首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous work showed that insecticide resistance in Drosophila melanogaster is correlated with the insertion of an Accord-like element into the 5' region of the cytochrome P450 gene, Cyp6g1. Here, we study the distribution of the Accord-like element in 673 recently collected D. melanogaster lines from 34 world-wide populations. We also examine the extent of microsatellite variability along a 180-kilobase (kb) genomic region of chromosome II encompassing the resistance gene. We confirm a 100% correlation of the Accord insertion with insecticide resistance and a significant reduction in variability extending at least 20 kb downstream of the Cyp6g1 gene. The frequency of the Accord insertion differs significantly between East African (32-55%) and nonAfrican (85-100%) populations. This pattern is consistent with a selective sweep driving the Accord insertion close to fixation in nonAfrican populations as a result of the insecticide resistance phenotype it confers. This study confirms that hitchhiking mapping can be used to identify beneficial mutations in natural populations.  相似文献   

2.
细胞色素P450介导的昆虫抗药性的分子机制   总被引:4,自引:0,他引:4  
邱星辉 《昆虫学报》2014,57(4):477-482
细胞色素P450(简称P450) 对杀虫剂的代谢作用直接影响到昆虫对杀虫剂的耐受性和杀虫剂对昆虫的选择性,由P450介导的杀虫剂代谢解毒作用的增强是昆虫产生抗药性的常见而重要的机制。P450介导的杀虫剂代谢抗性具有普遍性、交互抗性与进化可塑性的特点,涉及P450基因重复与基因扩增、基因转录上调以及结构基因的变异等多样化的分子机制,并且多重机制的共同作用可以导致高水平抗药性。这些研究发现说明,无论是昆虫抗药性机制的研究,还是抗药性监测与治理都要有动态的、因地制宜的理念。  相似文献   

3.
P450酶系在昆虫代谢农药中有重要作用,NADPH-细胞色素P450还原酶(NADPH-cytochrome P450 reductase,CPR)和细胞色素P450(P450)在该酶系起核心作用。昆虫具有P450超基因家族,但只有一个单一的CPR基因,CPR是昆虫所有参与农药代谢的P450酶的唯一电子供体,其影响P450活性。P450基因的高水平表达在害虫抗药性中具有重要作用,P450基因介导的昆虫抗药性是最重要的代谢抗性类型。不同P450基因的高表达的调控机制不同,引起P450基因过量表达的原因可能有P450基因的编码区突变、顺式作用元件和反式作用因子变化、基因扩增等。细胞色素P450介导的抗药性存在一定程度的进化可塑性,即同种昆虫不同种群对相同的农药产生抗药性时,导致抗性产生的P450基因不同;同一昆虫品系在某种农药的抗性选择压力下,影响抗性的P450基因的种类和表达特性会随着持续的农药选择而发生变化。最近的研究显示,CPR的变异和昆虫抗药性相关,但是昆虫CPR基因介导抗药性的机制还缺乏深入研究。全面阐释P450酶系介导昆虫抗药性的机制、建立基于P450基因表达量变化与CPR突变的抗性分子标记,对于害虫抗药性治理具有重要意义。  相似文献   

4.
The esterase-based insecticide resistance mechanisms characterised to date predominantly involve elevation of activity through gene amplification allowing increased levels of insecticide sequestration, or point mutations within the esterase structural genes which change their substrate specificity. The amplified esterases are subject to various types of gene regulation in different insect species. In contrast, elevation of glutathione S-transferase activity involves upregulation of multiple enzymes belonging to one or more glutathione S-transferase classes or more rarely upregulation of a single enzyme. There is no evidence of insecticide resistance associated with gene amplification in this enzyme class. The biochemical and molecular basis of these two metabolically-based insecticide resistance mechanisms is reviewed.  相似文献   

5.
Mobile DNAs are potent sources of mutation in wild populations, but seem only rarely to have been used in adaptive evolution. A new study has revealed a mobile DNA insertion in Drosophila simulans that is associated with an apparent selective sweep and an elevation in expression level of an adjacent gene which creates insecticide resistance.  相似文献   

6.
Black flies, a non-target species of the insecticides used in fruit production, represent a severe medical and veterinary problem. Large increases in the level of resistance to the pyrethroids fenvalerate (more than 355-fold) and deltamethrin (162-fold) and a small increase in resistance to the organophosphate azinphos methyl (2-fold) were observed between 1996-2008 in black fly larvae under insecticide pressure. Eventually, no change or a slight variation in insecticide resistance was followed by a subsequent increase in resistance. The evolution of pesticide resistance in a field population is a complex and stepwise process that is influenced by several factors, the most significant of which is the insecticide selection pressure, such as the dose and frequency of application. The variation in insecticide susceptibility within a black fly population in the productive area may be related to changes in fruit-pest control. The frequency of individuals with esterase activities higher than the maximum value determined in the susceptible population increased consistently over the sampling period. However, the insecticide resistance was not attributed to glutathione S-transferase activity. In conclusion, esterase activity in black flies from the productive area is one mechanism underlying the high levels of resistance to pyrethroids, which have been recently used infrequently. These enzymes may be reselected by currently used pesticides and enhance the resistance to these insecticides.  相似文献   

7.
昆虫抗药性分子机制研究的新进展   总被引:1,自引:0,他引:1  
昆虫抗性机制的研究对于抗性监测、治理及新农药的研制具有重要意义。在过去几十年中,人们对与昆虫杀虫剂抗性有关的昆虫行为、生理代谢活动以及作用靶标等进行了广泛的研究。已经证实,昆虫的抗药性与行为改变、生理功能改变、解毒功能增强以及靶标不敏感性有关。近年来,随着分子生物学以及昆虫基因组学的发展,昆虫抗药性的分子机理有了突破性进展,已发现并克隆了一些靶标基因,与抗药性相关的基因突变也得到广泛验证。本文综述了昆虫的抗药性机理在分子生物学上的研究最新进展,重点阐述了与昆虫抗性相关基因的扩增、表达及基因结构的改变等相关内容。  相似文献   

8.
寄生蜂抗药性研究进展   总被引:3,自引:1,他引:3  
吴刚  江树人 《昆虫学报》2004,47(4):515-521
植物-植食性昆虫-寄生蜂三级营养结构之间由于长期相互适应和协同进化,产生了一系列独特的相互关系。选择压力将对害虫和寄生蜂的抗药性演化产生影响,但由于寄生蜂具有与植食性昆虫不同的生物学及生态学特性,选择压力对害虫和寄生蜂抗药性演化的影响作用也是不同的。研究结果表明,除体外杀虫剂对寄生蜂的直接汰选因素外,进入寄主昆虫体内的杀虫剂成分、寄主昆虫取食不同植物的特有成分以及气候因子等均会对寄生蜂的抗药性演化产生影响。  相似文献   

9.
The ability of insect pests to rapidly and repeatedly adapt to insecticides has long challenged entomologists and evolutionary biologists. Since Crow's seminal paper on insecticide resistance in 1957, new data and insights continue to emerge that are relevant to the old questions about how insecticide resistance evolves: such as whether it is predominantly mono‐ or polygenic, and evolving from standing vs. de novo genetic variation. Many studies support the monogenic hypothesis, and current management recommendations assume single‐ or two‐locus models. But inferences could be improved by integrating data from a broader sample of pest populations and genomes. Here, we generate evidence relevant to these questions by applying a landscape genomics framework to the study of insecticide resistance in a major agricultural pest, Colorado potato beetle, Leptinotarsa decemlineata (Say). Genome–environment association tests using genomic variation from 16 populations spanning gradients of landscape variables associated with insecticide exposure over time revealed 42 strong candidate insecticide resistance genes, with potentially overlapping roles in multiple resistance mechanisms. Measurements of resistance to a widely used insecticide, imidacloprid, among 47 L. decemlineata populations revealed heterogeneity at a small (2 km) scale and no spatial signature of origin or spread throughout the landscape. Analysis of nucleotide diversity suggested candidate resistance loci have undergone varying degrees of selective sweeps, often maintaining similar levels of nucleotide diversity to neutral loci. This study suggests that many genes are involved in insecticide resistance in L. decemlineata and that resistance likely evolves from both de novo and standing genetic variation.  相似文献   

10.
11.
Occurrence, genetics and management of insecticide resistance   总被引:1,自引:0,他引:1  
A lot has been learned about insecticide resistance in the past 40 years. The problem is more extensive and widespread than could have been predicted. In this review, Richard Roush discusses the genetics and management of resistance to insecticides (especially as related to arthropod vectors of human and animal diseases), with the objective of suggesting future directions.  相似文献   

12.
Peach-potato aphids, Myzus persicae (Sulzer), collected in Scotland in the years 1995 and 2002-2004 were characterized using four microsatellite loci and three insecticide resistance mechanisms. From 868 samples, 14 multilocus genotypes were defined (designated clones A-N). Five of these (denoted A, B, H, M and N) carried modified acetylcholinesterase (MACE) resistance, the most recent resistance mechanism to have evolved in M. persicae. The current paper shows that the continued presence of MACE aphids is due to turnover, as clones A and B were replaced in field samples by clones H, M and N in later seasons. Thus, insecticide-resistant populations in Scotland can be attributed to multiple waves of rapid clone colonisations and not to the continued presence of stable resistant clones or mutation or sexual recombination in local populations. The MACE clones carried varying levels of the other insecticide resistance mechanisms, kdr and esterase. The presence of these mechanisms could alter the clones success in the field depending on insecticide spraying (positive selection) and resistance fitness costs (negative selection).  相似文献   

13.
To investigate the genetic basis of cross-resistance to insecticides, natural populations of Drosophila melanogaster (Meigen) were first collected from four different locations in Japan. After 10-80 isofemale lines of each population had been established in a laboratory, the susceptibility of each line to each of the insecticides permethrin, malathion, fenitrothion, prothiophos, and DDT was examined. Broad ranges of continuous variation in susceptibility to all the chemicals were observed within each natural population as a whole. In addition, highly significant correlations among responses to organophosphates were observed. However, based on the coefficients of determination, about less than half of variation in responses to one insecticide could be explained by variation in responses to another insecticide, suggesting that not only a common resistance factor but also other factors could be involved in a natural population. Genetic analyses by using resistant and susceptible inbred lines from the same natural population demonstrated that resistance to organophosphates in some resistant lines could be due to a single or tightly linked factors, and that resistance in the other line may be due to more than one major factor. These observations could suggest that several resistance factors may be involved within each natural population, and that some of major factors could contribute to correlations among responses to organophosphates. These major factors could then contribute to the broad ranges of continuous variation observed at the level of the populations.  相似文献   

14.
朱斌  梁沛  高希武 《昆虫学报》2016,59(11):1272-1281
长链非编码RNA(long noncoding RNA, lncRNA)是一类转录本长度超过200 nt的非编码RNA,主要通过转录调控和转录后调控调节基因的表达,也可通过影响蛋白质定位和端粒复制发挥其强大的生物学功能。本文在介绍lncRNA的特征、分类及其主要作用机制的基础上,综述了有关昆虫lncRNA的鉴定及功能研究等方面的最新进展。近5年来已经从黑腹果蝇Drosophila melanogaster、小菜蛾Plutella xylostella和褐飞虱Nilaparvata lugens等8种昆虫中鉴定出了大量lncRNA,为进一步研究lncRNA在昆虫生长发育过程中的功能奠定了重要基础。非编码RNA参与调控害虫抗药性的分子机制已经成为昆虫毒理学研究的一个新兴领域,因此本文对有关lncRNA与害虫抗药性关系的最新研究进展也做了介绍。  相似文献   

15.
The history of insecticide resistance in the horn fly, Haematobia irritans, and the relationship between the characteristics of horn fly biology and insecticide use on resistance development is discussed. Colonies of susceptible horn flies were selected for resistance with six insecticide treatment regimens: continuous single use of permethrin, diazinon and ivermectin: permethrin-diazinon (1:2) mixture; and permethrin-diazinon and permethrin-ivermectin rotation (4-month cycle). Under laboratory conditions, resistance developed during generations 21, 31 and 30 to permethrin, diazinon and ivermectin, respectively. The magnitude of resistance ranged from < 3-fold with ivermectin to 1470-fold with permethrin. Field studies demonstrated that use of a single class of insecticidal ear tag during the horn-fly season resulted in product failure within 3-4 years for pyrethroids and organophosphates, respectively. In laboratory studies, use of alternating insecticides or a mixture of insecticides delayed the onset of resistance for up to 12 generations and reduced the magnitude of pyrethroid resistance. In field studies, yearly alternated use of pyrethroids and organophosphates did not slow or reverse pyrethroid resistance (Barros et al., unpublished data), while a 2-year alternated use with organophosphates resulted in partial reversion of pyrethroid resistance. When pyrethroid and organophosphate ear tags were used in a mosaic strategy at two different locations, efficacy of products did not change during a 3-year period.  相似文献   

16.
Simulations were used to compare evolution of insecticide resistance predicted by a conventional two-allele model with predictions from three- and four-allele models that assume resistance is based on gene amplification. Results were similar between models when insecticide concentration was low or moderate. In contrast, when 10% of the population was not exposed to insecticide each generation, high insecticide concentrations slowed resistance development in the two-allele model, but caused rapid development of high levels of resistance in the three- and four-allele models. The presence of a third allele at an initial frequency as low as 10-7 doubled or tripled the rate of resistance development in some cases. Attempts to slow evolution of resistance by overwhelming it with high concentrations of insecticides are not likely to succeed if gene amplification or other mechanisms generate alleles that confer high levels of resistance.  相似文献   

17.

Background

Knowledge on insecticide resistance in target species is a basic requirement to guide insecticide use in malaria control programmes. Malaria transmission in the Mekong region is mainly concentrated in forested areas along the country borders, so that decisions on insecticide use should ideally be made at regional level. Consequently, cross-country monitoring of insecticide resistance is indispensable to acquire comparable baseline data on insecticide resistance.

Methods

A network for the monitoring of insecticide resistance, MALVECASIA, was set up in the Mekong region in order to assess the insecticide resistance status of the major malaria vectors in Cambodia, Laos, Thailand, and Vietnam. From 2003 till 2005, bioassays were performed on adult mosquitoes using the standard WHO susceptibility test with diagnostic concentrations of permethrin 0.75% and DDT 4%. Additional tests were done with pyrethroid insecticides applied by the different national malaria control programmes.

Results

Anopheles dirus s.s., the main vector in forested malaria foci, was susceptible to permethrin. However, in central Vietnam, it showed possible resistance to type II pyrethroids. In the Mekong delta, Anopheles epiroticus was highly resistant to all pyrethroid insecticides tested. It was susceptible to DDT, except near Ho Chi Minh City where it showed possible DDT resistance. In Vietnam, pyrethroid susceptible and tolerant Anopheles minimus s.l. populations were found, whereas An. minimus s.l. from Cambodia, Laos and Thailand were susceptible. Only two An. minimus s.l. populations showed DDT tolerance. Anopheles vagus was found resistant to DDT and to several pyrethroids in Vietnam and Cambodia.

Conclusion

This is the first large scale, cross-country survey of insecticide resistance in Anopheles species in the Mekong Region. A unique baseline data on insecticide resistance for the Mekong region is now available, which enables the follow-up of trends in susceptibility status in the region and which will serve as the basis for further resistance management. Large differences in insecticide resistance status were observed among species and countries. In Vietnam, insecticide resistance was mainly observed in low or transmission-free areas, hence an immediate change of malaria vector control strategy is not required. Though, resistance management is important because the risk of migration of mosquitoes carrying resistance genes from non-endemic to endemic areas. Moreover, trends in resistance status should be carefully monitored and the impact of existing vector control tools on resistant populations should be assessed.  相似文献   

18.
The binary toxin is the major active component of Bacillus sphaericus, a microbial larvicide used for controlling some vector mosquito-borne diseases. B. sphaericus resistance has been reported in many part of the world, leading to a growing concern for the usefulness of this environmental friendly insecticide. Here we characterize a novel mechanism of resistance to the binary toxin in a natural population of the West Nile virus vector, Culex pipiens. We show that the insertion of a transposable element-like DNA into the coding sequence of the midgut toxin receptor induces a new mRNA splicing event, unmasking cryptic donor and acceptor sites located in the host gene. The creation of the new intron causes the expression of an altered membrane protein, which is incapable of interacting with the toxin, thus providing the host mosquito with an advantageous phenotype. As a large portion of insect genomes is composed of transposable elements or transposable elements-related sequences, this new mechanism may be of general importance to appreciate their significance as potent agents for insect resistance to the microbial insecticides.  相似文献   

19.
BackgroundThe development of insecticide resistance in mosquitoes can have pleiotropic effects on key behaviours such as mating competition and host-location. Documenting these effects is crucial for understanding the dynamics and costs of insecticide resistance and may give researchers an evidence base for promoting vector control programs that aim to restore or conserve insecticide susceptibility.Methods and findingsWe evaluated changes in behaviour in a backcrossed strain of Aedes aegypti, homozygous for two knockdown resistance (kdr) mutations (V1016G and S989P) isolated in an otherwise fully susceptible genetic background. We compared biting activity, host location behaviours, wing beat frequency (WBF) and mating competition between the backcrossed strain, and the fully susceptible and resistant parental strains from which it was derived. The presence of the homozygous kdr mutations did not have significant effects on blood avidity, the time to locate a host, or WBF in females. There was, however, a significant reduction in mean WBF in males and a significant reduction in estimated male mating success (17.3%), associated with the isolated kdr genotype.ConclusionsOur results demonstrate a cost of insecticide resistance associated with an isolated kdr genotype and manifest as a reduction in male mating success. While there was no recorded difference in WBF between the females of our strains, the significant reduction in male WBF recorded in our backcrossed strain might contribute to mate-recognition and mating disruption. These consequences of resistance evolution, especially when combined with other pleiotropic fitness costs that have been previously described, may encourage reversion to susceptibility in the absence of insecticide selection pressures. This offers justification for the implementation of insecticide resistance management strategies based on the rotation or alternation of different insecticide classes in space and time.  相似文献   

20.
Dengue is an important mosquito borne viral disease in Martinique Island (French West Indies). The viruses responsible for dengue are transmitted by Aedes aegypti, an indoor day-biting mosquito. The most effective proven method for disease prevention has been by vector control by various chemical or biological means. Unfortunately insecticide resistance has already been observed on the Island and recently showed to significantly reduce the efficacy of vector control interventions. In this study, we investigated the distribution of resistance and the underlying mechanisms in nine Ae. aegypti populations. Statistical multifactorial approach was used to investigate the correlations between insecticide resistance levels, associated mechanisms and environmental factors characterizing the mosquito populations. Bioassays revealed high levels of resistance to temephos and deltamethrin and susceptibility to Bti in the 9 populations tested. Biochemical assays showed elevated detoxification enzyme activities of monooxygenases, carboxylesterases and glutathione S-tranferases in most of the populations. Molecular screening for common insecticide target-site mutations, revealed the presence of the "knock-down resistance" V1016I Kdr mutation at high frequency (>87%). Real time quantitative RT-PCR showed the potential involvement of several candidate detoxification genes in insecticide resistance. Principal Component Analysis (PCA) performed with variables characterizing Ae. aegypti from Martinique permitted to underline potential links existing between resistance distribution and other variables such as agriculture practices, vector control interventions and urbanization. Insecticide resistance is widespread but not homogeneously distributed across Martinique. The influence of environmental and operational factors on the evolution of the resistance and mechanisms are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号