首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cranial discrete or 'epigenetic" traits have been analyzed for interrelationships with measurements of the skull in a sample of American Negro males. Univariate t and multivariate T2 tests are used. It has been the previous consensus view that nonmetric and metric characters are unrelated. Statistically significant associations between the total of 50 discrete and 23 metrical characters, however, are much more frequent than would be expected through random distribution. Multivariate analysis supplements simpler statistics by synthesizing patterns of variation within regions of the skull, identifying many interrelations of skull size and shape with discrete traits. A low but observable general influence is exerted upon nonmetric morphology by metrical variation of the human skull (or vice versa).  相似文献   

2.
A morphometric study was conducted on four skull traits of 37 male and 18 female adult East Greenland polar bears (Ursus maritimus) collected 1892-1968, and on 54 male and 44 female adult Barents Sea polar bears collected 1950-1969. The aim was to compare differences in size and shape of the bear skulls using a multivariate approach, characterizing the variation between the two populations using morphometric traits as an indicator of environmental and genetic differences. Mixture analysis testing for geographic differentiation within each population revealed three clusters for Barents Sea males and three clusters for Barents Sea females. East Greenland consisted of one female and one male cluster. A principal component analysis (PCA) conducted on the clusters defined by the mixture analysis, showed that East Greenland and Barents Sea polar bear populations overlapped to a large degree, especially with regards to females. Multivariate analyses of variance (MANOVA) showed no significant differences in morphometric means between the two populations, but differences were detected between clusters from each respective geographic locality. To estimate the importance of genetics and environment in the morphometric differences between the bears, a PCA was performed on the covariance matrix derived from the skull measurements. Skull trait size (PC1) explained approx. 80% of the morphometric variation, whereas shape (PC2) defined approx. 15%, indicating some genetic differentiation. Hence, both environmental and genetic factors seem to have contributed to the observed skull differences between the two populations. Overall, results indicate that many Barents Sea polar bears are morphometrically similar to the East Greenland ones, suggesting an exchange of individuals between the two populations. Furthermore, a subpopulation structure in the Barents Sea population was also indicated from the present analyses, which should be considered with regards to future management decisions.  相似文献   

3.

Background

Although variation provides the raw material for natural selection and evolution, few empirical data exist about the factors controlling morphological variation. Because developmental constraints on variation are expected to act by influencing trait correlations, studies of modularity offer promising approaches that quantify and summarize patterns of trait relationships. Modules, highly-correlated and semi-autonomous sets of traits, are observed at many levels of biological organization, from genes to colonies. The evolutionary significance of modularity is considerable, with potential effects including constraining the variation of individual traits, circumventing pleiotropy and canalization, and facilitating the transformation of functional structures. Despite these important consequences, there has been little empirical study of how modularity influences morphological evolution on a macroevolutionary scale. Here, we conduct the first morphometric analysis of modularity and disparity in two clades of placental mammals, Primates and Carnivora, and test if trait integration within modules constrains or facilitates morphological evolution.

Principal Findings

We used both randomization methods and direct comparisons of landmark variance to compare disparity in the six cranial modules identified in previous studies. The cranial base, a highly-integrated module, showed significantly low disparity in Primates and low landmark variance in both Primates and Carnivora. The vault, zygomatic-pterygoid and orbit modules, characterized by low trait integration, displayed significantly high disparity within Carnivora. 14 of 24 results from analyses of disparity show no significant relationship between module integration and morphological disparity. Of the ten significant or marginally significant results, eight support the hypothesis that integration within modules constrains morphological evolution in the placental skull. Only the molar module, a highly-integrated and functionally important module, showed significantly high disparity in Carnivora, in support of the facilitation hypothesis.

Conclusions

This analysis of within-module disparity suggested that strong integration of traits had little influence on morphological evolution over large time scales. However, where significant results were found, the primary effect of strong integration of traits was to constrain morphological variation. Thus, within Primates and Carnivora, there was some support for the hypothesis that integration of traits within cranial modules limits morphological evolution, presumably by limiting the variation of individual traits.  相似文献   

4.
The daily food intake and digestibility by Przewalskii horses were estimated under conditions of free ranging in the steppe Askania Nova Reserve. The digestibility was determined from the proportions of inert plant components (silica and lignin) in forage and feces; the daily food intake, from the amount of feces and the digestibility of forage. A free-ranging Przewalskii horse consumed 6.7–10.9 kg of phytomass (dry weight) per day, with its digestibility varying from 32 to 54%, depending on quality. The relatively poor digestibility of low-nutrient forage was counterbalanced by an increase in its consumption. Feeding tests were also conducted with horses kept in open-air pens. Under such conditions, a horse consumed 8.2–14.2 kg of hay and 8.5–11.4 kg of green steppe grass (dry weight) per day, with the digestibility of the latter forage being 49–52%. The indices of digestibility of rangeland forage in the Przewalskii horse proved to be similar to those in other large equines.  相似文献   

5.
叶片性状-环境关系对于预测气候变化对植物的影响至关重要。该研究以青藏高原东缘常见阔叶木本植物为研究对象, 从47个样点采集了332个物种共666个种群的叶片, 测量了15个叶片性状, 调查了该区域木本植物叶片性状的变异程度, 并从种内和种间水平探讨了叶片性状对环境的响应及适应策略。结果表明, 反眏叶片大小的性状均具有较高的变异, 其中, 叶片面积是变异程度最大的性状。除气孔密度外, 大多数叶片性状与海拔显著相关。气候是叶片性状变异的重要驱动因素, 3.3%-29.5%的叶片性状变异由气候因子组合解释。其中, 气温对叶片性状变异解释度最高, 日照时间能解释大部分叶片性状的变异, 而降水量对叶片性状变异的解释度相对较小。与环境(海拔和气候因子)显著相关的叶片性状在种内明显少于种间水平, 可能是植物性状之间的协同变化与权衡使种内性状变异比较小, 从而减弱了种内叶片性状与环境因子的相关性。研究结果总体表明,叶片性状与木本植物对环境的适应策略密切相关, 植物通过选择小而厚的叶片和较短的叶柄以适应高海拔的 环境。  相似文献   

6.
7.
Some of the problems in determining the cancer risk of low-level radiation from studies of exposed groups are reviewed and applied to the study of Hanford workers by Mancuso, Stewart, and Kneale. Problems considered are statistical limitations, variation of cancer rates with geography and race, the "healthy worker effect," calendar year and age variation of cancer mortality, choosing from long lists, use of proportional mortality rates, cigarette smoking-cancer correlations, use of averages to represent data distributions, ignoring other data, and correlations between radiation exposure and other factors that may cause cancer. The current status of studies of the Hanford workers is reviewed.  相似文献   

8.
Most phylogenetically based statistical methods for the analysis of quantitative or continuously varying phenotypic traits assume that variation within species is absent or at least negligible, which is unrealistic for many traits. Within-species variation has several components. Differences among populations of the same species may represent either phylogenetic divergence or direct effects of environmental factors that differ among populations (phenotypic plasticity). Within-population variation also contributes to within-species variation and includes sampling variation, instrument-related error, low repeatability caused by fluctuations in behavioral or physiological state, variation related to age, sex, season, or time of day, and individual variation within such categories. Here we develop techniques for analyzing phylogenetically correlated data to include within-species variation, or "measurement error" as it is often termed in the statistical literature. We derive methods for (i) univariate analyses, including measurement of "phylogenetic signal," (ii) correlation and principal components analysis for multiple traits, (iii) multiple regression, and (iv) inference of "functional relations," such as reduced major axis (RMA) regression. The methods are capable of incorporating measurement error that differs for each data point (mean value for a species or population), but they can be modified for special cases in which less is known about measurement error (e.g., when one is willing to assume something about the ratio of measurement error in two traits). We show that failure to incorporate measurement error can lead to both biased and imprecise (unduly uncertain) parameter estimates. Even previous methods that are thought to account for measurement error, such as conventional RMA regression, can be improved by explicitly incorporating measurement error and phylogenetic correlation. We illustrate these methods with examples and simulations and provide Matlab programs.  相似文献   

9.
In order to describe postnatal skull growth in Mus musculus, Microtus arvalis arvalis and M. a. asturianus, a total of 408 animals were raised and measured. The growth rate of single bones was followed by means of a maximum-likelihood estimator for the parameters A, B and C of the growth function Y(t) = A-B exp(-Ct). Supplementary techniques used to estimate the morphological divergence of the different taxa included methods of allometry research and multivariate statistical methods such as discriminate analysis and MANOVA. Drawings of selected stages of skull-bone ossification are provided to assist researchers in determining the age of undated specimens.  相似文献   

10.
We explored the phylogenetic signal of skull size and shape in alpine newts from the Balkans, a group of European newts that, in spite of their considerable phylogeographic substructuring (as inferred from previous DNA analyses), maintain a conserved phenotype. In terms of skull shape disparity, geometric morphometrics show that the dorsal cranium carries a significant phylogenetic signal, the most notable evidence in this present study. On the contrary, no phylogenetic signal in the shape of the ventral cranium was found. This result indicates that the variation in the shape of the ventral cranium is more prone to other factors and processes, such as adaptations to local environments rather than phylogenetic constraints. Variation in skull size within alpine newts seems to be independent from phylogenetic constraints.  相似文献   

11.
Changes in body size inversely related to ambient temperatures have been described in woodrats (Neotoma) over time scales ranging from decades to millennia. However, climate-mediated variation in other traits has not been evaluated, and the effects of precipitation have been overlooked. We assessed variation in skull morphology among bushy-tailed woodrats (Neotoma cinerea) over two sampling transects spanning coastal rainforest and interior desert environments to determine whether skull morphology varied with climate. We also tested whether previously described size-temperature relationships could be generalized to our study populations. In both transects, linear measurements of functionally significant traits differed between coastal and interior populations. Geometric morphometric analyses of shape confirmed some of those differences and revealed additional patterns of skull variation. Variation in some linear measurements, including body size, was predicted by climate. However, body and skull size, as well as measurements of skull components, displayed varying responses. Although longitudinal patterns of body size variation supported Bergmann’s rule, skull size variation was only weakly associated with climate. The strongest phenotypic responses to climate were those of auditory, dental, and palatal skull traits. Altogether, our findings suggest that geographic variation in temperature and precipitation mediated selective heterogeneity and plasticity in skull traits associated with food processing and sensory organs in N. cinerea. This was consistent with our expectation of resource-dependent phenotypic variation among populations in environments with highly contrasting climatic regimes.  相似文献   

12.
The tuatara (Sphenodon punctatus) is the only living representative of Rhynchocephalia, a group of small vertebrates that originated about 250 million years ago. The tuatara has been referred to as a living fossil; however, the group to which it belongs included a much greater diversity of forms in the Mesozoic. We explore the morphological diversity of Rhynchocephalia and stem lepidosaur relatives (Sphenodon plus 13 fossil relatives) by employing a combination of geometric morphometrics and comparative methods. Geometric morphometrics is used to explore cranium size and shape at interspecific scale, while comparative methods are employed to test association between skull shape and size and tooth number after taking phylogeny into account. Two phylogenetic topologies have been considered to generate a phylomorphospace and quantify the phylogenetic signal in skull shape data, the ancestral state reconstruction as well as morphological disparity using disparity through time plots (DTT). Rhynchocephalia exhibit a significant phylogenetic signal in skull shape that compares well with that computed for other extinct vertebrate groups. A consistent form of allometry has little impact on skull shape evolution while the number of teeth significantly correlates with skull shape also after taking phylogeny into account. The ancestral state reconstruction demonstrates a dramatic shape difference between the skull of Sphenodon and its much larger Cretaceous relative Priosphenodon. Additionally, DTT demonstrates that skull shape disparity is higher between rather than within clades while the opposite applies to skull size and number of teeth. These results were not altered by the use of competing phylogenic hypotheses. Rhynchocephalia evolved as a morphologically diverse group with a dramatic radiation in the Late Triassic and Early Jurassic about 200 million years ago. Differences in size are not marked between species whereas changes in number of teeth are associated with co‐ordinated shape changes in the skull to accommodate larger masticatory muscles. These results show that the tuatara is not the product of evolutionary stasis but that it represents the only survivor of a diverse Mesozoic radiation whose subsequent decline remains to be explained.  相似文献   

13.
Extant and fossil crocodilians have long been divided into taxonomic and/or ecological groups based on broad patterns of skull shape, particularly the relative length and width of the snout. However, these patterns have not been quantitatively analyzed in detail, and their biomechanical and functional implications are similarly understudied. Here, we use geometric morphometrics and finite element analysis to explore the patterns of variation in crocodilian skull morphology and the functional implications of those patterns. Our results indicate that skull shape variation in extant crocodiles is much more complex than previously recognized. Differences in snout length and width are the main components of shape variation, but these differences are correlated with changes in other regions of the skull. Additionally, there is considerable disparity within general classes such as longirostrine and brevirostrine forms. For example, Gavialis and Tomistoma occupy different parts of morphospace implying a significant difference in skull shape, despite the fact that both are traditionally considered longirostrine. Skull length and width also strongly influence the mechanical performance of the skull; long and narrow morphotypes (e.g., Tomistoma) experience the highest amount of stress during biting, whereas short and broad morphotypes (e.g., Caiman latirostris) experience the least amount of stress. Biomechanical stress and the hydrodynamic properties of the skull show a strong relationship with the distribution of crocodilians in skull morphospace, whereas phylogeny and biogeography show weak or no correlation. Therefore, ecological specializations related to feeding and foraging likely have the greatest influence on crocodilian skull shape. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

14.
Facial heights, i.e. the vertical distances between the superior and inferior limits of facial compartments, contribute to the orientation of the viscerocranium in the primate skull. In humans, vertical facial variation is among the main sources of diversity and frequently associated with an integrated suite of other cranio-mandibular traits. Facial heights and kyphosis are also important factors in interspecific variation and models of hominoid evolution. The ontogenetic determination of adult facial orientation and its relation to phylogenetic variation are unclear, but crucial in all previously mentioned respects. We addressed these issues in a sample of 175 humans and chimpanzees with Procrustes based geometric morphometrics, testing hypotheses of interspecific similarity in postnatal ontogenetic trajectories, early versus later ontogenetic facial pattern determination, and a developmental model of morphological integration. We analyzed the contribution of postnatal morphogenesis to adult vertical facial variation by partitioning morphological variation into a portion of pure growth allometry and a non-allometric fraction. A statistically significant difference of growth-allometries revealed that in both species growth established the adult skull proportions by vertical facial expansion, but while in chimpanzees the complete viscerocranium showed reorientation, in humans only the lower face was modified. In both species the results support a hypothesis of early facial pattern determination. A coincident emergence of morphological traits favors a hypothesis of developmental integration of the face, excluding traits of the basi- and neurocranium. Interspecific differences in integration may have implications for evolutionary studies. The present findings indicate that growth establishes the adult skull proportions and integrates principal facial orientation patterns, already there in early postnatal ontogeny.  相似文献   

15.
There is considerable interest in comparing genetic variance-covariances matrices (G matrix). However, present methods are difficult to implement and cannot readily be extended to incorporate effects of other variables such as habitat, sex, or location. In this paper I present a method based on MANOVA that can be done using only standard statistical packages (coding for the method using SPLUS is available from the author). The crux of the approach is to use the jackknife method to estimate the pseudovalues of the estimates; these estimates can then be used as datapoints in a MANOVA. I illustrate the method using two published datasets: (1) variation in G matrices resulting from differences in rearing condition, species, and sex in the crickets Gryllus firmus and G. pennsylvanicus; and (2) variation in G matrices associated with habitat and history in the amphipod Gammarus minus.  相似文献   

16.
Morphological evolution of Ceratophryinae (Anura, Neobatrachia)   总被引:1,自引:0,他引:1  
Body form is one of the major consequences of development, and diversification of body shapes implies developmental changes among species. In anurans, changes in the timing of developmental events or heterochrony, have been emphasized as a source of variation in the patterns of development that has lead to diverse morphology. Herein, different approaches are used to explore morphological traits in members of the Ceratophryinae (Anura: Leptodactylidae), a group of frogs with some features produced by overdevelopment. Cladistic analyses were conducted in order to distinguish the shared history of Ceratophrys, Chacophrys and Lepidobatrachus and other anurans. From these studies, morphological variation of selected skeletal features in ceratophryines reveals the presence of ancient structures, which have been considered lost in the neobatrachian phylogeny, integrated in particular designs. Thin-plate spline morphometric analyses of skull shapes among ceratophryines describe Lepidobatrachus as the most distinctive shape. Moreover, thin-plate spline morphometric analyses among anurans show divergent skull shapes between ceratophryines and other anurans, reflecting that the skull shapes of ceratophryines are a result of peramorphosis (increase of developmental rates). This study represents the first detailed examination of the role of peramorphosis in a clade of anurans.  相似文献   

17.
Abstract: Skull shape variation in thalattosuchians is examined using geometric morphometric techniques in order to delineate species, especially with respect to the classification of Callovian species, and to explore patterns of disparity during their evolutionary history. The pattern of morphological diversity in thalattosuchian skulls was found to be very similar to modern crocodilians: the main sources of variation are the length and the width of the snout, but these broad changes are correlated with size of supratemporal fenestra and frontal bone, length of the nasal bone, size of the orbit and premaxilla and position of the narial opening. Patterns of shape variation, in combination with discrete‐state morphology and stratigraphic and geographic range data were used to distinguish nine species of teleosaurid and 14 species of metriorhynchid, with the four currently recognized Callovian species being split into eight. Metriorhynchids were found to be more disparate from the average shape of morphospace than teleosaurids. However, short‐snouted metriorhynchids and long‐snouted teleosaurids showed the greatest amount of disparity with respect to snout morphotypes, indicating that each group tended to explore opposite areas of morphospace. Phylogeny was found to have a moderate influence on the pattern of morphospace occupation in metriorhynchids, but little effect in teleosaurids suggesting that other factors or constraints control the pattern of skull shape variation in thalattosuchians. A comparison of thalattosuchians with dyrosaur/pholidosaurids shows that thalattosuchians have a unique skull morphology, implying that there are multiple ways to construct a ‘long snout’. Moreover, the skull geometry of the problematic species Pelagosaurus typus was found to converge on the teleosaurid area of morphospace. Finally, the temporal distribution of thalattosuchian species and morphotypes demonstrate a clear and highly correlated relationship with sea level curves and mass extinction events through the Jurassic and the Early Cretaceous.  相似文献   

18.
The skull of a mummy horse from the Late Pleistocene of the western Chukchi Peninsula is described. This is the seventh horse mummy recorded during the past 150 years in the Pleistocene permafrost of Siberia. Because of unique preservation (the skeleton is covered by soft tissues and skin) and young individual age (1–1.5 years of age), it is presently impossible to provide its correct species allocation of this specimen. Morphological features of the skull proportions and dentition of the Bilibino horse apparently reflect both species and individual characteristics of the structure and development.  相似文献   

19.
Model-fitting methods are now prominent in the analysis of human behavioural variation. Various ways of specifying models have been proposed. These are identical in their simplest form but differ in the emphasis given to more subtle sources of variation. The biometrical genetical approach allows flexibility in the specification of non-additive factors. Given additivity, the approach of path analysis may be used to specify several environmental models in the presence of assortative mating. In many cases the methods should yield identical conclusions. Several statistical methods have been proposed for parameter estimation and hypothesis testing. The most suitable rely on the method of maximum likelihood for the estimation of variance and covariance components. Any multifactorial model can be formulated in these terms. The choice of method will depend chiefly on the design of the experiment and the ease with which a data summary can be obtained without significant loss of information. Examples are given in which the causes of variation show different degrees of detectable complexity. A variety of experimental designs yield behavioural data which illustrate the contribution of additive and non-additive genetical effects, the mating system, sibling and cultural effects, the interaction of genetical effects with age and sex. The discrimination between alternative hypotheses is often difficult. The extension of the approach to the analysis of multiple measurements and discontinuous traits is considered.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号