首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Voltage activated L-type Ca(2+) channels are the principal Ca(2+) channels in intestinal smooth muscle cells. They comprise the ion conducting Ca(V)1 pore and the ancillary subunits alpha(2)delta and beta. Of the four Ca(V)beta subunits Ca(V)beta(3) is assumed to be the relevant Ca(V)beta protein in smooth muscle. In protein lysates isolated from mouse ileum longitudinal smooth muscle we could identify the Ca(V)1.2, Ca(V)alpha(2), Ca(V)beta(2) and Ca(V)beta(3) proteins, but not the Ca(V)beta(1) and Ca(V)beta(4) proteins. Protein levels of Ca(V)1.2, Ca(V)alpha(2) and Ca(V)beta(2) are not altered in ileum smooth muscle obtained from Ca(V)beta(3)-deficient mice indicating that there is no compensatory increase of the expression of these channel proteins. Neither the Ca(V)beta(2) nor the other Ca(V)beta proteins appear to substitute for the lacking Ca(V)beta(3). L-type Ca(2+) channel properties including current density, inactivation kinetics as well as Cd(2+)- and dihydropyridine sensitivity were identical in cells of both genotypes suggesting that they do not require the presence of a Ca(V)beta(3) protein. However, a key hallmark of the Ca(V)beta modulation of Ca(2+) current, the hyperpolarisation of channel activation is slightly but significantly reduced by 4 mV. In addition to L-type Ca(2+) currents T-type Ca(2+) currents could be recorded in the murine ileum smooth muscle cells, but T-type currents were not affected by the lack of Ca(V)beta(3). Both proteins, Ca(V)beta(2) and Ca(V)beta(3) are localized near the plasma membrane and the localization of Ca(V)beta(2) is not altered in Ca(V)beta(3) deficient cells. Spontaneous contractions and potassium and carbachol induced contractions are not significantly different between ileum longitudinal smooth muscle strips from mice of both genotypes. In summary the data show that in ileum smooth muscle cells, Ca(V)beta(3) has only subtle effects on L-type Ca(2+) currents, appears not to be required for spontaneous and potassium induced contraction but might have a function beyond being a Ca(2+) channel subunit.  相似文献   

2.
3.
There is increasing interest in the roles played by potassium channels of smooth muscle in protecting against ischemic and anoxic insults. Hence, potassium-selective channels were studied in freshly dispersed porcine coronary artery smooth muscle cells using the inside-out variant of the patch-clamp technique. The most abundant potassium channel had a conductance of 148 pS in a 5.4/140 mM K+ gradient, at 0 mV, and was regulated by cytoplasmic ATP (0.05-3.0 mM), cytoplasmic Ca2+ (0.1-10 microM) and voltage. ATP and AMP-PNP (0.5 mM) reduced the probability of channel opening (Po) by 87 and 92%, respectively. This inhibition was partially reversed by the addition of 0.5 mM ADP. ADP on its own (2 mM) reduced Po by 46%. It appears, therefore, that this channel shares properties with both the ATP-sensitive and the calcium-regulated potassium channels, raising the possibility that it plays a central role in the regulation of coronary blood flow.  相似文献   

4.
A series of 2-alkyl-3-alkylamino-2H-benzo- and 2-alkyl-3-alkylamino-2H-pyrido[4,3-e]-1,2,4-thiadiazine 1,1-dioxides, structurally related to BPDZ 44 and BPDZ 73, two potent pancreatic B-cells K+ATP channel openers, were synthesized and tested on rat pancreatic islets (endocrine tissue) as well as on rat aorta rings (vascular smooth muscle tissue). Alkylation of the 2-position led to double bond tautomerization and formation of compounds with a 2H-conformation. In contrast to the previously described pyridothiadiazine dioxides, such as BPDZ 44, and 7-chlorobenzothiadiazine dioxides, such as BPDZ 73, the 2-alkyl-substituted analogs were found to be poorly active on the insulin releasing process although most drugs exhibited a vasorelaxant activity. As a result, the new 2-alkyl-substituted pyridinic compounds expressed a selectivity profile (vascular smooth muscle tissue vs pancreatic tissue) opposite to that of their non-alkyl-substituted counterparts, i.e. BPDZ 44. Additional investigations revealed that, in contrast to their non 2-alkyl-substituted analogs, the most interesting 2-methyl-substituted derivatives did not express the pharmacological profile of classical K+ATP channel openers. The pharmacological results rather suggest that alkylation of the 2-position of the thiadiazine ring led to drugs that could act as Ca2+ channel blockers rather than as potassium channel openers.  相似文献   

5.
The actions of a series of 15 Ca2+ channel antagonists including D-600, nifedipine, and diltiazem were examined against K+ depolarization and muscarinic receptor induced responses in guinea pig bladder smooth muscle. Responses of bladder are very dependent upon extracellular Ca2+ and sensitive to the Ca2+ channel antagonists, the tonic component more than the phasic component of response. Regardless of stimulant, K+ or methylfurmethide (MF), or component of response, the same rank order of antagonist activities is expressed, suggestive of a single structure-activity relationship and the existence of a single category of binding site which may, however, exist in several affinity states. High affinity binding of [3H]nitrendipine (KD = 1.1 X 10(-10) M) occurs in bladder membranes, and similar high affinity binding was found in microsomal preparations from other smooth muscles including guinea pig and rat lung, rat vas deferens, uterus, and stomach. [3H]nitrendipine binding in the bladder was sensitive to displacement by other 1,4-dihydropyridines, paralleling their pharmacologic activities and showing excellent agreement with binding data previously obtained for guinea pig ileal smooth muscle. Comparison of pharmacologic data for inhibition of K+- and MF-induced responses by a common series of Ca2+ channel antagonists in bladder and ileum revealed excellent correlations. Neither pharmacologic nor binding studies suggest significant differences in Ca2+ channel antagonist properties in smooth muscle from bladder and intestine.  相似文献   

6.
Muscle activity is associated with potassium displacements, which may cause fatigue. It was reported previously that the density of the large-conductance Ca2+-dependent K+ (BK(Ca)) channel is higher in the T tubule membrane than in the sarcolemmal membrane and that the opposite is the case for the ATP-sensitive K+ (K(ATP)) channel. In the present experiments, we investigated the subcellular localizations of the strong inward rectifier 2.1 K+ (Kir2.1) channel and the Na+-K+-2Cl- (NKCC)1 cotransporter with Western blot analysis of different muscle fractions. Furthermore, muscle function was studied while trying to manipulate the opening probability or transport capacity of these proteins during electrical stimulation of isolated soleus muscles. All experiments were made with excised muscle from male Wistar rats. Kir2.1 channels were almost undetectable in the sarcolemmal membrane but present in the T tubule membrane, whereas NKCC1 cotransporters were present in the sarcolemmal membrane. For muscles incubated in a buffer containing pinacidil, NS1619, Ba2+, or bumetanide, there was a faster reduction in peak force (P < 0.05). Furthermore, bumetanide incubation reduced the peak force at the onset of electrical stimulation (P < 0.05). Thus the effects on muscle force indicate that these drugs can affect K+-transporting proteins and thereby influence K+ accumulation, especially in the T tubules, suggesting that K(ATP) and BK(Ca) channels are responsible for K+ release and decrease in force during repeated muscle contractions, whereas Kir2.1 and NKCC1 may have a role in K+ reuptake.  相似文献   

7.
Potassium channels are important contributors to membrane excitability in smooth muscles. There are regional differences in resting membrane potential and K(+)-channel density along the length of the feline circular smooth muscle esophagus. The aim of this study was to assess responses of K(+)-channel currents to cholinergic (ACh) stimulation along the length of the feline circular smooth muscle esophageal body. Perforated patch-clamp technique assessed K(+)-channel responses to ACh stimulation in isolated smooth muscle cells from the circular muscle layer of the esophageal body at 2 (distal)- and 4-cm (proximal) sites above the lower esophageal sphincter. Western immunoblots assessed ion channel and receptor expression. ACh stimulation produced a transient increase in outward current followed by inhibition of spontaneous transient outward currents. These ACh-induced currents were abolished by blockers of large-conductance Ca(2+)-dependent K(+) channels (BK(Ca)). Distal cells demonstrated a greater peak current density in outward current than cells from the proximal region and a longer-lasting outward current increase. These responses were abolished by atropine and the specific M(3) receptor antagonist 4-DAMP but not the M(1) receptor antagonist pirenzipine or the M(2) receptor antagonist methoctramine. BK(Ca) expression along the smooth muscle esophagus was similar, but M(3) receptor expression was greater in the distal region. Therefore, ACh can differentially activate a potassium channel (BK(Ca)) current along the smooth muscle esophagus. This activation probably occurs through release of intracellular calcium via an M(3) pathway and has the potential to modulate the timing and amplitude of peristaltic contraction along the esophagus.  相似文献   

8.
The IP3 receptor of aortic smooth muscle, purified to near homogeneity, was incorporated into vesicle derived planar bilayers. The receptor forms channels which are gated by Ins(1,4,5)P3 (0.5 microM) and are permeable to Ca2+ (Ca2+ greater than K+ much greater than Cl-). Channel activation is specific for Ins(1,4,5)P3. Essentially no activation of channel currents was found for Ins(1,3,4)P3 or Ins(1,3,4,5)P4 at 10 microM. Heparin (25 micrograms/ml) blocked induced currents completely at all levels of activity while ATP (50 microM) increased mean current levels 2 to 4 fold. Ins(1,4,5)P3 activated mean currents increased non-linearly with voltage above about -40 mV applied voltage. Mean current levels could be reversibly adjusted by voltage to the single channel level (0 to -50 mV) or to macroscopic levels (-50 to -100 mV) over periods exceeding 1 h. Single channel events are characterized by fast transitions between predominantly non-resolved sublevels. Estimates of maximal single event currents yield a slope conductance of 32 +/- 4 pS (0 to -60 mV, 50 mM CaCl2). Thus, the purified IP3 receptor forms a channel with functional properties characteristic of IP3 triggered Ca2+ release.  相似文献   

9.
Activation of ATP-sensitive potassium (K(ATP)) channels can regulate smooth muscle function through membrane potential hyperpolarization. A critical issue in understanding the role of K(ATP) channels is the relationship between channel activation and the effect on tissue function. Here, we explored this relationship in urinary bladder smooth muscle (UBSM) from the detrusor by activating K(ATP) channels with the synthetic compounds N-(4-benzoylphenyl)-3,3,3-trifluoro-2-hydroxy-2-methylpropionamide (ZD-6169) and levcromakalim. The effects of ZD-6169 and levcromakalim on K(ATP) channel currents in isolated UBSM cells, on action potentials, and on related phasic contractions of isolated UBSM strips were examined. ZD-6169 and levcromakalim at 1.02 and 2.63 microM, respectively, caused half-maximal activation (K1/2) of K(ATP) currents in single UBSM cells (see Heppner TJ, Bonev A, Li JH, Kau ST, and Nelson MT. Pharmacology 53: 170-179, 1996). In contrast, much lower concentrations (K(1/2) = 47 nM for ZD-6169 and K1/2 = 38 nM for levcromakalim) caused inhibition of action potentials and phasic contractions of UBSM. The results suggest that activation of <1% of K(ATP) channels is sufficient to inhibit significantly action potentials and the related phasic contractions.  相似文献   

10.
11.
L-type, voltage-dependent calcium (Ca(2+)) channels, ryanodine-sensitive Ca(2+) release (RyR) channels, and large-conductance Ca(2+)-activated potassium (K(Ca)) channels comprise a functional unit that regulates smooth muscle contractility. Here, we investigated whether genetic ablation of caveolin-1 (cav-1), a caveolae protein, alters Ca(2+) spark to K(Ca) channel coupling and Ca(2+) spark regulation by voltage-dependent Ca(2+) channels in murine cerebral artery smooth muscle cells. Caveolae were abundant in the sarcolemma of control (cav-1(+/+)) cells but were not observed in cav-1-deficient (cav-1(-/-)) cells. Ca(2+) spark and transient K(Ca) current frequency were approximately twofold higher in cav-1(-/-) than in cav-1(+/+) cells. Although voltage-dependent Ca(2+) current density was similar in cav-1(+/+) and cav-1(-/-) cells, diltiazem and Cd(2+), voltage-dependent Ca(2+) channel blockers, reduced transient K(Ca) current frequency to approximately 55% of control in cav-1(+/+) cells but did not alter transient K(Ca) current frequency in cav-1(-/-) cells. Furthermore, although K(Ca) channel density was elevated in cav-1(-/-) cells, transient K(Ca) current amplitude was similar to that in cav-1(+/+) cells. Higher Ca(2+) spark frequency in cav-1(-/-) cells was not due to elevated intracellular Ca(2+) concentration, sarcoplasmic reticulum Ca(2+) load, or nitric oxide synthase activity. Similarly, Ca(2+) spark amplitude and spread, the percentage of Ca(2+) sparks that activated a transient K(Ca) current, the amplitude relationship between sparks and transient K(Ca) currents, and K(Ca) channel conductance and apparent Ca(2+) sensitivity were similar in cav-1(+/+) and cav-1(-/-) cells. In summary, cav-1 ablation elevates Ca(2+) spark and transient K(Ca) current frequency, attenuates the coupling relationship between voltage-dependent Ca(2+) channels and RyR channels that generate Ca(2+) sparks, and elevates K(Ca) channel density but does not alter transient K(Ca) current activation by Ca(2+) sparks. These findings indicate that cav-1 is required for physiological Ca(2+) spark and transient K(Ca) current regulation in cerebral artery smooth muscle cells.  相似文献   

12.
ATP inhibits smooth muscle Ca2(+)-activated K+ channels   总被引:3,自引:0,他引:3  
There has been much recent interest in the roles played by smooth-muscle K+ channels in protecting cells against ischemic and anoxic insults and in therapeutic vaso- and bronchodilation (Buckingham 1990; Longmore & Weston 1990). A K+ channel, which is uniquely sensitive to cytoplasmic ATP (KATP), has been identified as a likely candidate for mediating these important functions (Standen et al. 1989). We now show, by using electrophysiological techniques in three different types of smooth muscle, that a large-conductance voltage and Ca2(+)-sensitive channel, otherwise indistinguishable from the the large-conductance Ca2(+)-activated K+ channel (BK channel), is also sensitive to cytoplasmic ATP and cromakalim. ATP, in a dose-dependent manner, decreased the probability of channel opening (Po) of rabbit aortic, rabbit tracheal and pig coronary artery BK channels with a Ki of 0.2-0.6 mM. Cromakalim, 10 microM, partially reversed the ATP induced inhibition and increased Po. Our observations raise the possibility that the ubiquitous BK channel may play a role during pathophysiological events.  相似文献   

13.
The effects of the potassium (K(+)) channel opener pinacidil (Pin) on the coronary smooth muscle Ca(2+)-myosin light chain (MLC) phosphorylation pathway under hypothermic K(+) cardioplegia were determined by use of an in vitro microvessel model. Rat coronary arterioles (100-260 microm in diameter) were subjected to 60 min of simulated hypothermic (20 degrees C) K(+) cardioplegic solutions (K(+) = 25 mM). We first characterized the time course of changes in intracellular Ca(2+) concentration, MLC phosphorylation, and diameter and observed that the K(+) cardioplegia-related vasoconstriction was associated with an activation of the Ca(2+)-MLC phosphorylation pathway. Supplementation with Pin effectively suppressed the Ca(2+) accumulation and MLC phosphorylation in a dose-dependent manner and subsequently maintained a small decrease in vasomotor tone. The ATP-sensitive K(+) (K(ATP))-channel blocker glibenclamide, but not the nitric oxide (NO) synthase inhibitor N(omega)-nitro-L-arginine methyl ester, significantly inhibited the effect of Pin. K(+) cardioplegia augments the coronary Ca(2+)-MLC pathway and results in vasoconstriction. Pin effectively prevents the activation of this pathway and maintains adequate vasorelaxation during K(+) cardioplegia through a K(ATP)-channel mechanism not coupled with the endothelium-derived NO signaling cascade.  相似文献   

14.
Saino T  Matsuura M  Satoh YI 《Cell calcium》2002,32(3):153-163
Adenosine 5'-triphosphate (ATP), when released from neuronal and non-neuronal tissues, interacts with cell surface receptors produces a broad range of physiological responses. The goal of the present study was to examine the issue of whether vascular smooth muscle cells respond to ATP. To this end, the dynamics of the intracellular concentration of calcium ions ([Ca(2+)](i)) in smooth muscle cells in testicular and cerebral arterioles was examined by laser scanning confocal microscopy. ATP produced an increase in [Ca(2+)](i) in arteriole smooth muscle cells. While P1 purinoceptor agonists had no effect on this process, P2 purinoceptor agonists induced a [Ca(2+)](i) increase and a P2 purinoceptor antagonist, suramin, completely inhibited ATP-induced [Ca(2+)](i) dynamics in both arteriole smooth muscle cells.In testicular arterioles, Ca(2+) channel blockers and the removal of extracellular Ca(2+), but not thapsigargin pretreatment, abolished the ATP-induced [Ca(2+)](i) dynamics. In contrast, Ca(2+) channel blockers and the removal of extracellular Ca(2+) did not completely inhibit ATP-induced [Ca(2+)](i) dynamics in cerebral arterioles. Uridine 5'-triphosphate caused an increase in [Ca(2+)](i) only in cerebral arterioles and alpha,beta-methylene ATP caused an increase in [Ca(2+)](i) in both testicular and cerebral arterioles.We conclude that testicular arteriole smooth muscle cells respond to extracellular ATP via P2X purinoceptors and that cerebral arteriole smooth muscle cells respond via P2X and P2Y purinoceptors.  相似文献   

15.
16.
Xu WH  Li W  Wang XL 《生理学报》1998,50(1):75-81
本文用膜片箝全细胞技术比较了研究了单个兔肺动脉血管平滑肌细胞上延迟整流钾通道与克隆Kv1.5通道的电生理及药理学特性。将平滑肌细胞箝制在-40mV,以10mV的步跨阶跃去极化(0 ̄60mV)可产生一系列快速上升的外向电流,几无衰减,其激活曲线的V1/2为27.2mV。灌流液中加入100mmol/L和TEA 1mmol/L 4AP,电流幅度均明显减小,细胞外Ca^2+水平由1.5mmol/L降至0.  相似文献   

17.
The activity of ATP-sensitive potassium (K(ATP)) channels is governed by the concentration of intracellular ATP and ADP and is thus responsive to the metabolic status of the cell. Phosphorylation of K(ATP) channels by protein kinase A (PKA) or protein kinase C (PKC) results in the modulation of channel activity and is particularly important in regulating smooth muscle tone. At the molecular level the smooth muscle channel is composed of a sulfonylurea subunit (SUR2B) and a pore-forming subunit Kir6.1 and/or Kir6.2. Previously, Kir6.1/SUR2B channels have been shown to be inhibited by PKC, and Kir6.2/SUR2B channels have been shown to be activated or have no response to PKC. In this study we have examined the modulation of channel complexes formed of the inward rectifier subunit, Kir6.2, and the sulfonylurea subunit, SUR2B. Using a combination of biochemical and electrophysiological techniques we show that this complex can be inhibited by protein kinase C in a Ca(2+)-dependent manner and that this inhibition is likely to be as a result of internalization. We identify a residue in the distal C terminus of Kir6.2 (Ser-372) whose phosphorylation leads to down-regulation of the channel complex. This inhibitory effect is distinct from activation which is seen with low levels of channel activity.  相似文献   

18.
We tested the hypothesis that constriction of descending vasa recta (DVR) is mediated by voltage-gated calcium entry. K(+) channel blockade with BaCl(2) (1 mM) or TEACl (30 mM) depolarized DVR smooth muscle/pericytes and constricted in vitro-perfused vessels. Pericyte depolarization by 100 mM extracellular KCl constricted DVR and increased pericyte intracellular Ca(2+) ([Ca(2+)](i)). The K(ATP) channel opener pinacidil (10(-7)-10(-4) M) hyperpolarized resting pericytes, repolarized pericytes previously depolarized by ANG II (10(-8) M), and vasodilated DVR. The DVR vasodilator bradykinin (10(-7) M) also reversed ANG II depolarization. The L-type Ca(2+) channel blocker diltiazem vasodilated ANG II (10(-8) M)- or KCl (100 mM)-preconstricted DVR, and the L-type agonist BayK 8644 constricted DVR. The plateau phase of the pericyte [Ca(2+)](i) response to ANG II was inhibited by diltiazem. These data support the conclusion that DVR vasoreactivity is controlled through variation of membrane potential and voltage-gated Ca(2+) entry into the pericyte cytoplasm.  相似文献   

19.
GH3 cells present spontaneous Ca2+ action potentials and oscillations of intracellular Ca2+, which can be modified by altering the activity of K+ or Ca2+ channels. We took advantage of this spontaneous activity to screen for effects of a purified toxin (Tx3-1) from the venom of Phoneutria nigriventer on ion channels. We report that Tx3-1 increases the frequency of Ca2+ oscillations, as do two blockers of potassium channels, 4-aminopyridine and charybdotoxin. Whole-cell patch clamp experiments show that Tx3-1 reversibly inhibits the A-type K+ current (I(A)) but does not block other K+ currents (delayed-rectifying, inward-rectifying, and large-conductance Ca2+-sensitive) or Ca2+ channels (T and L type) in these cells. In addition, we describe the sequence of a full cDNA clone of Tx3-1, which shows that Tx3-1 has no homology to other known blockers of K+ channels and gives insights into the processing of this neurotoxin. We conclude that Tx3-1 is a selective inhibitor of I(A), which can be used to probe the role of this channel in the control of cellular function. Based on the effect of Tx3-1, we suggest that I(A) is an important determinant of the frequency of Ca2+ oscillations in unstimulated GH3 cells.  相似文献   

20.
Coexpression of sulfonylurea receptor (SUR) and inward-rectifying K+ channel (Kir6.1 or 6.2) subunit yields ATP-sensitive K+ (K(ATP)) channels. Three subtypes of SUR have been cloned: pancreatic (SUR1), cardiac (SUR2A), and vascular smooth muscle (SUR2B). The distinct responses to K+ channel openers (KCOs) produced in different tissues may depend on the SUR isoform of K(ATP) channel. Therefore, we investigated the effects of pinacidil and diazoxide, two KCOs, on K(ATP) currents in intestinal smooth muscle cells of the rat colon (circular layer) using whole-cell voltage clamp. Pinacidil stimulated a time-independent K+ current evoked by various test potentials from a holding potential of -70 mV. The reversal potential of the stimulated current was about -75 mV, which is close to the equilibrium potential for K+ (E(K)). Both pinacidil and diazoxide dose-dependently stimulated K+ currents (evoked by ramp pulses), with EC50 values of 1.3 and 34.2 microM, respectively. The stimulated current was completely reversed by glybenclamide (3 microM). Since the EC50 values are close to those reported for vascular smooth muscle (VSM) cells, the SUR subtype may be similar to that in VSM cells, and could form the functional K(ATP) channel in rat colonic smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号