; after 3 months, they were 0.54 and 0.52, respectively. There were no significant differences. With oral contraception, that is, ethinylestradiol plus dienogest or norethisterone acetate, the ratios before administration were 0.62 and 0.68, vs. 0.31 and 0.54 after 3 months, respectively. The ratio after ethinylestradiol and dienogest was significantly lower after treatment. HRT and OC in the estrogen-progestin combinations tested did not impose any negative effects on estradiol metabolism--they did not elicit a higher D-ring metabolism, which is considered to increase breast cancer risk.  相似文献   

5.
Aromatase is present in human breast tumors and in breast cancer cell lines suggesting the possibility of in-situ estrogen production via the androstenedione to estrone and estradiol pathway. However, proof of the biologic relevance of aromatase in breast cancer tissue requires the demonstration that this enzyme mediates biologic effects on cell proliferation. Accordingly, we studied the effects of the aromatase substrate, androstenedione, on the rate of proliferation of wild-type and aromatase-transfected MCF-7 breast cancer cells. Androstenedione did not increase cell growth in wild-type MCF-7 cells which contained relatively low aromatase activity and produced 4-fold more estrone than estradiol. In contrast, aromatase-transfected cell contained higher amounts of aromatase, produced predominantly estradiol, and responded to androstenedione with enhanced growth. An aromatase inhibitor fadrozole hydrochloride, blocked the proliferative effects of androstenedione providing evidence for the role of aromatase in this process. As further evidence of the requirement for aromatase, cells transfected with the neomycin resistance expression plasmid but lacking the aromatase cDNA did not respond to androstenedione. These studies provide evidence that aromatase may have a biologic role for in-situ synthesis of estrogens of breast cancer tissue.  相似文献   

6.
Cardiovascular protective effects of 17beta-estradiol metabolites.   总被引:1,自引:0,他引:1  
17beta-estradiol (estradiol), the most abundant endogenous estrogen, affords cardiovascular protection. However, in a given cohort of postmenopausal women, estradiol replacement therapy provides cardiovascular protection in only a subset. The reasons for this variable action can only be understood once the mechanisms by which estradiol induces its cardiovascular protective effects are known. Because most biological effects of estradiol are mediated via estrogen receptors (ERs) and the heart and blood vessels contain both ER-alpha and ER-beta, the prevailing view is that ERs mediate estradiol-induced cardiovascular protection. However, recent findings that estradiol protects against vascular injury in arteries of mice lacking either ER-alpha or ER-beta seriously challenges this concept. Thus other non-ER mechanisms may be operative. Endogenous estradiol is enzymatically converted to several nonestrogenic metabolites, and some of these metabolites induce potent biological effects via ER-independent mechanisms. Therefore, it is conceivable that the cardiovascular protective effects of estradiol are mediated via its endogenous metabolites. On the basis of the evidence cited in this review, the cardiovascular protective effects of estradiol are both ER dependent and independent. The purpose of this article is to review the evidence regarding the cardiovascular protective effects of estradiol metabolites and to discuss the cellular, biochemical, and molecular mechanisms involved.  相似文献   

7.
Dominance of estradiol metabolism at the D-ring over the A-ring metabolism may play a role in the pathophysiology of human breast carcinogenesis. Currently, the influence of progestins on breast cancer risk is debated when added to postmenopausal estradiol replacement therapy. However, nothing is known about the action of progestins on estradiol metabolism. Therefore, the effect of oral and transdermal estradiol/norethisterone acetate (NETA) was investigated on the ratio of the main D-ring metabolite 16alpha-hydroxyestrone (16-OHE1) to the main Aring metabolite 2-hydroxyestrone (2-OHE1). The ratio of 16-OHE1 to 2-OHE1 after transdermal hormone replacement therapy (HRT) was 0.43 before treatment, 0.35 after estradiol and 0.52 after estradiol + NETA. The ratio after oral HRTwas 0.94 before treatment, 0.86 after estradiol and 2.30 after estradiol + NETA. Because of the high variations, no statistical significance could be calculated. Since there was a tendency to an increase after oral estradiol + NETA treatment, the individual patient profiles were examined. Here, three patients in the oral treatment group showed a significant increase of the ratio after the estradiol/NETA phase. In conclusion, transdermal NETA in HRT did not elicit any change in estrogen metabolism after 2 weeks' treatment. However, oral NETA may in some cases have an impact on estradiol metabolism which should be further evaluated.  相似文献   

8.
9.
The anti-estrogenic substance tamoxifen is effective in the adjuvant therapy applied in human breast cancer. Since it partly exhibits estrogenic activity and has serious side-effects, however, pure anti-estrogenic compounds are being sought. In our experimental study, we compared the anti-proliferative effect of estradiol and 13 endogenous estradiol metabolites on human breast cancer cells with the effect of tamoxifen. We used MCF-7 and MDA-MB 231, the well-established estrogen receptor-positive and -negative cell lines. 4-hydroxytamoxifen, the active metabolite of tamoxifen, estradiol and 13 estradiol metabolites were tested in concentrations ranging from 3.1 to 100 microM. Incubation time was 4 days and cell proliferation was measured by means of the ATP chemosensitivity test. 4-hydroxytamoxifen showed an IC50 value of 27 microM and 18 microM in MCF-7 and MDA-MB 231 cells, respectively. Estradiol and its metabolites were anti-proliferative in both cell lines. A few A-ring metabolites were more effective in inhibiting cell proliferation than D-ring metabolites and the parent substance 17beta-estradiol. 4-OHE1, 2-MeOE1 and 2-MeOE2 were as effective in both cell lines as tamoxifen. For the first time it has been demonstrated that endogenous estradiol metabolites are equally anti-proliferative as tamoxifen in the context of human breast cancer cells. Since some of these metabolites exhibit no estrogenic activity, they are likely to be valuable in clinical studies of chemoprevention and adjuvant therapy of breast cancer.  相似文献   

10.
11.
The human endometrial model for in vitro evaluation of estrogenic, estrogen antagonistic, and progestagenic effects of endogenous steroids, natural products or synthetic drugs was applied to the study of Org OD-14, an analog of norethynodrel developed by Organon International, Oss, The Netherlands, and some of its metabolites. Estrogen antagonistic actions of Org OD-14 and its 4-ene isomer were evident from their ability to suppress the enhancement of PGF2 alpha output elicited by estradiol on fragments of secretory endometrium and to decrease the rate of output of the prostaglandin by proliferative tissue, already stimulated by endogenous estrogens. These inhibitory effects were similar to those obtained with progesterone and do not appear to involve competition for the estrogen receptor since the antiestrogen 4-hydroxyamoxifen was not active in parallel incubations of proliferative endometrium. The progestagenic effects of Org OD-14 and its 4-ene isomer were also evident from their capability to enhance estradiol 17 beta-dehydrogenase activity and glycogen accumulation in specimens of proliferative endometrium. Estrogenic effects of the 3 alpha- and 3 beta-hydroxy metabolites of Org OD-14 were demonstrated by their stimulatory actions on PGF2 alpha output during incubations of secretory endometrium. The estrogenic and progestagenic actions of these compounds are in general agreement with their relative affinity for binding to the estradiol and progesterone receptors, although their actions may be influenced by intracellular metabolism in the endometrial tissue. For instance, the similarity in progestagenic activity of Org OD-14 and the 4-ene isomer, contrasting with their different affinities for the progesterone receptor, may result from in situ isomerization of Org OD-14 to the 4-ene metabolite.  相似文献   

12.
High levels of endogenous estrogens are associated with increased risks of breast cancer. Estrogen levels are mainly increased by the activity of the aromatase enzyme and reduced by oxidative/conjugative metabolic pathways. In this paper, we demonstrate for the first time that catechol estrogen metabolites are potent aromatase inhibitors, thus establishing a link between aromatase activity and the processes involved in estrogen metabolism. In particular, the anti-aromatase activity of a set of natural hydroxyl and methoxyl estrogen metabolites was investigated using biochemical methods and subsequently compared with the anti-aromatase potency of estradiol and two reference aromatase inhibitors. Catechol estrogens proved to be strong inhibitors with an anti-aromatase potency two orders of magnitude higher than estradiol. A competitive inhibition mechanism was found for the most potent molecule, 2-hydroxyestradiol (2-OHE(2)) and a rational model identifying the interaction determinants of the metabolites with the enzyme is proposed based on ab initio quantum-mechanical calculations. A strong relationship between activity and electrostatic properties was found for catechol estrogens. Moreover, our results suggest that natural catechol estrogens may be involved in the control mechanisms of estrogen production.  相似文献   

13.
Inhibition of postmenopausal estrogen production by aromatase inhibitors is an established drug treatment modality for postmenopausal breast cancer. In this article postmenopausal estrogen disposition and the alterations caused by treatment with aromatase inhibitors are reviewed. Recent investigations have challenged the hypothesis that aromatization of androstenedione into estrone is the sole production pathway for estrogens in postmenopausal women. The finding that estrogens persist in the plasma of patients receiving aminoglutethimide treatment despite a near total inhibition of the aromatase enzyme suggests that alternative pathways for estrogen synthesis exist. While nonspecific actions of aromatase inhibitors may be disadvantageous, certain effects may also be beneficial. Recent findings that aminoglutethimide may induce estrone sulfate metabolism questions whether this "prototype" aromatase inhibitor might have a dual mechanism of action. The importance of investigating the possible influence of different aromatase inhibitors on all components of estrogen disposition is considered.  相似文献   

14.
Around 60–80% of all breast tumors are estrogen receptor-positive. One of the several therapeutic approaches used for this type of cancers is the use of aromatase inhibitors. Exemestane is a third-generation steroidal aromatase inhibitor that undergoes a complex and extensive metabolism, being catalytically converted into chemically active metabolites. Recently, our group showed that the major exemestane metabolites, 17β-hydroxy-6-methylenandrosta-1,4-dien-3-one and 6-(hydroxymethyl)androsta-1,4,6-triene-3,17-dione, as well as, the intermediary metabolite 6β-Spirooxiranandrosta-1,4-diene-3,17-dione, are potent aromatase inhibitors in breast cancer cells. In this work, in order to better understand the biological mechanisms of exemestane in breast cancer and the effectiveness of its metabolites, it was investigated their effects in sensitive and acquired-resistant estrogen receptor-positive breast cancer cells. Our results indicate that metabolites induced, in sensitive breast cancer cells, cell cycle arrest and apoptosis via mitochondrial pathway, involving caspase-8 activation. Moreover, metabolites also induced autophagy as a promoter mechanism of apoptosis. In addition, it was demonstrated that metabolites can sensitize aromatase inhibitors-resistant cancer cells, by inducing apoptosis. Therefore, this study indicates that exemestane after metabolization originates active metabolites that suppress the growth of sensitive and resistant breast cancer cells. It was also concluded that, in both cell lines, the biological effects of metabolites are different from the ones of exemestane, which suggests that exemestane efficacy in breast cancer treatment may also be dependent on its metabolites.  相似文献   

15.
Antiestrogen action of 2-hydroxyestrone on MCF-7 human breast cancer cells   总被引:6,自引:0,他引:6  
The estrogen responsive human breast cancer MCF-7 cell culture was examined for its response to 2-hydroxyestrone a principal metabolite of estradiol. Addition of 2-hydroxyestrone to the cell cultures in concentration of 10(-9) - 10(-6) M had no effect on cell growth and proliferation because of rapid O-methylation of the catechol estrogen by catechol O-methyltransferase which is highly active in these cells. In the presence of quinalizarin, a potent catechol O-methyltransferase inhibitor which reduces the O-methylation of the steroid, 10(-7) M and 10(-8) M 2-hydroxyestrone markedly suppresses the growth and proliferation of the cells. The tumor cell growth-inhibitory action of the catechol estrogen was neutralized by the presence of 10(-9) M estradiol. The catechol estrogen inhibition of cell growth is not observed in the estrogen receptor-negative human breast cancer cell lines MDA-MB-231 and MDA-MB-330 providing evidence that the inhibition is specific and is estrogen receptor-mediated. In contrast, the 16 alpha-hydroxylated metabolites of estradiol, estriol and 16 alpha-hydroxyestrone, are effective stimulators of MCF-7 cell proliferation with the latter exhibiting potency in excess of that expected from its estrogen receptor affinity. The present results represent the first observation of a specific receptor-mediated antiestrogenic action of 2-hydroxyestrone and suggest that the physiological regulation of the agonist activity of the primary estrogen may involve in situ generation of catechol estrogen.  相似文献   

16.
Inhibition of aromatase: insights from recent studies   总被引:3,自引:0,他引:3  
Santen RJ 《Steroids》2003,68(7-8):559-567
Aromatase is the rate limiting enzyme that catalyzes the conversion of androgens to estrogens. Blockade of this step allows treatment of diseases that are dependent upon estrogen. Over the past two decades, highly potent and specific aromatase inhibitors have been developed which block total body aromatization by over 99%. An important recent question is whether aromatase inhibitors are superior to the antiestrogens for treatment of hormone-dependent breast cancer. The third generation aromatase inhibitors have been compared to tamoxifen for the treatment of breast cancer in the advanced, adjuvant, and neoadjuvant settings. All of these studies suggest the superiority of aromatase inhibitors over tamoxifen. The mechanism responsible for the superiority of the aromatase inhibitors relates to the estrogen agonistic effects of tamoxifen. During exposure to estrogen deprived conditions and to tamoxifen, breast cancer cells adapt and upregulate the MAP kinase and PI-3 kinase pathways. These growth factor signaling pathways potentiate the estrogen agonistic properties of tamoxifen. Data from a large adjuvant therapy trial (ATAC trial) provide evidence that the aromatase inhibitors may also be superior for breast cancer prevention. The mechanism for superiority in this setting probably relates to the genotoxic effects of estradiol metabolites. The aromatase inhibitors may be also useful for the treatment of endometriosis and for ovulation induction as evidenced by preliminary data. The recent advances in development of the aromatase inhibitors clearly demonstrate the utility of these agents for treatment of breast cancer and potentially for other indications.  相似文献   

17.
18.
In the brain, as in other tissues, estradiol interacts with growth factors. One of the growth factors that is involved in the neural actions of estradiol is insulin-like growth factor-I (IGF-I). Estradiol and IGF-I cooperate in the central nervous system to regulate neuronal development, neural plasticity, neuroendocrine events and the response of neural tissue to injury. The precise molecular mechanisms involved in these interactions are still not well understood. In the central nervous system there is abundant co-expression of estrogen receptors (ERs) and IGF-I receptors (IGF-IRs) in the same cells. Furthermore, the expression of estrogen receptors and IGF-I receptors in the brain is cross-regulated. In addition, using specific antibodies for the phosphorylated forms of extracellular-signal regulated kinase (ERK) 1 and ERK2 and Akt/protein kinase B (Akt/PKB) it has been shown that estradiol affects IGF-I signaling pathways in the brain. Estradiol treatment results in a dose-dependent increase in the phosphorylation of ERK and Akt/PKB in the brain of adult ovariectomized rats. In addition, estradiol and IGF-I have a synergistic effects on the activation of Akt/PKB in the adult rat brain. These findings suggest that estrogen effects in the brain may be mediated in part by the activation of the signaling pathways of the IGF-I receptor.  相似文献   

19.
The present study investigated the influence of the endogenous estradiol metabolite 2-methoxyestradiol (2ME) on the growth of methyl-nitroso-urea (MNU)-induced mammary carcinoma in the rat. 2ME was administered by means of subcutaneously implanted osmotic pumps for a period of 4 weeks. The dosages of 2ME were 1 and 5mg/kg per day, the control animals received saline. At the low dosage of 2ME a stimulation of tumor growth was observed, whereas at the high dosage an inhibition was found. The urinary excretion of 15 estradiol metabolites revealed that 2ME triggered strong changes in estrogen metabolism in the organism. Our data show that 2ME may elicit both stimulation and inhibition of tumor growth depending on the dosage used, a fact which should be considered in case of therapeutic use.  相似文献   

20.
Ovariectomized athymic (nude) mice were inoculated (10(7) cells) with the breast cancer cell line, MCF-7, into the axillary mammary fat pads. Tumors did not grow unless animals were implanted with a 1.7 mg estradiol sustained (8-week)-release cholesterol pellet. Co-implantation with tamoxifen (5 mg, 4-week release) caused an inhibition of estradiol-stimulated growth but did not cause tumor growth when implanted alone. The metabolism of [3H]tamoxifen was determined in the athymic mouse bearing MCF-7 tumors. Metabolites in the liver, uterus and tumor were determined by TLC. The principal metabolite in each of the tissues was 4-hydroxytamoxifen (by comparison of Rfs with authentic standards). Studies with 4-hydroxytamoxifen and N-desmethyltamoxifen (the principal metabolites in patients) showed that each was effective in inhibiting estradiol-stimulated tumor growth. However, tumor growth could be reactivated by treatment with estradiol alone. In a separate experiment, tumor-implanted animals were treated with tamoxifen for 1, 2 and 6 months. Tamoxifen did not cause tumor growth. Nevertheless, tumor growth was reactivated by estradiol on each occasion. These studies confirm the tumoristatic actions of tamoxifen and strongly support the view that therapy must be given indefinitely to patients to control tumor recurrence. The athymic mouse model can be used in the future to determine the efficacy of novel antiestrogens and the development of antiestrogen drug resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号