首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degradation of the majority of cellular proteins is mediated by the proteasomes. Ubiquitin-dependent proteasomal protein degradation is executed by a number of enzymes that interact to modify the substrates prior to their engagement with the 26S proteasomes. Alternatively, certain proteins are inherently unstable and undergo "default" degradation by the 20S proteasomes. Puzzlingly, proteins are by large subjected to both degradation pathways. Proteins with unstructured regions have been found to be substrates of the 20S proteasomes in vitro and, therefore, unstructured regions may serve as signals for protein degradation "by default" in the cell. The literature is loaded with examples where engagement of a protein into larger complexes increases protein stability, possibly by escaping degradation "by default". Our model suggests that formation of protein complexes masks the unstructured regions, making them inaccessible to the 20S proteasomes. This model not only provides molecular explanations for a recent theoretical "cooperative stability" principle, but also provokes new predictions and explanations in the field of protein regulation and functionality.  相似文献   

2.
Most proteins in eukaryotic cells are degraded by 26-S proteasomes, usually after being conjugated to ubiquitin. In the absence of ATP, 26-S proteasomes fall apart into their two sub-complexes, 20-S proteasomes and PA700, which reassemble upon addition of ATP. Conceivably, 26-S proteasomes dissociate and reassemble during initiation of protein degradation in a ternary complex with the substrate, as in the dissociation-reassembly cycles found for ribosomes and the chaperonin GroEL/GroES. Here we followed disassembly and assembly of 26-S proteasomes in cell extracts as the exchange of PA700 subunits between mouse and human 26-S proteasomes. Compared to the rate of proteolysis in the same extract, the disassembly-reassembly cycle was much too slow to present an obligatory step in a degradation cycle. It has been suggested that subunit S5a (Mcb1, Rpn10), which binds poly-ubiquitin substrates, shuttles between a free state and the 26-S proteasome, bringing substrate to the complex. However, S5a was not found in the free state in HeLa cells. Besides, all subunits in PA700, including S5a, exchanged at similar low rates. It therefore seems that 26-S proteasomes function as stable entities during degradation of proteins.  相似文献   

3.
The 26S proteasome is a multisubunit protease responsible for regulated proteolysis in eukaryotic cells. It is composed of one catalytic 20S proteasome and two 19S regulatory particles attached on both ends of 20S proteasomes. Here, we describe the identification of Adrm1 as a novel proteasome interacting protein in mammalian cells. Although the overall sequence of Adrm1 has weak homology with the yeast Rpn13, the amino- and carboxyl-terminal regions exhibit significant homology. Therefore, we designated it as hRpn13. hRpn13 interacts with a base subunit Rpn2 via its amino-terminus. The majority of 26S proteasomes contain hRpn13, but a portion of them does not, indicating that hRpn13 is not an integral subunit. Intriguingly, we found that hRpn13 recruits UCH37, a deubiquitinating enzyme known to associate with 26 proteasomes. The carboxyl-terminal regions containing KEKE motifs of both hRpn13 and UCH37 are involved in their physical interaction. Knockdown of hRpn13 caused no obvious proteolytic defect but loss of UCH37 proteins and decrease in deubiquitinating activity of 26S proteasomes. Our results indicate that hRpn13 is essential for the activity of UCH37.  相似文献   

4.
We have studied the consequences of heat shock on 20S/26S proteasome activity and activation, the proteasomal subunit composition, proteasome assembly, subunit mRNA stability as well as on the intracellular distribution of proteasomes. Our data show that heat shock locks 20S proteasomes in their latent inactive state and impairs further activation of the 26S proteasome by ATP. Proteasome mRNA levels are decreased after heat shock and the assembly of the proteasome complex is inhibited. Heat shock also induces a rapid reorganisation of the cellular distribution of the proteasome which appears to be connected with proteasome activity and the change of the cellular architecture after heat shock.  相似文献   

5.
Similar to all other eukaryotic cells and tissues muscle tissue contains the proteolytic system of 20S/26S proteasomes with the 20S proteasome existing predominantly in a latent state. Unlike with the mammalian enzymein vitro transition from the latent to the activated state of the 20S proteasomes isolated from muscle of several fish species and from lobster can be achieved by heat shock. It is very likely that the activated state of the 20S proteasome corresponds to the physiologically active form of the enzyme since only that one is able to attack sarcoplasmic and myofibrillar proteins to any significant extent. As perfusion of rat hindquarters with presumptive low molecular mass activators like free fatty acids does not result in an activation of the muscle proteasome other — possibly protein activators — may serve this purposein vivo. The 26S proteasome complex may be regarded as such a proteasome/activator complex. The 26S proteasome complex has the ability to degrade protein (-ubiquitin-conjugates) by an ATP-consuming reaction. Since increased amounts of ubiquitinated proteins as well as an enhanced activity of the ATP (-ubiquitin)-dependent proteolytic system have been measured in rat muscle tissue during various catabolic conditions, it is not unlikely that this pathway is responsible for catalysis of muscle protein breakdown.Abbreviations Bz benzoyl - PGPH peptidylglutamylpeptide hydrolysing - Suc succinyl - Z benzyloxycarbonyl  相似文献   

6.
26S proteasomes are composed of a 20S proteolytic core and two ATPase-containing 19S regulatory particles. To clarify the role of these ATPases in proteolysis, we studied the PAN complex, the archaeal homolog of the 19S ATPases. When ATP is present, PAN stimulates protein degradation by archaeal 20S proteasomes. PAN is a molecular chaperone that catalyzes the ATP-dependent unfolding of globular proteins. If 20S proteasomes are present, this unfoldase activity is linked to degradation. Thus PAN, and presumably the 26S ATPases, unfold substrates and facilitate their entry into the 20S particle. 26S proteasomes preferentially degrade ubiquitinated proteins. However, we found that calmodulin (CaM) and troponin C are degraded by 26S proteasomes without ubiquitination. Ca(2+)-free native CaM and in vitro 'aged' CaM are degraded faster than the Ca(2+)-bound form. Ubiquitination of CaM does not enhance its degradation. Degradation of ovalbumin normally requires ubiquitination, but can occur without ubiquitination if ovalbumin is denatured. The degradation of these proteins still requires ATP and the 19S particle. Thus, ubiquitin-independent degradation by 26S proteasomes may be more important than generally assumed.  相似文献   

7.
Intracellular protein degradation is a major source of short antigenic peptides that can be presented on the cell surface in the context of major histocompatibility class I molecules for recognition by cytotoxic T lymphocytes. The capacity of the most important cytosolic protease, the 20 S proteasome, to generate peptide fragments with an average length of 7-8 amino acid residues has been thoroughly investigated. It has been shown that the cleavage products are not randomly generated, but originate from the commitment of the catalytically active subunits to complex recognition motifs in the primary amino acid sequence. The role of the even larger 26 S proteasome is less well defined, however. It has been demonstrated that the 26 S proteasome can bind and degrade ubiquitin-tagged proteins and minigene translation products in vivo and in vitro, but the nature of the degradation products remains elusive. In this study, we present the first analysis of cleavage products from in vitro digestion of the unmodified model substrate beta-casein with both the 26 S and 20 S proteasome. The data we obtained show that 26 S and 20 S proteasomes generate overlapping, but at the same time substantially different, sets of fragments by following very similar instructions.  相似文献   

8.
Tumor suppressor gene DBC2 stops growth of tumor cells through regulation of CCND1. Interference of CCND1 down-regulation prevented growth arrest caused by DBC2 [T. Yoshihara, D. Collado, M. Hamaguchi, Cyclin D1 down-regulation is essential for DBC2's tumor suppressor function, Biochemical and biophysical research communications 358 (2007) 1076-1079]. It was also noted that DBC2 resistant cells eventually arose after repeated induction of DBC2 with muristerone A treatment [M. Hamaguchi, J.L. Meth, C. Von Klitzing, W. Wei, D. Esposito, L. Rodgers, T. Walsh, P. Welcsh, M.C. King, M.H. Wigler, DBC2, a candidate for a tumor suppressor gene involved in breast cancer, Proc. Natl. Acad. Sci. USA 99 (2002) 13647-13652]. In order to elucidate the mechanism of resistance acquisition, we analyzed DBC2 sensitive and resistant cells derived from the same progenitor cells (T-47D). We discovered that DBC2 protein was abundantly expressed in the sensitive cells when DBC2 was induced. In contrast, it was undetectable by western blot analysis in the resistant cells. We confirmed that the inducible gene expression system was responsive in both cells by detecting induced GFP. Additionally, inhibition of 26S proteasome by MG132 revealed production of DBC2 protein in the resistant cells. These findings indicate that the resistant T-47D cells survive DBC2 induction by rapid destruction of DBC2 through 26S proteasome-mediated protein degradation.  相似文献   

9.
10.
Illumination of intact pumpkin leaves with high light led to severe photoinhibition of photosystem II with no net degradation of the D1 protein. Instead, however, a modified form of D1 protein with slightly slower electrophoretic mobility was induced with corresponding loss in the original form of the D1 protein. When the leaves were illuminated in the presence of chloramphenicol the modified form was degraded, which led to a decrease in the total amount of the D1 protein. Subfractionation of the thylakoid membranes further supported the conclusion that the novel form of the D1 protein was not a precursor but a high-light modified form that was subsequently degraded.  相似文献   

11.
Protein degradation by proteasomes is the source of most antigenic peptides presented on MHC class I molecules. To determine whether proteasomes generate these peptides directly or longer precursors, we developed new methods to measure the efficiency with which 26S and 20S particles, during degradation of a protein, generate the presented epitope or potential precursors. Breakdown of ovalbumin by the 26S and 20S proteasomes yielded the immunodominant peptide SIINFEKL, but produced primarily variants containing 1-7 additional N-terminal residues. Only 6-8% of the times that ovalbumin molecules were digested was a SIINFEKL or an N-extended version produced. Surprisingly, immunoproteasomes which contain the interferon-gamma-induced beta-subunits and are more efficient in antigen presentation, produced no more SIINFEKL than proteasomes. However, the immunoproteasomes released 2-4 times more of certain N-extended versions. These observations show that the changes in cleavage specificity of immunoproteasomes influence not only the C-terminus, but also the N-terminus of potential antigenic peptides, and suggest that most MHC-presented peptides result from N-terminal trimming of larger proteasome products by aminopeptidases (e.g. the interferon-gamma-induced enzyme leucine aminopeptidase).  相似文献   

12.
13.
Long stretches of glutamine (Q) residues are found in many cellular proteins. Expansion of these polyglutamine (polyQ) sequences is the underlying cause of several neurodegenerative diseases (e.g. Huntington's disease). Eukaryotic proteasomes have been found to digest polyQ sequences in proteins very slowly, or not at all, and to release such potentially toxic sequences for degradation by other peptidases. To identify these key peptidases, we investigated the degradation in cell extracts of model Q-rich fluorescent substrates and peptides containing 10-30 Q's. Their degradation at neutral pH was due to a single aminopeptidase, the puromycin-sensitive aminopeptidase (PSA, cytosol alanyl aminopeptidase). No other known cytosolic aminopeptidase or endopeptidase was found to digest these polyQ peptides. Although tripeptidyl peptidase II (TPPII) exhibited limited activity, studies with specific inhibitors, pure enzymes and extracts of cells treated with siRNA for TPPII or PSA showed PSA to be the rate-limiting activity against polyQ peptides up to 30 residues long. (PSA digests such Q sequences, shorter ones and typical (non-repeating) peptides at similar rates.) Thus, PSA, which is induced in neurons expressing mutant huntingtin, appears critical in preventing the accumulation of polyQ peptides in normal cells, and its activity may influence susceptibility to polyQ diseases.  相似文献   

14.
Parkin, a product of the causative gene of autosomal-recessive juvenile parkinsonism (AR-JP), is a RING-type E3 ubiquitin ligase and has an amino-terminal ubiquitin-like (Ubl) domain. Although a single mutation that causes an Arg to Pro substitution at position 42 of the Ubl domain (the Arg 42 mutation) has been identified in AR-JP patients, the function of this domain is not clear. In this study, we determined the three-dimensional structure of the Ubl domain of parkin by NMR, in particular by extensive use of backbone 15N-1H residual dipolar-coupling data. Inspection of chemical-shift-perturbation data showed that the parkin Ubl domain binds the Rpn10 subunit of 26S proteasomes via the region of parkin that includes position 42. Our findings suggest that the Arg 42 mutation induces a conformational change in the Rpn10-binding site of Ubl, resulting in impaired proteasomal binding of parkin, which could be the cause of AR-JP.  相似文献   

15.
S K Singh  F Guo  M R Maurizi 《Biochemistry》1999,38(45):14906-14915
The Escherichia coli ClpA and ClpP proteins form a complex, ClpAP, that catalyzes ATP-dependent degradation of proteins. Formation of stable ClpA hexamers and stable ClpAP complexes requires binding of ATP or nonhydrolyzable ATP analogues to ClpA. To understand the order of events during substrate binding, unfolding, and degradation by ClpAP, it is essential to know the oligomeric state of the enzyme during multiple catalytic cycles. Using inactive forms of ClpA or ClpP as traps for dissociated species, we measured the rates of dissociation of ClpA hexamers or ClpAP complexes. When ATP was saturating, the rate constant for dissociation of ClpA hexamers was 0.032 min(-1) (t(1/2) of 22 min) at 37 degrees C, and dissociation of ClpP from the ClpAP complexes occurred with a rate constant of 0. 092 min(-1) (t(1/2) of 7.5 min). Because the k(cat) for casein degradation is approximately 10 min(-1), these results indicate that tens of molecules of casein can be turned over by the ClpAP complex before significant dissociation occurs. Mutations in the N-terminal ATP binding site led to faster rates of ClpA and ClpAP dissociation, whereas mutations in the C-terminal ATP binding site, which cause significant decreases in ATPase activity, led to lower rates of dissociation of ClpA and ClpAP complexes. Dissociation rates for wild-type and first domain mutants of ClpA were faster at low nucleotide concentrations. The t(1/2) for dissociation of ClpAP complexes in the presence of nonhydrolyzable analogues was >/=30 min. Thus, ATP binding stabilizes the oligomeric state of ClpA, and cycles of ATP hydrolysis affect the dynamics of oligomer interaction. However, since the k(cat) for ATP hydrolysis is approximately 140 min(-1), ClpA and the ClpAP complex remain associated during hundreds of rounds of ATP hydrolysis. Our results indicate that the ClpAP complex is the functional form of the protease and as such engages in multiple rounds of interaction with substrate proteins, degradation, and release of peptide products without dissociation.  相似文献   

16.
Extracellular-regulated kinase 3, an atypical member of the mitogen-activated protein kinase subfamily of extracellular-regulated kinases, was originally identified in 1991. Little is known about the biochemical properties, regulation, and biological functions of this protein kinase, partially due to the unstable nature of endogenous and low ectopical expression level of the protein. Here, we report that a single C-terminal c-myc tag increases the half-life of ectopic expressed tagged extracellular-regulated kinase 3 approximately four times compared to the reported 30 min half-life time for the endogenous protein and ectopic expressed extracellular-regulated kinase 3 deprived of its c-myc tag. These findings indicate that this C-terminal tag stabilizes the extracellular-regulated kinase 3. The stabilizing effect of the C-terminal c-myc tag is observed in all cell types tested, but is position- and tag sequence-dependent as neither N-terminal c-myc tag nor C-terminal HA tag stabilize the protein. The c-myc tag on extracellular-regulated kinase 3 did not interfere with its kinase activity, nor did it abrogate its ability to interacts with its bona fide substrate mitogen-activated protein kinase-activated protein kinase 5, indicating that tagging did not alter the known biological properties of the protein. Stabilization of the tagged extracellular-regulated kinase 3 protein probably results from reduced ubiquitination. In conclusion, position and sequence specific tagging should provide an easy and useful tool to generate a more stable protein that can functionally substitute the endogenous unstable protein. A stabilized variant may facilitate studies on the biological role of the protein.  相似文献   

17.
18.
A major hallmark of the polyglutamine diseases is the formation of neuronal intranuclear inclusions of the disease proteins that are ubiquitinated and often associated with various chaperones and proteasome components. But, how the polyglutamine proteins are ubiquitinated and degraded by the proteasomes are not known. Here, we demonstrate that CHIP (C terminus of Hsp70-interacting protein) co-immunoprecipitates with the polyglutamine-expanded huntingtin or ataxin-3 and associates with their aggregates. Transient overexpression of CHIP increases the ubiquitination and the rate of degradation of polyglutamine-expanded huntingtin or ataxin-3. Finally, we show that overexpression of CHIP suppresses the aggregation and cell death mediated by expanded polyglutamine proteins and the suppressive effect is more prominent when CHIP is overexpressed along with Hsc70.  相似文献   

19.
20.
The 20S core of the proteasome, which together with the regulatory particle plays a major role in the degradation of proteins in eukaryotic cells, is traversed by an internal system of cavities, namely two antechambers and one central proteolytic chamber. Little is known about the mechanisms underlying substrate binding and translocation of polypeptide chains into the interior of 20S proteasomes. Specifically, the role of the antechambers is not fully understood, and the number of substrate molecules sequestered within the internal cavities at any one time is unknown. Here we have shown that by applying both electron microscopy and tandem mass spectrometry (MS) approaches to this multisubunit complex we obtain precise information regarding the stoichiometry and location of substrates within the three chambers. The dissociation pattern in tandem MS allows us to conclude that a maximum of three green fluorescent protein and four cytochrome c substrate molecules are bound within the cavities. Our results also show that >95% of the population of proteasome molecules contain the maximum number of partially folded substrates. Moreover, we deduce that one green fluorescent protein or two cytochrome c molecules must reside within the central proteolytic chamber while the remaining substrate molecules occupy, singly, both antechambers. The results imply therefore an additional role for 20S proteasomes in the storage of substrates prior to their degradation, specifically in cases where translocation rates are slower than proteolysis. More generally, the ability to locate relatively small protein ligands sequestered within the 28-subunit core particle highlights the tremendous potential of tandem MS for deciphering substrate binding within large macromolecular assemblies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号