首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biotrophic fungal pathogen Cladosporium fulvum (syn. Passalora fulva) is the causal agent of tomato leaf mold. The Avr4 protein belongs to a set of effectors that is secreted by C. fulvum during infection and is thought to play a role in pathogen virulence. Previous studies have shown that Avr4 binds to chitin present in fungal cell walls and that, through this binding, Avr4 can protect these cell walls against hydrolysis by plant chitinases. In this study, we demonstrate that Avr4 expression in Arabidopsis results in increased virulence of several fungal pathogens with exposed chitin in their cell walls, whereas the virulence of a bacterium and an oomycete remained unaltered. Heterologous expression of Avr4 in tomato increased the virulence of Fusarium oxysporum f. sp. lycopersici. Through tomato GeneChip analyses, we demonstrate that Avr4 expression in tomato results in the induced expression of only a few genes. Finally, we demonstrate that silencing of the Avr4 gene in C. fulvum decreases its virulence on tomato. This is the first report on the intrinsic function of a fungal avirulence protein that has a counter-defensive activity required for full virulence of the pathogen.  相似文献   

2.
Six hydrophobin genes (HCf-1 to -6) have thus far been identified in the tomato pathogen Cladosporium fulvum. HCf-1 to -4 are Class I hydrophobins and HCf-5 and -6 are Class II hydrophobins. In this paper we describe the isolation of deletion mutants that lack HCf-1, HCf-2, or both these genes. Global down-regulation of the expression of Class I hydrophobins is achieved by homology-dependent gene silencing. Analysis of the mutant strains shows that HCf-1 confers hydrophilic character to the conidia and this facilitates the dissemination of conidia on the surface of water droplets. Other Class I hydrophobins, such as HCf-3 or HCf-4, may be involved in the development and germination of conidia.  相似文献   

3.
The avirulence gene avr9 of the fungal tomato pathogen Cladosporium fulvum encodes a race-specific peptide elicitor that induces a hypersensitive response in tomato plants carrying the complementary resistance gene Cf9. The avr9 gene is highly expressed when C. fulvum is growing in the plant and the elicitor accumulates in infected leaves as a 28-amino acid (aa) peptide. In C. fulvum grown in vitro, the peptide elicitor is not produced in detectable amounts. To produce significant amounts of the AVR9 elicitor in vitro, the coding and termination sequences of the avr9 gene were fused to the constitutive gpd-promoter (glyceraldehyde 3-phosphate dehydrogenase) of Aspergillus nidulans. Transformants of C. fulvum were obtained that highly expressed the avr9 gene in vitro and produced active AVR9 peptide elicitors. These peptides were partially sequenced from the N terminus and appeared to consist of 32, 33, and 34 aa's, respectively, and are the precursors of the mature 28-aa AVR9 peptide. We demonstrated that plant factors process the 34-aa peptide into the mature 28-aa peptide. We present a model for the processing of AVR9 involving cleavage of a signal peptide during excretion and further maturation by fungal and plant proteases into the stable 28-aa peptide elicitor.  相似文献   

4.
Tomato leaves or cotyledons expressing the Cf-2 or Cf-9 Cladosporium fulvum resistance genes induce salicylic acid (SA) synthesis following infiltration with intercellular washing fluid (IF) containing the fungal peptide elicitors Avr2 and Avr9. We investigated whether SA was required for Cf gene-dependent resistance. Tomato plants expressing the bacterial gene nahG, encoding salicylate hydroxylase, did not accumulate SA in response to IF infiltration but remained fully resistant to C. fulvum. NahG Cf0 plants were as susceptible to C. fulvum as wild-type Cf0. Neither free nor conjugated salicylic acid accumulated in IF-infiltrated Cf2 and Cf9 NahG leaves and cotyledons but conjugated catechol did accumulate. The Cf-9-dependent necrotic response to IF was prevented in NahG plants and replaced by a chlorotic Cf-2-like response. SA also potentiated Cf-9-mediated necrosis in IF-infiltrated wild-type leaves. In contrast, the Cf-2-dependent IF response was retained in NahG leaves and chlorosis was more pronounced than in the wild-type. The distribution of cell death between different cell types was altered in both Cf2 and Cf9 NahG leaves after IF injection. IF-induced accumulation of three SA-inducible defence-related genes was delayed and reduced but not abolished in NahG Cf2 and Cf9 leaves and cotyledons. NahG Tm-22 tomato showed increased hypersensitive response (HR) lesion size upon TMV infection, as observed in TMV-inoculated N gene-containing NahG tobacco plants.  相似文献   

5.
6.
Fungal biotrophy is associated with a reduced capacity to produce potentially toxic secondary metabolites (SMs). Yet, the genome of the biotrophic plant pathogen Cladosporium fulvum contains many SM biosynthetic gene clusters, with several related to toxin production. These gene clusters are, however, poorly expressed during the colonization of tomato. The sole detectable SM produced by C. fulvum during in vitro growth is the anthraquinone cladofulvin. Although this pigment is not detected in infected leaves, cladofulvin biosynthetic genes are expressed throughout the pre‐penetration phase and during conidiation at the end of the infection cycle, but are repressed during the biotrophic phase of tomato colonization. It has been suggested that the tight regulation of SM gene clusters is required for C. fulvum to behave as a biotrophic pathogen, whilst retaining potential fitness determinants for growth and survival outside its host. To address this hypothesis, we analysed the disease symptoms caused by mutant C. fulvum strains that do not produce or over‐produce cladofulvin during the biotrophic growth phase. Non‐producers infected tomato in a similar manner to the wild‐type, suggesting that cladofulvin is not a virulence factor. In contrast, the cladofulvin over‐producers caused strong necrosis and desiccation of tomato leaves, which, in turn, arrested conidiation. Consistent with the role of pigments in survival against abiotic stresses, cladofulvin protects conidia against UV light and low‐temperature stress. Overall, this study demonstrates that the repression of cladofulvin production is required for C. fulvum to sustain its biotrophic lifestyle in tomato, whereas its production is important for survival outside its host.  相似文献   

7.
The interaction between tomato and the fungal pathogen Cladosporium fulvum complies with the gene-for-gene system. Strains of C. fulvum that produce race-specific elicitor AVR4 induce a hypersensitive response, leading to resistance, in tomato plants that carry the Cf-4 resistance gene. The mechanism of AVR4 perception was examined by performing binding studies with 125I-AVR4 on microsomal membranes of tomato plants. We identified an AVR4 high-affinity binding site (KD = 0.05 nM) which exhibited all the characteristics expected for ligand-receptor interactions, such as saturability, reversibility, and specificity. Surprisingly, the AVR4 high-affinity binding site appeared to originate from fungi present on infected tomato plants rather than from the tomato plants themselves. Detailed analysis showed that this fungus-derived, AVR4-specific binding site is heat- and proteinase K-resistant. Affinity crosslinking demonstrated that AVR4 specifically binds to a component of approximately 75 kDa that is of fungal origin. Our data suggest that binding of AVR4 to a fungal component or components is related to the intrinsic virulence function of AVR4 for C. fulvum.  相似文献   

8.
During tomato leaf colonization, the biotrophic fungus Cladosporium fulvum secretes several effector proteins into the apoplast. Eight effectors have previously been characterized and show no significant homology to each other or to other fungal genes. To discover novel C. fulvum effectors that might play a role in virulence, we utilized two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) to visualize proteins secreted during C. fulvum –tomato interactions. Three novel C. fulvum proteins were identified: CfPhiA, Ecp6 and Ecp7. CfPhiA shows homology to proteins found on fungal sporogenous cells called phialides. Ecp6 contains lysin motifs (LysM domains) that are recognized as carbohydrate-binding modules. Ecp7 encodes a small, cysteine-rich protein with no homology to known proteins. Heterologous expression of Ecp6 significantly increased the virulence of the vascular pathogen Fusarium oxysporum on tomato. Furthermore, by RNA interference (RNAi)-mediated gene silencing we demonstrate that Ecp6 is instrumental for C. fulvum virulence on tomato. Hardly any allelic variation was observed in the Ecp6 coding region of a worldwide collection of C. fulvum strains. Although none of the C. fulvum effectors identified so far have obvious orthologues in other organisms, conserved Ecp6 orthologues were identified in various fungal species. Homology-based modelling suggests that the LysM domains of C. fulvum Ecp6 may be involved in chitin binding.  相似文献   

9.
The Cf-9 gene encodes an extracytosolic leucine-rich repeat (LRR) protein that is membrane anchored near its C-terminus. The protein confers resistance in tomato to races of the fungus Cladosporium fulvum expressing the corresponding avirulence gene Avr9. In Nicotiana tabacum the Cf-9 transgene confers sensitivity to the Avr9 elicitor, and leads on elicitation to a subset of defence responses qualitatively similar to those normally seen in the tomato host. One of the earliest responses, both in the native and transgenic hosts, results in K+ salt loss from the infected tissues. However, the mechanism(s) underlying this solute flux and its control is poorly understood. We have explored the actions of Avr9 on Cf-9 transgenic Nicotiana using guard cells as a model. Much detail of guard cell ion channels and their regulation is already known. Measurements were carried out on intact guard cells in epidermal peels, and the currents carried by inward- (IK,in) and outward-rectifying (IK,out) K+ channels were characterized under voltage clamp. Exposures to Avr9-containing extracts resulted in a 2.5- to 3-fold stimulation of IK,out and almost complete suppression of IK,in within 3-5 min. The K+ channel responses were irreversible. They were specific for the Avr9 elicitor, were not observed in guard cells of Nicotiana lacking the Cf-9 transgene and, from kinetic analyses, could be ascribed to changes in channel gating. Both K+ channel responses were found to be saturable functions of Avr9 concentration and were completely blocked in the presence of 0.5 microM staurosporine and 100 microM H7, both broad-range protein kinase antagonists. These results demonstrate the ability of the Cf-9 transgene to couple Avr9 elicitation specifically to a concerted action on two discrete K+ channels and they indicate a role for protein phosphorylation in Avr9/Cf-9 signal transduction leading to transport control.  相似文献   

10.
The appropriate regulation of neutrophil activation is critical for maintaining host defense and limiting inflammation. Polymorphonuclear neutrophils (PMNs) express a number of cytoplasmic tyrosine kinases that regulate signaling pathways leading to activation. One of the most highly expressed, but least studied, kinases in PMNs is proline rich kinase 2 (Pyk2). By analogy to the related focal adhesion kinase, Pyk2 has been implicated in regulating PMN adhesion and migration; however, its physiologic function has yet to be described. Using pyk2(-/-) mice, we found that this kinase was required for integrin-mediated degranulation responses, but was not involved in adhesion-induced cell spreading or activation of superoxide production. Pyk2-deficient PMNs also manifested reduced migration on fibrinogen-coated surfaces. The absence of Pyk2 resulted in a severe reduction in paxillin and Vav phosphorylation following integrin ligation, which likely accounts for the poor degranulation and cell migration. Pyk2(-/-) mice were unable to efficiently clear infection with Staphylococcus aureus in a skin abscess model, owing in part to the poor release of granule contents at the site of infection. However, Pyk2-deficient PMNs responded normally to soluble agonists, demonstrating that this kinase functions mainly in the integrin pathway. These data demonstrate the unrealized physiologic role of this kinase in regulating the adhesion-mediated release of PMN granule contents.  相似文献   

11.
We have developed a mouse brain abscess model by using Staphylococcus aureus, one of the main etiologic agents of brain abscesses in humans. Direct damage to the blood-brain barrier was observed from 24 h to 7 days after S. aureus exposure as demonstrated by the accumulation of serum IgG in the brain parenchyma. Evaluation of brain abscesses by immunohistochemistry and flow cytometry revealed a prominent neutrophil infiltrate. To address the importance of neutrophils in the early containment of S. aureus infection in the brain, mice were transiently depleted of neutrophils before implantation of bacteria-laden beads. Neutrophil-depleted animals consistently demonstrated more severe brain abscesses and higher CNS bacterial burdens compared with control animals. S. aureus led to the induction of numerous chemokines in the brain, including macrophage-inflammatory protein (MIP)-1alpha/CCL3, MIP-1beta/CCL4, MIP-2/CXCL1, monocyte chemoattractant protein-1/CCL2, and TCA-3/CCL1, within 6 h after bacterial exposure. These chemokines also were expressed by both primary cultures of neonatal mouse microglia and astrocytes exposed to heat-inactivated S. aureus in vitro. Because neutrophils constitute the majority of the cellular infiltrate in early brain abscess development, subsequent analysis focused on MIP-2 and KC/CXCL1, two neutrophil-attracting CXC chemokines. Both MIP-2 and KC protein levels were significantly elevated in the brain after S. aureus exposure. Neutrophil extravasation into the brain parenchyma was impaired in CXCR2 knockout mice and was associated with increased bacterial burdens. These studies demonstrate the importance of the CXCR2 ligands MIP-2 and KC and neutrophils in the acute host response to S. aureus in the brain.  相似文献   

12.
Skamnioti P  Gurr SJ 《The Plant cell》2007,19(8):2674-2689
The rice blast fungus Magnaporthe grisea infects its host by forming a specialized infection structure, the appressorium, on the plant leaf. The enormous turgor pressure generated within the appressorium drives the emerging penetration peg forcefully through the plant cuticle. Hitherto, the involvement of cutinase(s) in this process has remained unproven. We identified a specific M. grisea cutinase, CUT2, whose expression is dramatically upregulated during appressorium maturation and penetration. The cut2 mutant has reduced extracellular cutin-degrading and Ser esterase activity, when grown on cutin as the sole carbon source, compared with the wild-type strain. The cut2 mutant strain is severely less pathogenic than the wild type or complemented cut2/CUT2 strain on rice (Oryza sativa) and barley (Hordeum vulgare). It displays reduced conidiation and anomalous germling morphology, forming multiple elongated germ tubes and aberrant appressoria on inductive surfaces. We show that Cut2 mediates the formation of the penetration peg but does not play a role in spore or appressorium adhesion, or in appressorial turgor generation. Morphological and pathogenicity defects in the cut2 mutant are fully restored with exogenous application of synthetic cutin monomers, cAMP, 3-isobutyl-1-methylxanthine, and diacylglycerol (DAG). We propose that Cut2 is an upstream activator of cAMP/protein kinase A and DAG/protein kinase C signaling pathways that direct appressorium formation and infectious growth in M. grisea. Cut2 is therefore required for surface sensing leading to correct germling differentiation, penetration, and full virulence in this model fungus.  相似文献   

13.
Interferon-γ (IFN-γ) is important for host defense against various intracellular organisms including a protozoan pathogen Toxoplasma gondii. Various immune cells are recently shown to produce IFN-γ in T. gondii infection, however, it remains elusive which cell types are important for anti-T. gondii host defense so far. Here we generate a new IFN-γ reporter "GREVEN" mouse line in which a fusion protein of Venus and NanoLuc to analyze IFN-γ producing cells during T. gondii infection and find that CD4+, CD8+, γδ T cells and natural killer cells express Venus in a time dependent manner. Furthermore, Lck-Cre/Ifngfl/fl mice are highly susceptible to T. gondii infection. Taken together, our results demonstrate that T cell-derived IFN-γ plays an important role in anti-T. gondii host defense.  相似文献   

14.
Dectin-1 is not required for the host defense to Cryptococcus neoformans   总被引:1,自引:0,他引:1  
Dectin-1 is known as a sole receptor for beta-glucan, a major cell wall component of fungal microorganisms. In the current study, we examined the role of this molecule in the host defense to Cryptococcus neoformans, an opportunistic fungal pathogen in AIDS patients. There was no significant difference in the clinical course and cytokine production between dectin-1 gene-deficient and control mice. These results indicate that dectin-1 is not likely essential for the development of host protective responses to C. neoformans.  相似文献   

15.
《Autophagy》2013,9(5):785-802
AMP-activated protein kinase (AMPK) is a crucial energy sensor and plays a key role in integration of cellular functions to maintain homeostasis. Despite this, it is largely unknown whether targeting the AMPK pathway can be used as a therapeutic strategy for infectious diseases. Herein, we show that AMPK activation robustly induces antibacterial autophagy, which contributes to antimicrobial defense against Mycobacterium tuberculosis (Mtb). AMPK activation led to inhibition of Mtb-induced phosphorylation of the mechanistic target of rapamycin (MTOR) in macrophages. In addition, AMPK activation increased the genes involved in oxidative phosphorylation, mitochondrial ATP production, and biogenesis in Mtb-infected macrophages. Notably, peroxisome proliferator-activated receptor-gamma, coactivator 1α (PPARGC1A) was required for AMPK-mediated antimicrobial activity, as well as enhancement of mitochondrial function and biogenesis, in macrophages. Further, the AMPK-PPARGC1A pathway was involved in the upregulation of multiple autophagy-related genes via CCAAT/enhancer binding protein (C/EBP), β (CEBPB). PPARGC1A knockdown inhibited the AMPK-mediated induction of autophagy and impaired the fusion of phagosomes with MAP1LC3B (LC3B) autophagosomes in Mtb-infected macrophages. The link between autophagy, mitochondrial function, and antimicrobial activity was further demonstrated by studying LysMCre-mediated knockout of atg7, demonstrating mitochondrial ultrastructural defects and dysfunction, as well as blockade of antimicrobial activity against mycobacteria. Collectively, our results identify the AMPK-PPARGC1A axis as contributing to autophagy activation leading to an antimicrobial response, as a novel host defense mechanism.  相似文献   

16.
Chen J  Li WX  Xie D  Peng JR  Ding SW 《The Plant cell》2004,16(5):1302-1313
Small interfering RNAs (siRNAs) and microRNAs (miRNAs) are processed by the ribonuclease Dicer from distinct precursors, double-stranded RNA (dsRNA) and hairpin RNAs, respectively, although either may guide RNA silencing via a similar complex. The siRNA pathway is antiviral, whereas an emerging role for miRNAs is in the control of development. Here, we describe a virulence factor encoded by turnip yellow mosaic virus, p69, which suppresses the siRNA pathway but promotes the miRNA pathway in Arabidopsis thaliana. p69 suppression of the siRNA pathway is upstream of dsRNA and is as effective as genetic mutations in A. thaliana genes involved in dsRNA production. Possibly as a consequence of p69 suppression, p69-expressing plants contained elevated levels of a Dicer mRNA and of miRNAs as well as a correspondingly enhanced miRNA-guided cleavage of two host mRNAs. Because p69-expressing plants exhibited disease-like symptoms in the absence of viral infection, our findings suggest a novel mechanism for viral virulence by promoting the miRNA-guided inhibition of host gene expression.  相似文献   

17.
Nicotiana benthamiana leaves display a visible plant cell death response when infiltrated with a high titer inoculum of the non-host pathogen, Xanthomonas campestris pv. vesicatoria (Xcv). This visual phenotype was used to identify overlapping cosmid clones from a genomic cosmid library constructed from the Xcv strain, GM98-38. Individual cosmid clones from the Xcv library were conjugated into X. campestris pv. campestris (Xcc) and exconjugants were scored for an altered visual high titer inoculation response in N. benthamiana. The molecular characterization of the cosmid clones revealed that they contained a novel gene, xopX, that encodes a 74-kDa type III secretion system (TTSS) effector protein. Agrobacterium-mediated transient expression of XopX in N. benthamiana did not elicit the plant cell death response although detectable XopX protein was produced. Interestingly, the plant cell death response occurred when the xopX Agrobacterium-mediated transient expression construct was co-inoculated with strains of either XcvDeltaxopX or Xcc, both lacking xopX. The co-inoculation complementation of the plant cell death response also depends on whether the Xanthomonas strains contain an active TTSS. Transgenic 35S-xopX-expressing N. benthamiana plants also have the visible plant cell death response when inoculated with the non-xopX-expressing strains XcvDeltaxopX and Xcc. Unexpectedly, transgenic 35S-xopX N. benthamiana plants displayed enhanced susceptibility to bacterial growth of Xcc as well as other non-xopX-expressing Xanthomonas and Pseudomonas strains. This result is also consistent with the increase in bacterial growth on wild type N. benthamiana plants observed for Xcc when XopX is expressed in trans. Furthermore, XopX contributes to the virulence of Xcv on host pepper (Capsicum annuum) and tomato (Lycopersicum esculentum) plants. We propose that the XopX bacterial effector protein targets basic innate immunity in plants, resulting in enhanced plant disease susceptibility.  相似文献   

18.
Borrelia burgdorferi lipoproteins activate inflammatory cells through Toll-like receptor 2 (TLR2), suggesting that TLR2 could play a pivotal role in the host response to B. burgdorferi. TLR2 does play a critical role in host defense, as infected TLR2(-/-) mice harbored up to 100-fold more spirochetes in tissues than did TLR2(+/+) littermates. Spirochetes persisted at extremely elevated levels in TLR2-deficient mice for at least 8 wk following infection. Infected TLR2(-/-) mice developed normal Borrelia-specific Ab responses, as measured by quantity of Borrelia-specific Ig isotypes, the kinetics of class switching to IgG, and the complexity of the Ags recognized. These findings indicate that the failure to control spirochete levels in tissues is not due to an impaired acquired immune response. While macrophages from TLR2(-/-) mice were not responsive to lipoproteins, they did respond to nonlipoprotein components of sonicated spirochetes. These TLR2-independent responses could play a role during the inflammatory response to B. burgdorferi, as infected TLR2(-/-) mice developed greater ankle swelling than wild-type littermates. Thus, while TLR2-dependent signaling pathways play a major role in the innate host defense to B. burgdorferi, both inflammatory responses and the development of the acquired humoral response can occur in the absence of TLR2.  相似文献   

19.
C D Morrow  G F Gibbons  A Dasgupta 《Cell》1985,40(4):913-921
The HeLa cell protein (host factor) required for in vitro replication of poliovirus has been identified as a 67,000 dalton phosphoprotein. The purified protein displays three activities in vitro: stimulation of poliovirus RNA synthesis in the presence of poliovirus replicase, apparent self-phosphorylation, and phosphorylation of the alpha-subunit of eukaryotic protein synthesis initiation factor 2 (eIF-2). All three activities can be removed or inhibited by an antibody to host factor. Partially purified preparations of reticulocyte eIF-2 contain a similar phosphoprotein and display host factor activity in the viral RNA synthesis assay in vitro. In vitro phosphorylation of the 67 kd protein can be stimulated by low concentrations of double-stranded RNA. Addition of phosphorylated host factor in an in vitro RNA synthesis assay significantly changes the kinetics of viral RNA synthesis, indicating that protein phosphorylation may play an important role in viral RNA replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号