首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Trichoderma harzianum secretes α-1,3-glucanases when it is grown on polysaccharides, fungal cell walls, or autoclaved mycelium as a carbon source (simulated antagonistic conditions). We have purified and characterized one of these enzymes, named AGN13.1. The enzyme was monomeric and slightly basic. AGN13.1 was an exo-type α-1,3-glucanase and showed lytic and antifungal activity against fungal plant pathogens. Northern and Western analyses indicated that AGN13.1 is induced by conditions that simulated antagonism. We propose that AGN13.1 contributes to the antagonistic response of T. harzianum.  相似文献   

2.
3.
The mycoparasitic fungus Trichoderma harzianum CECT 2413 produces at least three extracellular beta-1,3-glucanases. The most basic of these extracellular enzymes, named BGN13.1, was expressed when either fungal cell wall polymers or autoclaved mycelia from different fungi were used as the carbon source. BGN13.1 was purified to electrophoretic homogeneity and was biochemically characterized. The enzyme was specific for beta-1,3 linkages and has an endolytic mode of action. A synthetic oligonucleotide primer based on the sequence of an internal peptide was designed to clone the cDNA corresponding to BGN13.1. The deduced amino acid sequence predicted a molecular mass of 78 kDa for the mature protein. Analysis of the amino acid sequence indicates that the enzyme contains three regions, one N-terminal leader sequence; another, nondefined sequence; and one cysteine-rich C-terminal sequence. Sequence comparison shows that this beta-1,3-glucanase, first described for filamentous fungi, belongs to a family different from that of its previously described bacterial, yeast, and plant counterparts. Enzymatic-activity, protein, and mRNA data indicated that bgn13.1 is repressed by glucose and induced by either fungal cell wall polymers or autoclaved yeast cells and mycelia. Finally, experimental evidence showed that the enzyme hydrolyzes yeast and fungal cell walls.  相似文献   

4.
5.
根据从GenBank中检索到的木霉菌β-1,3-葡聚糖酶基因序列设计引物,以高产β-1,3-葡聚糖酶菌株--绿色木霉LTR-2的cDNA为模板,采用PCR方法扩增得到内切β-1,3-葡聚糖酶基因(glu).将glu克隆至载体pMD18-T上,进行了全序列测定.序列分析表明该基因由2289个核苷酸残基组成,含有一个开放阅读框架,可以编码762个氨基酸,与报道基本相同.翻译后的氨基酸序列含有两个β-1,3-葡聚糖酶的保守区RVVYIPPGTY和AASQNKVAYF.基因与已发表的木霉β-1,3-葡聚糖酶基因有较高的同源性,其中和哈茨木霉bgn3.1和绿木霉bgn13.1的同源性达到93%.序列已经提交GenBank,登录号为EF176582.将glu基因插入到巴斯德毕赤酵母(Pichia pastoris)穿梭载体pPIC9K中,获得重组质粒pGLU14,经线性化后转化毕赤酵母菌株KM71.经大量平板筛选,获得能有效分泌表达β-1,3-葡聚糖酶的毕赤酵母工程菌株KGLU14,菌落PCR扩增证实了glu基因已经整合到酵母基因组中.SDS电泳结果表明其β-1,3-葡聚糖酶的分子量大约为80kDa,和理论推测值大致相同.摇瓶发酵结果表明,培养基中β-1,3-葡聚糖酶的活力可达889U/mL.  相似文献   

6.
Chitinase, beta-1,3-glucanase, and protease activities were formed when Trichoderma harzianum mycelia, grown on glucose as the sole carbon source, were transferred to fresh medium containing cell walls of Botrytis cinerea. Chitobiohydrolase, endochitinase, and beta-1,3-glucanase activities were immunologically detected in culture supernatants by Western blotting (immunoblotting), and the first two were quantified by enzyme-linked immunosorbent assay. Under the same conditions, exogenously added [U-14C]valine was incorporated in acetone-soluble compounds with an apparent M(r) of < 2,000. These compounds comigrated with the peptaibols trichorzianines A1 and B1 in thin-layer chromatography and released [U-14C]valine after incubation in 6N HCl. Incorporation of radioactive valine into this material was stimulated by the exogenous supply of alpha-aminoisobutyric acid, a rare amino acid which is a major constituent of peptaibols. The obtained culture supernatants inhibited spore germination as well as hyphal elongation of B. cinerea. Culture supernatants from mycelia placed in fresh medium without cell walls of B. cinerea did not show hydrolase activities, incorporation of [U-14C]valine into peptaibol-like compounds, and inhibition of fungal growth. Purified trichorzianines A1 and B1 as well as purified chitobiohydrolase, endochitinase, or beta-1,3-glucanase inhibited spore germination and hyphal elongation, but at concentrations higher than those observed in the culture supernatants. However, when the enzymes and the peptaibols were tested together, an antifungal synergistic interaction was observed and the 50% effective dose values obtained were in the range of those determined in the culture supernatants. Therefore, the parallel formation and synergism of hydrolytic enzymes and antibiotics may have an important role in the antagonistic action of T. harzianum against fungal phytopathogens.  相似文献   

7.
The antagonistic effect of Trichoderma harzianum on a range of seed-borne fungal pathogens of wheat (viz. Fusarium graminearum, Bipolaris sorokiniana, Aspergillus spp., and Penicillium spp.) was assessed. The potential of T. harzianum as a biocontrol agent was tested in vitro and under field conditions. Coculture of the pathogens and Trichoderma under laboratory conditions clearly showed dominance of T. harzianum. Under natural conditions, biocontrol effects were also obtained against the test fungi. One month after sowing, field emergence (plant stand) was increased by 15.93% over that obtained with the control treatment, and seedling infection was reduced significantly. Leaf blight severity was decreased from 22 to 11 at the heading stage, 35 to 31 at the flowering stage, and 86 to 74 at the grain filling stage. At harvest, the number of tillers per plant was increased by 50%, the yield was increased by 31.58%, and the 1,000-seed weight was increased by 21%.  相似文献   

8.
9.
Trichoderma harzianum is an effective biocontrol agent against several fungal soilborne plant pathogens. However, possible adverse effects of this fungus on arbuscular mycorrhizal fungi might be a drawback in its use in plant protection. The objective of the present work was to examine the interaction between Glomus intraradices and T. harzianum in soil. The use of a compartmented growth system with root-free soil compartments enabled us to study fungal interactions without the interfering effects of roots. Growth of the fungi was monitored by measuring hyphal length and population densities, while specific fatty acid signatures were used as indicators of living fungal biomass. Hyphal 33P transport and beta-glucuronidase (GUS) activity were used to monitor activity of G. intraradices and a GUS-transformed strain of T. harzianum, respectively. As growth and metabolism of T. harzianum are requirements for antagonism, the impact of wheat bran, added as an organic nutrient source for T. harzianum, was investigated. The presence of T. harzianum in root-free soil reduced root colonization by G. intraradices. The external hyphal length density of G. intraradices was reduced by the presence of T. harzianum in combination with wheat bran, but the living hyphal biomass, measured as the content of a membrane fatty acid, was not reduced. Hyphal 33P transport by G. intraradices also was not affected by T. harzianum. This suggests that T. harzianum exploited the dead mycelium but not the living biomass of G. intraradices. The presence of external mycelium of G. intraradices suppressed T. harzianum population development and GUS activity. Stimulation of the hyphal biomass of G. intraradices by organic amendment suggests that nutrient competition is a likely means of interaction. In conclusion, it seemed that growth of and phosphorus uptake by the external mycelium of G. intraradices were not affected by the antagonistic fungus T. harzianum; in contrast, T. harzianum was adversely affected by G. intraradices.  相似文献   

10.
The soilborne rhizosphere-competent fungal biocontrol agent Trichoderma harzianum isolate Th008 secreted trichodermin (MW = 292) and a small peptide (MW = 876) in culture. These compounds were antagonistic in culture to the mycelial growth of the soilborne fungal pathogen Rhizoctonia solani isolate 2B-12, which is highly virulent to soybean ( Glycine max )seedlings. When 100mg of dried autoclaved mycelial mat of R. solani was added to 200 ml liquid cultures of T. harzianum , the quantity of antimycotic compounds secreted by the latter was 3.5 times greater than that of the antagonist alone. R. solani secreted a coumarin derivative (MW = 313) in liquid culture, which inhibited the mycelial growth of T. harzianum ; however, inhibition of the growth of the antagonist required a greater concentration than that for the antimycotic compounds produced by the antagonist against the pathogen. The inclusion of 100 mg of dried autoclaved mycelial mat of T. harzianum in a 200 ml liquid culture of R. solani did not affect the quantity of the antimycotic compound produced by the pathogen.  相似文献   

11.
Trichoderma harzianum is an effective biocontrol agent of several important plant pathogenic fungi. This Trichoderma species attacks other fungi by secreting lytic enzymes, including beta-1,3-glucanase and chitinolytic enzymes. Superior biocontrol potential may then be found in strains having a high capacity to produce these enzymes. We have therefore evaluated the capacity of six unidentified Trichoderma spp. isolates to produce chitinolytic enzymes and beta-1,3-glucanases in comparison with T. harzianum 39.1. All six isolates demonstrated substantial enzyme activity. However, while the isolates hereafter called T2, T3, T5, and T7 produced lower amounts of enzymes, the activity of isolates T4 and T6 were 2-3 fold higher than that produced by T. harzianum 39.1. A chitinase produced by the T6 isolate was purified by a single ion-exchange chromatography step and had a molecular mass of 46 kDa. The N-terminal amino-acid sequence showed very high homology with other fungal chitinases. Its true chitinase activity was demonstrated by its action on chitin and the failure to hydrolyze laminarin and p-nitrophenyl-beta-N-acetylglucosaminide. The hydrolytic action of the purified chitinase on the cell wall of Sclerotium rolfsii was convincingly shown by electron microscopy studies. However, the purified enzyme had no effect on the cell wall of Rhizoctonia solani.  相似文献   

12.
A culture filtrate of Bacillus circulans KA-304 grown on a cell-wall preparation of Schizophyllum commune has an activity to form protoplasts from S. commune mycelia, and a combination of alpha-1,3-glucanase and chitinase I, which were isolated from the filtrate, brings about the protoplast-forming activity. The gene of alpha-1,3-glucanase was cloned from B. circulans KA-304. It consists of 3,879 nucleotides, which encodes 1,293 amino acids including a putative signal peptide (31 amino acid residues), and the molecular weight of alpha-1,3-glucanase without the putative signal peptide was calculated to be 132,184. The deduced amino acid sequence of alpha-1,3-glucanase of B. circulans KA-304 showed approximately 80% similarity to that of mutanase (alpha-1,3-glucanase) of Bacillus sp. RM1, but no significant similarity to those of fungal mutanases.The recombinant alpha-1,3-glucanase was expressed in Escherichia coli Rosetta-gami B (DE 3), and significant alpha-1,3-glucanase activity was detected in the cell-free extract of the organism treated with isopropyl-beta-D-thiogalactopyranoside. The recombinant alpha-1,3-glucanase showed protoplast-forming activity when the enzyme was combined with chitinase I.  相似文献   

13.
Histoplasma capsulatum is a fungal pathogen that causes respiratory and systemic disease by proliferating within macrophages. While much is known about histoplasmosis, only a single virulence factor has been defined, in part because of the inefficiency of Histoplasma reverse genetics. As an alternative to allelic replacement, we have developed a telomeric plasmid-based system for silencing gene expression in Histoplasma by RNA interference (RNAi). Episomal expression of long RNAs that form stem-loop structures triggered gene silencing. To test the effectiveness of RNAi in Histoplasma, we depleted expression of a gfp transgene as well as two endogenous genes, ADE2 and URA5, and showed significant reductions in corresponding gene function. Silencing was target gene specific, stable during macrophage infection and reversible. We used RNAi targeting AGS1 (encoding alpha-(1,3)-glucan synthase) to deplete levels of alpha-(1,3)-glucan, a cell wall polysaccharide. Loss of alpha-(1,3)-glucan by RNAi yielded phenotypes indistinguishable from an AGS1 deletion: attenuation of the ability to kill macrophages and colonize murine lungs. This demonstrates for the first time that alpha-(1,3)-glucan is an important contributor to Histoplasma virulence.  相似文献   

14.
The interaction between Trichoderma harzianum and the soilborne plant pathogen Pythium ultimum was studied by electron microscopy and further investigated by gold cytochemistry. Early contact between the two fungi was accompanied by the abnormal deposition of a cellulose-enriched material at sites of potential antagonist penetration. The antagonist displayed the ability to penetrate this barrier, indicating that cellulolytic enzymes were produced. However, the presence of cellulose in the walls of severely damaged Pythium hyphae indicated that cellulolytic enzymes were not the only critical traits involved in the antagonistic process. The marked alteration of the (beta)-1,3-glucan component of the Pythium cell wall suggested that (beta)-1,3-glucanases played a key role in the process.  相似文献   

15.
We report the purification of two glycosyl hydrolase family 18 chitinases, Chit33 and Chit42, from the filamentous fungus Trichoderma harzianum and characterization using a panel of different soluble chitinous substrates and inhibitors. We were particularly interested in the potential of these (alpha/beta)(8)-barrel fold enzymes to recognize beta-1,4-galactosylated and alpha-1,3-fucosylated oligosaccharides, which are animal-type saccharides of medical relevance. Three-dimensional structural models of the proteins in complex with chito-oligosaccharides were built to support the interpretation of the hydrolysis data. Our kinetic and inhibition studies are indicative of the substrate-assisted catalysis mechanism for both chitinases. Both T. harzianum chitinases are able to catalyze some transglycosylation reactions and cleave both simple chito-oligosaccharides and synthetically modified, beta-1,4-galactosylated and alpha-1,3-fucosylated chito-oligosaccharides. The cleavage data give experimental evidence that the two chitinases have differences in their substrate-binding sites, Chit42 apparently having a deeper substrate binding groove, which provides more tight binding of the substrate at subsites (-2-1-+1+2). On the other hand, some flexibility for the sugar recognition at subsites more distal from the cleavage point is allowed in both chitinases. A galactose unit can be accepted at the putative subsites -4 and -3 of Chit42, and at the subsite -4 of Chit33. Fucose units can be accepted as a branch at the putative -3 and -4 sites of Chit33 and as a branch point at -3 of Chit42. These data provide a good starting point for future protein engineering work aiming at chitinases with altered substrate-binding specificity.  相似文献   

16.
Several Trichoderma strains have been reported to be effective in controlling plant diseases, and the action of fungal hydrolytic enzymes is considered as the main mechanism involved in the antagonistic process. Strain Trichoderma harzianum T334 is a potential biocontrol agent against plant pathogenic fungi with the ability to produce low levels of proteases constitutively. To improve its fungal antagonistic capacity, mutagenetic program was undertaken for the construction of protease overproducing derivates. The mutant strains were obtained by means of UV-irradiation and were selected for p-fluorophenyl-alanine resistance or altered colony morphology. It was revealed by means of specific chromogenic protease substrates that both trypsin-like and chymotrypsin-like protease secretion was elevated in most of the mutant strains. The profiles of isoenzymes were different between the mutants and the wild-type strain, when examined by gel filtration chromatography. Certain mutants proved to be better antagonists against plant pathogens in in vitro antagonism experiments. This study suggests the possibility of using mutants with improved constitutive extracellular protease secretion against plant pathogenic fungi.  相似文献   

17.
18.
The enzymes from Trichoderma species that degrade fungal cell walls have been suggested to play an important role in mycoparasitic action against fungal plant pathogens. The mycoparasite Trichoderma harzianum produces at least two extracellular beta-1,6-glucanases, among other hydrolases, when it is grown on chitin as the sole carbon source. One of these extracellular enzymes was purified to homogeneity after adsorption to its substrate, pustulan, chromatofocusing, and, finally, gel filtration. The apparent molecular mass was 43,000, and the isoelectric point was 5.8. The first 15 amino acids from the N terminus of the purified protein have been sequenced. The enzyme was specific for beta-1,6 linkages and showed an endolytic mode of action on pustulan. Further characterization indicated that the enzyme by itself releases soluble sugars and produces hydrolytic halli on yeast cell walls. When combined with other T. harzianum cell wall-degrading enzymes such as beta-1,3-glucanases and chitinases, it hydrolyzes filamentous fungal cell walls. The enzyme acts cooperatively with the latter enzymes, inhibiting the growth of the fungi tested. Antibodies against the purified protein also indicated that the two identified beta-1,6-glucanases are not immunologically related and are probably encoded by two different genes.  相似文献   

19.
The biocontrol agent Trichoderma harzianum IMI206040 secretes beta-1,3-glucanases in the presence of different glucose polymers and fungal cell walls. The level of beta-1,3-glucanase activity secreted was found to be proportional to the amount of glucan present in the inducer. The fungus produces at least seven extracellular beta-1,3-glucanases upon induction with laminarin, a soluble beta-1,3-glucan. The molecular weights of five of these enzymes fall in the range from 60,000 to 80,000, and their pIs are 5.0 to 6.8. In addition, a 35-kDa protein with a pI of 5.5 and a 39-kDa protein are also secreted. Glucose appears to inhibit the formation of all of the inducible beta-1,3-glucanases detected. A 77-kDa glucanase was partially purified from the laminarin culture filtrate. This enzyme is glycosylated and belongs to the exo-beta-1,3-glucanase group. The properties of this complex group of enzymes suggest that the enzymes might play different roles in host cell wall lysis during mycoparasitism.  相似文献   

20.
Trichoderma harzianum is a well-known biological control agent against fungal plant diseases. In order to select improved biocontrol strains from Trichoderma harzianum CECT 2413, a mutant has been isolated for its ability to produce wider haloes than the wild type, when hydrolysing pustulan, a polymer of beta-1,6-glucan. The mutant possesses between two and four times more chitinase, beta-1,3- and beta-1,6-glucanase activities than the wild type, produces about three times more extracellular proteins and secretes higher amounts of a yellow pigment (alpha-pyrone). This mutant performed better than the wild type during in vitro experiments, overgrowing and sporulating on Rhizoctonia solani earlier, killing this pathogen faster and exerting better protection on grapes against Botrytis cinerea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号