首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In recent studies of transgenic models of Alzheimer's disease (AD), it has been reported that antibodies to aged beta amyloid peptide 1-42 (Abeta(1-42)) solutions (mixtures of Abeta monomers, oligomers and amyloid fibrils) cause conspicuous reduction of amyloid plaques and neurological improvement. In some cases, however, neurological improvement has been independent of obvious plaque reduction, and it has been suggested that immunization might neutralize soluble, non-fibrillar forms of Abeta. It is now known that Abeta toxicity resides not only in fibrils, but also in soluble protofibrils and oligomers. The current study has investigated the immune response to low doses of Abeta(1-42) oligomers and the characteristics of the antibodies they induce. Rabbits that were injected with Abeta(1-42) solutions containing only monomers and oligomers produced antibodies that preferentially bound to assembled forms of Abeta in immunoblots and in physiological solutions. The antibodies have proven useful for assays that can detect inhibitors of oligomer formation, for immunofluorescence localization of cell-attached oligomers to receptor-like puncta, and for immunoblots that show the presence of SDS-stable oligomers in Alzheimer's brain tissue. The antibodies, moreover, were found to neutralize the toxicity of soluble oligomers in cell culture. Results support the hypothesis that immunizations of transgenic mice derive therapeutic benefit from the immuno-neutralization of soluble Abeta-derived toxins. Analogous immuno-neutralization of oligomers in humans may be a key in AD vaccines.  相似文献   

2.
Amyloid beta peptide is recognized as the main constituent of the extracellular amyloid plaques, the major neuropathological hallmark of Alzheimer's disease. Abeta is a small peptide constitutively expressed in normal cells, not toxic in the monomeric form but aggregated Abeta is assumed to be the main if not the only factor causing Alzheimer's disease. Interestingly, the new reports suggest neurotoxicity of soluble Abeta oligomers rather than amyloid fibrils. Because of the fact that fibrils were thought to be the main toxic species in AD, early structural studies focused on fibrils themselves and Abeta monomers, as their building blocks while there is practically no data on oligomer structure and mechanism of neurotoxicity. Using a model peptide spanning residues 10–30 of Abeta, obtained by overexpression in bacteria, we have employed mass spectrometry of noncovalent complexes and disulfide rearrangement assay to gain new insight into structure and dynamics of a prenucleation step of Abeta peptide oligomerisation.  相似文献   

3.
beta-amyloid peptide (Abeta) is one of the main protein components of senile plaques associated with Alzheimer's disease (AD). Abeta readily aggregates to forms fibrils and other aggregated species that have been shown to be toxic in a number of studies. In particular, soluble oligomeric forms are closely related to neurotoxicity. However, the relationship between neurotoxicity and the size of Abeta aggregates or oligomers is still under investigation. In this article, we show that different Abeta incubation conditions in vitro can affect the rate of Abeta fibril formation, the conformation and stability of intermediates in the aggregation pathway, and toxicity of aggregated species formed. When gently agitated, Abeta aggregates faster than Abeta prepared under quiescent conditions, forming fibrils. The morphology of fibrils formed at the end of aggregation with or without agitation, as observed in electron micrographs, is somewhat different. Interestingly, intermediates or oligomers formed during Abeta aggregation differ greatly under agitated and quiescent conditions. Unfolding studies in guanidine hydrochloride indicate that fibrils formed under quiescent conditions are more stable to unfolding in detergent than aggregation associated oligomers or Abeta fibrils formed with agitation. In addition, Abeta fibrils formed under quiescent conditions were less toxic to differentiated SH-SY5Y cells than the Abeta aggregation associated oligomers or fibrils formed with agitation. These results highlight differences between Abeta aggregation intermediates formed under different conditions and provide insight into the structure and stability of toxic Abeta oligomers.  相似文献   

4.
Alzheimer's disease constitutes a rising threat to public health. Despite extensive research in cellular and animal models, identifying the pathogenic agent present in the human brain and showing that it confers key features of Alzheimer's disease has not been achieved. We extracted soluble amyloid-beta protein (Abeta) oligomers directly from the cerebral cortex of subjects with Alzheimer's disease. The oligomers potently inhibited long-term potentiation (LTP), enhanced long-term depression (LTD) and reduced dendritic spine density in normal rodent hippocampus. Soluble Abeta from Alzheimer's disease brain also disrupted the memory of a learned behavior in normal rats. These various effects were specifically attributable to Abeta dimers. Mechanistically, metabotropic glutamate receptors were required for the LTD enhancement, and N-methyl D-aspartate receptors were required for the spine loss. Co-administering antibodies to the Abeta N-terminus prevented the LTP and LTD deficits, whereas antibodies to the midregion or C-terminus were less effective. Insoluble amyloid plaque cores from Alzheimer's disease cortex did not impair LTP unless they were first solubilized to release Abeta dimers, suggesting that plaque cores are largely inactive but sequester Abeta dimers that are synaptotoxic. We conclude that soluble Abeta oligomers extracted from Alzheimer's disease brains potently impair synapse structure and function and that dimers are the smallest synaptotoxic species.  相似文献   

5.
Recent studies have suggested that non-fibrillar soluble forms of Abeta peptides possess neurotoxic properties and may therefore play a role in the molecular pathogenesis of Alzheimer's disease. We have identified solution conditions under which two types of soluble oligomers of Abeta40 could be trapped and stabilized for an extended period of time. The first type of oligomers comprises a mixture of dimers/tetramers which are stable at neutral pH and low micromolar concentration, for a period of at least four weeks. The second type of oligomer comprises a narrow distribution of particles that are spherical when examined by electron microscopy and atomic force microscopy. The number average molecular mass of this distribution of particles is 0.94 MDa, and they are are stable at pH 3 for at least four weeks. Circular dichroism studies indicate that the dimers/tetramers possess irregular secondary structure that is not alpha-helix or beta-structure, while the 0.94 MDa particles contain beta-structure. Fluorescence resonance energy transfer experiments indicate that Abeta40 moieties in amyloid fibrils or protofibrils are more similar in structure to those in the 0.94 MDa particles than those in the dimers/tetramers. These findings indicate that soluble oligomeric forms of Abeta peptides can be trapped for extended periods of time, enabling their study by high resolution techniques that would not otherwise be possible.  相似文献   

6.
beta-Amyloid protein (Abeta) is the major component of senile plaques found in the brains of Alzheimer's patients. A novel ELISA has been developed which probes the early stages of oligomerization of Abeta. Incubation of Abeta solutions at 37 degrees C and pH 7.4 produces soluble oligomers in a concentration-dependent manner. Fresh Abeta42 solutions rapidly form soluble oligomers, whereas Abeta40 solutions require prolonged incubation to produce oligomers. Fresh Abeta42 solutions are more toxic to human neuroblastoma SH-SY5Y cells than Abeta40 solutions, possibly mediated by soluble oligomers. The differences between Abeta42 and Abeta40 could explain the association of the longer form with familial early-onset Alzheimer's disease. We also report a new strategy for solid-phase synthesis of Abeta peptides which gives high yield and purity of the initial crude preparation.  相似文献   

7.
Immunotherapy against the amyloid-beta (Abeta) peptide is a valuable potential treatment for Alzheimer disease (AD). An ideal antigen should be soluble and nontoxic, avoid the C-terminally located T-cell epitope of Abeta, and yet be capable of eliciting antibodies that recognize Abeta fibrils and neurotoxic Abeta oligomers but not the physiological monomeric species of Abeta. We have described here the construction and immunological characterization of a recombinant antigen with these features obtained by tandem multimerization of the immunodominant B-cell epitope peptide Abeta1-15 (Abeta15) within the active site loop of bacterial thioredoxin (Trx). Chimeric Trx(Abeta15)n polypeptides bearing one, four, or eight copies of Abeta15 were constructed and injected into mice in combination with alum, an adjuvant approved for human use. All three polypeptides were found to be immunogenic, yet eliciting antibodies with distinct recognition specificities. The anti-Trx(Abeta15)4 antibody, in particular, recognized Abeta42 fibrils and oligomers but not monomers and exhibited the same kind of conformational selectivity against transthyretin, an amyloidogenic protein unrelated in sequence to Abeta. We have also demonstrated that anti-Trx(Abeta15)4, which binds to human AD plaques, markedly reduces Abeta pathology in transgenic AD mice. The data indicate that a conformational epitope shared by oligomers and fibrils can be mimicked by a thioredoxin-constrained Abeta fragment repeat and identify Trx(Abeta15)4 as a promising new tool for AD immunotherapy.  相似文献   

8.
Amyloid beta (Abeta) immunotherapy for Alzheimer's disease has shown initial success in mouse models of Alzheimer's disease and in human patients. However, because of meningoencephalitis in clinical trials of active vaccination, approaches using therapeutic antibodies may be preferred. As a novel antigen to generate monoclonal antibodies, the current study has used Abeta oligomers (amyloid beta-derived diffusible ligands, ADDLs), pathological assemblies known to accumulate in Alzheimer's disease brain. Clones were selected for the ability to discriminate Alzheimer's disease from control brains in extracts and tissue sections. These antibodies recognized Abeta oligomers and fibrils but not the physiologically prevalent Abeta monomer. Discrimination derived from an epitope found in assemblies of Abeta1-28 and ADDLs but not in other sequences, including Abeta1-40. Immunoneutralization experiments showed that toxicity and attachment of ADDLs to synapses in culture could be prevented. ADDL-induced reactive oxygen species (ROS) generation was also inhibited, establishing this response to be oligomer-dependent. Inhibition occurred whether ADDLs were prepared in vitro or obtained from Alzheimer's disease brain. As conformationally sensitive monoclonal antibodies that selectively immunoneutralize binding and function of pathological Abeta assemblies, these antibodies provide tools by which pathological Abeta assemblies from Alzheimer's disease brain might be isolated and evaluated, as well as offering a valuable prototype for new antibodies useful for Alzheimer's disease therapeutics.  相似文献   

9.
Alzheimer's disease (AD) is characterized by the aggregation and subsequent deposition of misfolded beta-amyloid (Abeta) peptide. Previous studies show that aggregated Abeta is more toxic in oligomeric than in fibrillar form, and that each aggregation form activates specific molecular pathways in the cell. We hypothesize that these differences between oligomers and fibrils are related to their different accessibility to the intracellular space. To this end we used fluorescently labelled Abeta1-42 and demonstrate that Abeta1-42 oligomers readily enter both HeLa and differentiated SKNSH cells whereas fibrillar Abeta1-42 is not internalized. Oligomeric Abeta1-42 is internalized by an endocytic process and is transported to the lysosomes. Inhibition of uptake specifically inhibits oligomer but not fibril toxicity. Our study indicates that selective uptake of oligomers is a determinant of oligomer specific Abeta toxicity.  相似文献   

10.
One of the most clinically advanced forms of experimental disease-modifying treatment for Alzheimer disease is immunization against the amyloid beta protein (Abeta), but how this may prevent cognitive impairment is unclear. We hypothesized that antibodies to Abeta could exert a beneficial action by directly neutralizing potentially synaptotoxic soluble Abeta species in the brain. Intracerebroventricular injection of naturally secreted human Abeta inhibited long-term potentiation (LTP), a correlate of learning and memory, in rat hippocampus in vivo but a monoclonal antibody to Abeta completely prevented the inhibition of LTP when injected after Abeta. Size fractionation showed that Abeta oligomers, not monomers or fibrils, were responsible for inhibiting LTP, and an Abeta antibody again prevented such inhibition. Active immunization against Abeta was partially effective, and the effects correlated positively with levels of antibodies to Abeta oligomers. The ability of exogenous and endogenous antibodies to rapidly neutralize soluble Abeta oligomers that disrupt synaptic plasticity in vivo suggests that treatment with such antibodies might show reversible cognitive deficits in early Alzheimer disease.  相似文献   

11.
Soluble oligomers and protofibrils are widely thought to be the toxic forms of the Abeta42 peptide associated with Alzheimer's disease. We have investigated the structure and formation of these assemblies using a new approach in atomic force microscopy (AFM) that yields high-resolution images of hydrated proteins and allows the structure of the smallest molecular weight (MW) oligomers to be observed and characterized. AFM images of monomers, dimers and other low MW oligomers at early incubation times (< 1h) are consistent with a hairpin structure for the monomeric Abeta42 peptide. The low MW oligomers are relatively compact and have significant order. The most constant dimension of these oligomers is their height (approximately 1-3 nm) above the mica surface; their lateral dimensions (width and length) vary between 5 nm and 10nm. Flat nascent protofibrils with lengths of over 40 nm are observed at short incubation times (< or = 3h); their lateral dimensions of 6-8 nm are consistent with a mass-per-length of 9 kDa/nm previously predicted for the elementary fibril subunit. High MW oligomers with lateral dimensions of 15-25 nm and heights ranging from 2-8 nm are common at high concentrations of Abeta. We show that an inhibitor designed to block the sheet-to-sheet packing in Abeta fibrils is able to cap the heights of these oligomers at approximately 4 nm. The observation of fine structure in the high MW oligomers suggests that they are able to nucleate fibril formation. AFM images obtained as a function of incubation time reveal a sequence of assembly from monomers to soluble oligomers and protofibrils.  相似文献   

12.
Abeta40 protects non-toxic Abeta42 monomer from aggregation   总被引:1,自引:0,他引:1  
Abeta40 and Abeta42 are the predominant Abeta species in the human body. Toxic Abeta42 oligomers and fibrils are believed to play a key role in causing Alzheimer's disease (AD). However, the role of Abeta40 in AD pathogenesis is not well established. Emerging evidence indicates a protective role for Abeta40 in AD pathogenesis. Although Abeta40 is known to inhibit Abeta42 fibril formation, it is not clear whether the inhibition acts on the non-toxic monomer or acts on the toxic Abeta42 oligomers. In contrast to conventional methods that detect the appearance of fibrils, in our study Abeta42 aggregation was monitored by the decreasing NMR signals from Abeta42 monomers. In addition, differential NMR isotope labelling enabled the selective observation of Abeta42 aggregation in a mixture of Abeta42 and Abeta40. We found Abeta40 monomers inhibit the aggregation of non-toxic Abeta42 monomers, in an Abeta42/Abeta40 ratio-dependent manner. NMR titration revealed that Abeta40 monomers bind to Abeta42 aggregates with higher affinity than Abeta42 monomers. Abeta40 can also release Abeta42 monomers from Abeta42 aggregates. Thus, Abeta40 likely protects Abeta42 monomers by competing for the binding sites on pre-existing Abeta42 aggregates. Combining our data with growing evidence from transgenic mice and human genetics, we propose that Abeta40 plays a critical, protective role in Alzheimer's by inhibiting the aggregation of Abeta42 monomer. Abeta40 itself, a peptide already present in the human body, may therefore be useful for AD prevention and therapy.  相似文献   

13.
Self-assembly of Abeta(1-42) into globular neurotoxins   总被引:4,自引:0,他引:4  
Amyloid beta 1-42 (Abeta(1-42)) is a self-associating peptide that becomes neurotoxic upon aggregation. Toxicity originally was attributed to the presence of large, readily formed Abeta fibrils, but a variety of other toxic species are now known. The current study shows that Abeta(1-42) can self-assemble into small, stable globular assemblies free of fibrils and protofibrils. Absence of large molecules was verified by atomic force microscopy (AFM) and nondenaturing gel electrophoresis. Denaturing electrophoresis revealed that the globular assemblies comprised oligomers ranging from trimers to 24mers. Oligomers prepared at 4 degrees C stayed fibril-free for days and remained so when shifted to 37 degrees C, although the spectrum of sizes shifted toward larger oligomers at the higher temperature. The soluble, globular Abeta(1-42) oligomers were toxic to PC12 cells, impairing reduction of MTT and interfering with ERK and Rac signal transduction. Occasionally, oligomers were neither toxic nor recognized by toxicity-neutralizing antibodies, suggesting that oligomers could assume alternative conformations. Tests for oligomerization-blocking activity were carried out by dot-blot immunoassays and showed that neuroprotective extracts of Ginkgo biloba could inhibit oligomer formation at very low doses. The observed neurotoxicity, structure, and stability of synthetic Abeta(1-42) globular assemblies support the hypothesis that Abeta(1-42) oligomers play a role in triggering nerve cell dysfunction and death in Alzheimer's disease.  相似文献   

14.
beta-Amyloid peptide (Abeta) is the major constituent of senile plaques, the key pathological feature of Alzheimer's disease. Abeta is physiologically produced as a soluble form, but aggregation of Abeta monomers into oligomers/fibrils causes neurotoxic change of the peptide. In nature, many microorganisms accumulate small molecule chaperones (SMCs) under stressful conditions to prevent the misfolding/denaturation of proteins and to maintain their stability. Hence, it is conceivable that SMCs such as ectoine and hydroxyectoine could be potential inhibitors against the aggregate formation of Alzheimer's Abeta, which has not been studied to date. The current work shows the effectiveness of ectoine and hydroxyectoine on the inhibition of Abeta42 aggregation and toxicity to human neuroblastoma cells. The characterization tools used for this study include thioflavin-T induced fluorescence, atomic force microscopy and cell viability assay. Considering that ectoine and hydroxyectoine are not toxic to cellular environment even at concentrations as high as 100 mM, the results may suggest a basis for the development of ectoines as potential inhibitors associated with neurodegenerative diseases.  相似文献   

15.
Alzheimer's disease (AD) is the most common cause of dementia in the elderly, wherein, the accumulation of amyloid beta (Abeta) peptide as cytotoxic oligomers leads to neuropathologic changes. Transgenic mice with brain Abeta plaques immunized with aggregated Abeta have reduced amyloid burden and improved cognitive functions. However, such active immunization in humans led to a small but significant occurrence of meningoencephalitis in 6% AD volunteers due to Abeta induced toxicity. In an attempt to develop safer alternative vaccines, the design of a highly soluble peptide homologous to Abeta (Abeta-EK), that has a reduced amyloidogenic potential while maintaining the major immunogenic epitopes of Abeta is reported. More importantly, this homologue has been shown to be non-toxic, as this peptide failed to exert any observable effect on erythrocytes. The results of the present study suggests that immunization with non-toxic Abeta derivative may offer a safer therapeutic approach to AD, instead of using toxic Abeta fibrils.  相似文献   

16.
Amyloid beta peptide is recognized as the main constituent of the extracellular amyloid plaques, the major neuropathological hallmark of Alzheimer's disease. Abeta is a small peptide constitutively expressed in normal cells, not toxic in the monomeric form but aggregated Abeta is assumed to be the main if not the only factor causing Alzheimer's disease. Interestingly, the new reports suggest neurotoxicity of soluble Abeta oligomers rather than amyloid fibrils. Because of the fact that fibrils were thought to be the main toxic species in AD, early structural studies focused on fibrils themselves and Abeta monomers, as their building blocks while there is practically no data on oligomer structure and mechanism of neurotoxicity. Using a model peptide spanning residues 10–30 of Abeta, obtained by overexpression in bacteria, we have employed mass spectrometry of noncovalent complexes and disulfide rearrangement assay to gain new insight into structure and dynamics of a prenucleation step of Abeta peptide oligomerisation.  相似文献   

17.
Oligomers of Abeta peptide have been indicated recently as a possible main causative agent of Alzheimer's disease. However, information concerning their structural properties is very limited. Here Abeta oligomers are studied by non-covalent complexes mass spectrometry and disulfide rearrangement. As a model molecule, an Abeta fragment spanning residues 10-30 (Abeta10-30) has been used. This model peptide is known to contain the core region responsible for Abeta aggregation to fibrils. Non-covalent complexes mass spectrometry indicates that, at neutral pH, monomers are accompanied by oligomers up to hexamers of gradually decreasing population. H-2H exchange studies and direct monomer exchange rate measurements with the use of 15N labeled peptides and mass spectrometry show a fast exchange of monomeric units between oligomers. Disulfide exchange studies of cysteine tagged Abeta10-30 and its mutant show proximity of N-N and C-C termini of monomers in oligomers. The presented data underscore a dynamic character for pre-nucleation forms of Abeta, however, with a marked tendency for parallel strand orientation in oligomers.  相似文献   

18.
A growing body of evidence supports the notion that soluble oligomers of amyloid-beta (Abeta) peptide interact with the neuronal plasma membrane, leading to cell injury and inducing death-signalling pathways that could account for the increased neurodegeneration occurring in Alzheimer's disease (AD). Docosahexaenoic acid (DHA, C22:6, n-3) is an essential polyunsaturated fatty acid in the CNS and has been shown in several epidemiological and in vivo studies to have protective effects against AD and cognitive alterations. However, the molecular mechanisms involved remain unknown. We hypothesized that DHA enrichment of plasma membranes could protect neurones from apoptosis induced by soluble Abeta oligomers. DHA pre-treatment was observed to significantly increase neuronal survival upon Abeta treatment by preventing cytoskeleton perturbations, caspase activation and apoptosis, as well as by promoting extracellular signal-related kinase (ERK)-related survival pathways. These data suggest that DHA enrichment probably induces changes in neuronal membrane properties with functional outcomes, thereby increasing protection from soluble Abeta oligomers. Such neuroprotective effects could be of major interest in the prevention of AD and other neurodegenerative diseases.  相似文献   

19.
Glial activation contiguous to deposits of amyloid peptide (Abeta) is a characteristic feature in Alzheimer's disease. We performed complementary in vitro and in vivo experiments to study the extent, kinetics, and mechanisms of microglial generation of nitric oxide (NO) induced by challenge with Abeta. We showed that Abeta fibrils dose-dependently induced a marked release of stable metabolites of NO in vivo that was strikingly similar regarding extent and temporal profile to the one in the parallel designed microglial cell culture experiments. However, costimulation with interferon gamma, which was a prerequisite for Abeta-induced NO generation in vitro, was not required in vivo, demonstrating that factors are present in the living brain that activate glial cells synergistically with Abeta. Therefore, in Alzheimer's disease, deposits of Abeta fibrils alone may be sufficient to induce a chronic release of neurotoxic microglial products, explaining the progressive neurodegeneration associated with this disease. Our observation that systemic administration of selective iNOS inhibitors abolishes Abeta-induced NO generation in vivo may have implications for therapy of Alzheimer's disease.  相似文献   

20.
Abeta fibrils, which are central to the pathology of Alzheimer's disease, form a cross-beta-structure that contains likely parallel beta-sheets with a salt bridge between residues Asp23 and Lys28. Recent studies suggest that soluble oligomers of amyloid peptides have neurotoxic effects in cell cultures, raising the interest in studying the structures of these intermediate forms. Here, we present three models of possible soluble Abeta forms based on the sequences similarities, assumed to support local structural similarities, of the Abeta peptide with fragments of three proteins (adhesin, Semliki Forest virus capsid protein, and transthyretin). These three models share a similar structure in the C-terminal region composed of two beta-strands connected by a loop, which contain the Asp23-Lys28 salt bridge. This segment is also structurally well conserved in Abeta fibril forms. Differences between the three monomeric models occur in the N-terminal region and in the C-terminal tail. These three models might sample some of the most stable conformers of the soluble Abeta peptide within oligomeric assemblies, which were modeled here in the form of dimers, trimers, tetramers, and hexamers. The consistency of these models is discussed with respect to available experimental and theoretical data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号